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Abstract

We call a topological ordering of a weighted directed acyclic graph non-negative if
the sum of weights on the vertices in any prefix of the ordering is non-negative. We in-
vestigate two processes for constructing non-negative topological orderings of weighted
directed acyclic graphs. The first process is called a mark sequence and the second
is a generalization called a mark-unmark sequence. We answer a question of Erick-
son by showing that every non-negative topological ordering that can be realized by a
mark-unmark sequence can also be realized by a mark sequence. We also investigate
the question of whether a given weighted directed acyclic graph has a non-negative
topological ordering. We show that even in the simple case when every vertex is a
source or a sink the question is NP-complete.

1 Introduction

A directed acyclic graph (or DAG) is a directed graph with no directed cycles. A subset M
of vertices of G is outdirected if every edge between M and V (G) \ M is directed towards
V (G) \ M (i.e., edges directed towards M are contained in M). A prefix of length k of a
sequence s is the subsequence of the first k terms of s. A topological ordering of a DAG G
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is an ordering of the vertices of G such that every prefix of the ordering is outdirected. The
following two processes yield topological orderings of a given DAG G with n vertices.

A mark sequence of G is a sequence M1,M2, . . . ,Mn of subsets of V (G) formed in the
following way: first choose an arbitrary source v and put M1 = {v}, i.e., mark v in step 1.
For i = 2, 3, 4, . . . , n, choose a vertex u 6∈ Mi−1 such that {u} ∪Mi−1 is outdirected and put
Mi = {u} ∪Mi−1, i.e., mark u in step i.

A mark-unmark sequence of G is a sequence of subsets of V (G) formed in the following
way: first choose an arbitrary source v and put M1 = {v}, i.e., mark v in step 1. For
i = 2, 3, 4, . . . , n either (i) choose a vertex u 6∈ Mi−1 such that {u} ∪ Mi−1 is outdirected
and put Mi = {u} ∪Mi−1, i.e., mark u in step i or (ii) choose a vertex u ∈ Mi−1 such that
Mi−1 \ {u} is outdirected and put Mi = Mi−1 \ {u}, i.e., unmark u in step i. This process
stops when Mi = V (G).

Clearly, mark-unmark sequences are a generalization of mark sequences. Because we only
mark a vertex if the new set Mi is outdirected, we get a topological ordering by arranging
the vertices of G by the last step in which they were marked in the mark-unmark sequence.
In particular, the ordering of elements given by a mark sequence is simply a topological
ordering.

A DAG G is called weighted if there is an assignment of real numbers to each vertex of
G. We call a topological ordering non-negative if the sum of the weights of the vertices in
every prefix is non-negative. Similarly a mark-unmark (or mark) sequence is non-negative if
at each step the sum of the weights in Mi is non-negative.

Clearly, a non-negative mark sequence is equivalent to a non-negative topological or-
dering. However, a non-negative mark-unmark sequence may give a negative topological
ordering (we use negative in place of “not non-negative.”). For example, let G be a weighted
DAG on four vertices {a, b, c, d} with a single edge bc and weights w(a) = w(c) = w(d) = 1,
w(b) = −1. Consider the following non-negative mark-unmark sequence: mark a, b, c, then
unmark a, then mark d and a. This gives the topological ordering b, c, d, a, which is negative.
This suggests the following question of Erickson1: is there a weighted DAG G that has a
non-negative mark-unmark sequence but no non-negative mark sequence?

We answer this question in the negative with the following theorem.

Theorem 1. If a weighted DAG G has a non-negative mark-unmark sequence, then G also

has a non-negative mark sequence.

This problem was motivated by a question of Eppstein2, which asked to determine the
complexity to decide whether a weighted DAG G has a non-negative topological ordering.
His motivation was related to abstract Fréchet distance problems. This question turned
out to be practically equivalent to an NP-complete problem of Garey and Johnson [1],
called SEQUENCING TO MINIMIZE MAXIMUM CUMULATIVE COST, which we will
not define here in its full generality. In fact, the problem isNP-complete even in the following
special case.

1Positive topological ordering, take 2, http://cstheory.stackexchange.com/questions/1399
2Positive topological ordering, http://cstheory.stackexchange.com/questions/1346
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Figure 1: Examples

Theorem 2. Let G be a weighted DAG such that every vertex is either a source or a sink.

Deciding whether G has a non-negative topological ordering is NP-complete.

The proof of hardness is through a series of reductions, which have been noticed/proved
by different people (including the authors) and are hard to gather from the internet, so we
include the full proof of Theorem 2 in Section 3. Theorem 1 is proved in Section 2.

2 Marking and Unmarking

In this section we prove Theorem 1.3 In particular, given a weighted DAG G and a non-
negative mark-unmark sequence, we will construct a non-negative mark sequence for G. We
begin with some definitions. By w(X) we denote the sum of the weights of the elements of
a set of vertices X . We say that a set Y ⊆ X is X-indirected if every edge between Y and
X \ Y is directed towards Y . Similarly, say that a set Y ⊆ X is X-outdirected if every edge
between Y and X \ Y is directed towards X \ Y . For simplicity, we call a set of vertices
Y of a DAG G outdirected (indirected) if Y is V (G)-outdirected (V (G)-indirected). Note
that this definition corresponds to the definition of indirected given in the previous section.
Figure 1 (a) gives an example of X-indirected and X-outdirected sets.

Proof of Theorem 1. Let G be a weighted DAG with a non-negative mark-unmark sequence.
Let M1,M2, . . . , Mt be a mark-unmark sequence with at least one unmark step (otherwise
we are done) of minimum length. For i ∈ [t],4 put Ui = (∪i−1

j=1
Mj) \ Mi, i.e., the set of

3A sketch of this proof posted by the fourth author can be found online at
http://cstheory.stackexchange.com/questions/1399

4Here (and later) [t] stands for {1, . . . , t}.
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elements that were marked in the first i − 1 steps, but later became unmarked (in one of
the first i steps). Note that Ui is (Mi ∪ Ui)-indirected. Figure 1 (b) gives an example of the
steps of a mark-unmark sequence and of Ui.

Claim 3. w(Ui) > 0 for all i.

Proof. We prove the stronger statement that the weight of any Ui-indirected set is positive
(Ui is clearly Ui-indirected). Suppose the statement is false and let X be a minimal coun-
terexample, i.e., X is Ui-indirected and w(X) ≤ 0. If Y is a non-empty X-outdirected set,
then X \Y is Ui-indirected and a proper subset of X , hence w(X \Y ) > 0 (by the minimality
of X).

If w(Y ) ≥ 0, then w(X) = w(Y ) + w(X \ Y ) > 0 which is a contradiction. Thus we can
suppose that for every X-outdirected set Y we have w(Y ) < 0. Now we construct a new
sequence M ′

1,M
′

2, . . . ,M
′

t′ . We start with the original sequence M1,M2, . . . ,Mt. We remove
each ofM1,M2, . . . ,Mi−1 that involves marking or unmarking an element ofX , and we delete
elements of X from the remaining ones. After that we put Mi,Mi+1, . . . ,Mt to the end of
the sequence. For example, if X = {b} and i = 6 the sequence M1 = {a}, M2 = {a, b},
M3 = {a, b, c}, M4 = {a, b, c, d}, M5 = {a, c, d}, M6 = {a, c, d, e}, M7 = {a, b, c, d, e}
becomes M ′

1 = {a}, M ′

2 = {a, b}, M ′

3 = {a, b, c}, M ′

4 = {a, b, c, d}, M ′

5 = {a, b, c, d, e}, as we
skip the second step (marking b) and the fifth step (unmarking b).

We claim that this new sequence is also a mark-unmark sequence. First, note that the
elements of X are in Ui and are therefore marked at some step after i, i.e., each element of X
will eventually be marked in the new sequence. Now we show that every M ′

j is outdirected.
Indeed, if it is not outdirected, then there is an edge uv with u 6∈ M ′

j and v ∈ M ′

j . The set
Mj is outdirected and contains M ′

j (thus contains v), therefore u ∈ Mj . Thus u ∈ X . Now,
as X is Ui-indirected, either v ∈ X (which contradicts v ∈ M ′

j), or v 6∈ Ui. But v ∈ Mj

implies it is marked before the ith step in the original sequence, hence v 6∈ Ui is possible
only if it is never unmarked, i.e., v ∈ Mi. However, u ∈ X ⊂ Ui implies u 6∈ Mi, which
contradicts the outdirected property of Mi.

Now we show that the new mark-unmark sequence M ′

1,M
′

2, . . . ,M
′

t′ is non-negative.
Indeed, let X ′

j = X ∩ Mj , then X ′

j is an X-outdirected set, thus w(X ′

j) < 0. Now
w(M ′

j) = w(Mj) − w(X ′

j) > w(Mj) ≥ 0. This new non-negative mark-unmark sequence
is shorter than the original sequence, which is of minimum length, a contradiction. This
completes the proof of Claim 3.

We now construct a new sequence by starting with the original mark-unmark sequence
M1,M2, . . . ,Mt and skipping every step where a vertex is unmarked or marked beyond the
first marking. Also, when we skip unmarking an element x, we add it to every later set. Let
M ′′

1 ,M
′′

2 , . . . ,M
′′

t be the new sequence. For example, the sequence M1 = {a}, M2 = {a, b},
M3 = {a, b, c}, M4 = {a, b, c, d}, M5 = {a, c, d}, M6 = {a, c, d, e}, M7 = {a, b, c, d, e}
becomes M ′′

1 = {a}, M ′′

2 = {a, b}, M ′′

3 = {a, b, c}, M ′′

4 = {a, b, c, d}, M ′′

5 = {a, b, c, d, e}, as
we skip the fifth step (unmarking b) and the seventh step (marking b again).

We claim that M ′′

1 ,M
′′

2 , . . . ,M
′′

t is a mark sequence. Clearly, every vertex will be marked
at some point as every vertex will be marked at the end of the original sequence. Furthermore,
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every M ′′

i is outdirected. Indeed, if M ′′

i is not outdirected, then there is an edge uv with
u 6∈ M ′′

i and v ∈ M ′′

i . But for v to be marked, u had to have been marked in a previous
step. This is a contradiction, thus M ′′

i must be outdirected. Finally, to show the sequence is
non-negative we must prove that w(M ′′

i ) is non-negative for all i. For each i, there is some
j ≥ i such that M ′′

i = Mj ∪ Uj . The original sequence is non-negative, and Mj and Uj are
disjoint by definition, thus, by Claim 3, we have w(M ′′

i ) = w(Mj)+w(Uj) > w(Mj) ≥ 0 and
therefore the mark sequence is non-negative. This completes the proof of Theorem 1.

Note that with this method we prove a stronger statement. Suppose we want to mark
only a certain subset of the vertices, and all the other vertices are used only to help achieve
this. Consider, for example, the weighted DAG G mentioned in the introduction with four
vertices {a, b, c, d}, a single edge bc and weights w(a) = w(c) = w(d) = 1, w(b) = −1.
Suppose our goal is to mark the subset {b, c}. Clearly, to mark the subset {b, c} we must
unmark vertices. For example we can mark a, mark b, mark c and unmark a to get the
desired subset. We show that unmarking is needed only to reduce the set of marked vertices
to the desired set, i.e., we never perform another mark after the first unmark.

We call a mark-unmark sequence partial if it is the same as a mark-unmark sequence
except it stops after t steps and Mt may be a proper subset of V (G).

Proposition 4. Let G be a weighted DAG, and suppose M1,M2, . . . ,Mt is a non-negative

partial mark-unmark sequence which stops after t steps. Then there is a non-negative partial

mark-unmark sequence M ′

1,M
′

2, . . . ,M
′

j+k such that the first j steps are markings, the last k
steps are unmarkings, and M ′

j+k = Mt.

We omit some details from the proof of Proposition 4 as it is very similar to the proof of
Theorem 1.

Proof sketch. For i ∈ [t], put Ui = (∪i−1

j=1
Mj) \ Mi, i.e., the set of elements that have been

unmarked in any of the first i steps. As in the proof of Theorem 1, we have that the weight
of any Ui-indirected set is positive (from the proof of Claim 3). Let U be the set of vertices
that are unmarked at some step in the mark-unmark sequence M1,M2, . . . ,Mt.

We now construct a new sequence by starting with the original mark-unmark sequence
M1,M2, . . . ,Mt and skipping every step where a vertex is unmarked or marked beyond
the first marking. Let M ′

1,M
′

2, . . . ,M
′

j be the new sequence. Then add |U | = k steps
to the resulting sequence where we unmark the vertices of U in the order in which their
first unmarking occurred in the original sequence. In other words, when an element of
U is unmarked first, we move that step to the end of the sequence, and skip all other
steps where that element is chosen to be marked or unmarked. The resulting sequence is
M ′

1,M
′

2, . . . ,M
′

j+k.
To finish the proof we need to show that M ′

1,M
′

2, . . . ,M
′

j+k satisfies the definition of a
mark-unmark sequence (we omit the details) and that the sequence is non-negative. To see
that it is non-negative, observe that after any step of the new sequence the set of marked
elements is the same as the set of marked elements after some step in the original sequence,
with the addition of an Ui-indirected set (which is positive by the proof of Claim 3). This
completes the proof of Proposition 4.

5



3 NP-completeness

In this section we will prove Theorem 2. The proof is by a series of reductions of the original
problem to a known NP-complete problem. We restate the decision problem in Theorem 2
here.

Problem 5. Given a weighted DAG G such that every vertex is either a source or a sink,

determine whether G has a non-negative topological ordering.

First we show that there is a reduction from the following problem posed by Rote5 to
Problem 5.

Problem 6. Given a balanced bipartite graph G, determine whether edges can be added to

G to create a bipartite graph with a unique perfect matching.

We will need the following well-known observation. We include the easy proof for the
sake of completeness.

Observation 7. Let G be a balanced bipartite graph with classes A and B. The graph G
contains a unique perfect matching M if and only if there is an ordering A = {a1, a2, . . . , an}
and B = {b1, b2, . . . , bn} such that for all i ∈ [n] we have aibi ∈ M and aibj /∈ E(G) if

1 ≤ j < i ≤ n.

Proof. If there are zero or at least two perfect matchings in G, such an ordering cannot
exist. If there is a unique perfect matching, then one of the vertices must have degree one.
We pick this vertex to be an or b1, depending which class it is from, and its neighbor by
bn or a1, respectively. After deleting this degree one vertex and its neighbor the remaining
graph still has a unique perfect matching, so we can find an ordering of the other vertices
by induction.

We now transform a given bipartite graph G with classes A and B into a weighted DAG
such that every vertex is a source or a sink. First orient all edges in G such that they are
directed to B. Then assign weight −1 to every vertex of A and weight 1 to every vertex of
B. Finally, add an isolated vertex, v, with weight 1 to G. If G is extendable to a bipartite
graph with a unique perfect matching, then v together with the order given by Observation
7 gives a non-negative topological ordering of G. In particular, v, a1, b1, a2, b2, . . . , an, bn is a
non-negative topological ordering of G. Furthermore, any non-negative topological ordering
on A and B satisfies the requirements of Observation 7 (after adding the possibly missing
aibi edges).

It was noted by Vialette 6 that the following problem can be reduced to Problem 6 by
adding n− k isolated vertices to each class.

5Graphs extendable to a uniquely matchable bipartite graph, Egres Open collection,
http://lemon.cs.elte.hu/egres/open

6Personal communication.
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Problem 8. Let G be a balanced bipartite graph with class sizes n and let k be a positive

integer. Determine whether G has an induced subgraph H with k vertices from each class

of G such that edges can be added to H to create a bipartite graph with a unique perfect

matching.

To complete the proof of Theorem 2, we must show Problem 8 is NP-complete. This was
done (for practically the same problem) by Dasgupta, Jiang, Kannan, Li and Sweedyk [2]
using a reduction from the NP-complete LARGEST BALANCED INDEPENDENT SET
problem.7 We include a less technical proof of their reduction.

We call an independent set in a bipartite graph balanced if each class of the bipartite graph
contains exactly half of the vertices of the independent set. We first state the LARGEST
BALANCED INDEPENDENT SET problem.

Problem 9. Let G be a bipartite graph and let k be a positive integer. Determine whether

G contains a balanced independent set on 2k vertices.

Let G be a bipartite graph with classes A and B and let k be a positive integer. Construct
a bipartite graph G′ as follows. The vertex set of G′ consists of k+1 copies of each vertex v
in G, denoted by pairs (v, 1), (v, 2), . . . , (v, k + 1). We connect two vertices (u, i) and (v, j)
in G′ by an edge if either of the following are satisfied:

(1) u ∈ A and v ∈ B and i < j.
(2) uv ∈ E(G).

Claim 10. The graph G′ has a subgraph H on 2k2 + 2k vertices such that edges can be

added to H to create a bipartite graph with a unique perfect matching if and only if G has a

balanced independent set with 2k vertices.

Proof. If G has a balanced independent set with 2k vertices, then call H the induced sub-
graph of G′ spanned by the k + 1 copies of this independent set. Clearly, H has 2k2 + 2k
vertices. Furthermore, it is easy to see that adding the edges of a matching to each copy of
the independent set results in a bipartite graph with a unique perfect matching.

Now suppose that G′ has a subgraph H on 2k2+2k vertices such that edges can be added
to H to create a bipartite graph with a unique perfect matching. Let AH and BH be the
two classes of H defined by the partition of G. Now order the vertices of AH and BH by
Observation 7 such that if a < b, then there is no edge between the ath vertex in AH and
the bth vertex in BH .

Let (w, i) be the first vertex in the ordering of AH such that among the vertices that
appear earlier in the ordering there are k − 1 different values in the first coordinate. Let a
be the index of (w, i) in the ordering of AH . Let m be the smallest value among the second
coordinates of the vertices with index less than a in AH . Thus we have a ≤ (k − 1)(k + 1−
m+ 1). Therefore a ≥ k2 + k − (k − 1)(k + 1−m+ 1)− 1 = m(k − 1) + 1.

Recall that if b > a, then there is no edge between the ath vertex in AH and the bth
vertex in BH . Furthermore, by (1), for i < j there is an edge between each (u, i) ∈ AH and

7In [1] the equivalent problem of finding the largest BALANCED COMPLETE BIPARTITE SUBGRAPH
is shown to be NP-complete.
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(v, j) ∈ BH . Thus every vertex in BH with index b > a has second coordinate at most m.
There are at least m(k−1)+1 vertices in BH with index b > a. Therefore, by the pigeonhole
principle, there is a set of k of these vertices with the same second coordinate. In particular,
these k vertices represent distinct vertices in the original graph G. By the definition of (w, i)
there is a set of k vertices in AH with index at most a and distinct first coordinates, i.e.,
distinct vertices in G. These two sets of vertices form an independent set of size 2k in G.
This completes the proof of Claim 10.

Thus we have established that Problem 8 is NP-complete and therefore we have proved
Theorem 2.

We end this section with another problem posed by the fourth author8 that is equivalent
to Problem 6, and thus also NP-complete.

Problem 11. Suppose M is an n × n matrix. Determine whether it is possible to reorder

its rows and columns such that we get an upper-triangular matrix.

The equivalence of Problems 6 and 11 is as follows. Define a bipartite graph with classes
A and B from M by letting A be the rows of M and B be the columns of M , with an edge
between two vertices if and only if the corresponding entry of M is non-zero. It follows from
Observation 7 that we can reorder the rows and columns of M to get an upper-triangular
matrix if and only if we can extend G to a bipartite graph with a unique perfect matching.
The other direction is shown similarly.
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Addendum

Since this paper has gone to press it has come to the attention of the authors that Problem 11
has been also shown to be NP-complete by Fertin, Rusu and Vialette [3]. They also observed
(as we do in Section 3) that the proof in [2] is not complete. Furthermore, they point out
that Problem 11 had been asked earlier by Wilf [4].
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