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1. Turán type inequalities for Struve functions of the first kind

Let us start with a well-known relation between Bessel functions of the first kind Jν and Struve functions 
of the first kind Hν . Namely, for all n ∈ {0, 1, . . . } and x ∈ R we have [11, p. 291]

H−n− 1
2
(x) = (−1)nJn+ 1

2
(x).

Now, let us recall the Turán type inequality for Bessel functions of the first kind, that is,

J2
ν (x) − Jν−1(x)Jν+1(x) ≥ 0, (1.1)
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where x ∈ R and ν > −1. Combining the above relation with (1.1) we obtain the Turán type inequality

H2
ν(x) − Hν−1(x)Hν+1(x) ≥ 0, (1.2)

which holds for all x ∈ R and ν ∈
{
−1

2 ,−
3
2 , . . .

}
. Moreover, since for x ∈ R and ν ≥ 0 the Turán type 

inequality (1.1) can be improved as

J2
ν (x) − Jν−1(x)Jν+1(x) ≥ 1

ν + 1J
2
ν (x),

it follows that the inequality (1.2) can be improved too as

H2
ν(x) − Hν−1(x)Hν+1(x) ≥ 1

1 − ν
H2

ν(x), (1.3)

which holds for all x ∈ R and ν ∈
{
−1

2 ,−
3
2 , . . .

}
. For more details on the above Turán type inequalities 

for Bessel functions of the first kind we refer to the papers [12,14–16] and also to the survey paper [2]. 
Taking into account the above inequalities it is natural to ask whether the Turán type inequalities (1.2)
and/or (1.3) hold true for other values of ν. In this paper we will concentrate on this problem and we 
present some interesting results concerning Turán type inequalities for Struve functions of the first and 
second kind. As we can see below the analysis of Struve functions is somewhat more complicated than that 
of Bessel functions, however, its nature is quite similar for some values of ν. This section is devoted to 
Turán type inequalities for Struve functions of the first kind, while the next section contains some results, 
like Turán type inequalities and complete monotonicity results on Struve functions of the second kind. 
Before we present the main results of this section we first show some preliminary results which will be used 
in the sequel and which may be of independent interest. Since Struve functions are frequently used in many 
places in physics and applied mathematics, we believe that our results may be useful for other scientists 
interested in Struve functions. We also note that the analogous results for modified Struve functions of the 
first and second kind were already deduced by Baricz and Pogány [3,4] by using the techniques developed 
in the case of modified Bessel functions of the first and second kind. Moreover, the results presented in this 
section complement naturally the known results for a particular case of Lommel functions of the first kind, 
obtained recently by Baricz and Koumandos [1].

The next result is analogous to the well-known result for Bessel functions of the first kind.

Lemma 1. If |ν| ≤ 1
2 , then the Hadamard factorization of the real entire function Hν : R → (−∞, 1], defined 

by Hν(x) =
√
π2νx−ν−1Γ 

(
ν + 3

2
)
Hν(x), reads as follows

Hν(x) =
∏
n≥1

(
1 − x2

h2
ν,n

)
, (1.4)

where hν,n stands for the nth positive zero of the Struve function Hν . The above infinite product is absolutely 
convergent and if |ν| ≤ 1

2 and x �= hν,n, n ∈ {1, 2, . . . }, then the Mittag–Leffler expansion of the Struve 
function Hν is as follows

Hν−1(x)
Hν(x) = 2ν + 1

x
+
∑
n≥1

2x
x2 − h2

ν,n

. (1.5)

Proof. By using the power series expansion of the Struve function Hν [11, p. 288]

Hν(x) =
(x

2

)ν+1∑ (−1)n
(
x
2
)2n

Γ
(
n + 3)Γ (n + ν + 3)
n≥0 2 2
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we obtain that

Hν(x) =
√
π

2
∑
n≥0

(−1)nΓ
(
ν + 3

2
)
x2n

22nΓ
(
n + 3

2
)
Γ
(
n + ν + 3

2
) .

Taking into consideration the well-known limits

lim
n→∞

log Γ(n + c)
n log n = 1, lim

n→∞
[Γ(n + c)]1/n

n
= 1

e
,

where c is a positive constant, and [9, p. 6, Theorems 2 and 3], we infer that the entire function Hν is of 
growth order ρ = 1

2 and of exponential type σ = 1. Namely, for ν > −3
2 we have

ρ = lim
n→∞

n log n
2n log 2 + log Γ

(
n + 3

2
)

+ log Γ
(
n + ν + 3

2
) = 1

2

and

σ = 1
ρe

lim
n→∞

n 2n
√

Γ
(
ν + 3

2
)

2n
√

22nΓ
(
n + 3

2
)
Γ
(
n + ν + 3

2
) = 1.

Now, recall that according to Steinig [13, p. 367] if |ν| < 1
2 , then all zeros hν,n of the Struve function Hν

are real and simple. Moreover, since [11, p. 291]

H− 1
2
(x) =

√
2
πx

sin x, H 1
2
(x) =

√
2
πx

(1 − cosx),

it is clear that all zeros of H− 1
2

and H 1
2

are real and simple. With this the rest of the proof of (1.4) follows by 
applying Hadamard’s Theorem [9, p. 26]. Now, since the infinite product in (1.4) is absolutely convergent, 
by taking the logarithm of both sides of (1.4) and then differentiating we obtain

xH′
ν(x)

Hν(x) = ν + 1 +
∑
n≥1

2x2

x2 − h2
ν,n

, (1.6)

where |ν| ≤ 1
2 and x �= hν,n, n ∈ {1, 2, . . . }. The rest of the proof of (1.5) follows from (1.6) and

Hν−1(x) = ν

x
Hν(x) + H′

ν(x) (1.7)

which is obtained from the relations [11, p. 292]

Hν−1(x) + Hν+1(x) = 2ν
x

Hν(x) +
(
x
2
)ν

√
πΓ
(
ν + 3

2
) (1.8)

and

Hν−1(x) − Hν+1(x) = 2H′
ν(x) −

(
x
2
)ν

√
πΓ
(
ν + 3

2
) . � (1.9)

Now, we are ready to state our main result of this section.
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Theorem 1. The following assertions are valid:

a. If ν ∈
[
−3

2 ,−
1
2
]

and x ∈ R, then the Turán type inequality (1.2) holds true.
b. If |ν| ≤ 1

2 and |x| ≤ hν,1, then the Turán type inequality (1.2) holds true.
c. If ν ∈

[
−3

2 ,−
1
2
]

and x ∈ R, then

H2
ν(x) − Hν−1(x)Hν+1(x) ≥ 1

x
Hν(x)Hν+1(x). (1.10)

Moreover, if ν ∈
(
−3

2 ,−
1
2
]

and |x| < hν,1, then the next Turán type inequality holds

H2
ν(x) − Hν−1(x)Hν+1(x) ≥ 1

2ν + 3H2
ν(x). (1.11)

d. If ν ≥ 3
2 and |x| ≤ π, then the Turán type inequality (1.2) is valid.

e. If ν > 3
2 and |x| < π, then the counterpart of the Turán type inequality (1.2) is as follows:

H2
ν(x) − Hν−1(x)Hν+1(x) ≤ 1

ν + 1
2
H2

ν(x). (1.12)

Proof. a. Let us consider the notation

Δν(x) = H2
ν(x) − Hν−1(x)Hν+1(x).

By using the recurrence relation (1.7) for ν and ν − 1, and the Mittag–Leffler expansion we obtain that

Δν−1(x)
H2

ν(x) = 1
x

Hν−1(x)
Hν(x) −

[
Hν−1(x)
Hν(x)

]′
= 2(2ν + 1)

x2 +
∑
n≥1

4x2

(x2 − h2
ν,n)2 ≥ 0

for all |ν| ≤ 1
2 and x > 0, x �= hν,n, n ∈ {1, 2, . . . }. Since for each n ∈ {1, 2, . . . } we have

Δν−1(hν,n) = H2
ν−1(hν,n) > 0,

it follows that Δν−1(x) ≥ 0 for x > 0. Moreover, the expression Δν−1(x) is even in x, and thus the above 
Turán type inequality is valid for all x ∈ R and |ν| ≤ 1

2 . Now, changing ν to ν + 1, we obtain that indeed if 
ν ∈

[
−3

2 ,−
1
2
]

and x ∈ R, then the Turán type inequality (1.2) holds true.
b. Combining the recurrence relations (1.8) and (1.9) we obtain that

Hν+1(x) = ν

x
Hν(x) − H′

ν(x) +
(
x
2
)ν

√
πΓ
(
ν + 3

2
) . (1.13)

Now, combining (1.7) and (1.13) it follows that

Δν(x) =
(

1 − ν2

x2

)
H2

ν(x) + [H′
ν(x)]2 −

(
x
2
)ν

√
πΓ
(
ν + 3

2
)Hν−1(x).

On the other hand, the Struve function is the particular solution of the Struve differential equation [11, 
p. 288] and consequently we have

H′′
ν(x) + 1

x
H′

ν(x) +
(

1 − ν2

x2

)
Hν(x) =

(
x
2
)ν−1

√ ( 1) ,
πΓ ν + 2
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which implies that

Δν(x) =
(
x
2
)ν−1

√
πΓ
(
ν + 1

2
) [Hν(x) − x

2ν + 1Hν−1(x)
]
− 1

x
H2

ν(x)
[
xH′

ν(x)
Hν(x)

]′
. (1.14)

Differentiating both sides of (1.6) we obtain[
xH′

ν(x)
Hν(x)

]′
= −

∑
n≥1

4xh2
ν,n

(x2 − h2
ν,n)2 < 0

for all x > 0, x �= hν,n, n ∈ {1, 2, . . . } and |ν| ≤ 1
2 . Moreover, by using the Mittag–Leffler expansion (1.5)

we obtain that

xHν−1(x)
Hν(x) < 2ν + 1 (1.15)

for all |ν| ≤ 1
2 and x ∈ (0, hν,1). Finally, by using the above inequalities together with (1.14) we conclude 

that (1.2) is valid for |ν| ≤ 1
2 and x ∈ (0, hν,1). Since Δν(0) = 0, in (1.2) we have equality when x = 0. 

Moreover, if |ν| ≤ 1/2, then Δν(hν,1) = −Hν−1(hν,1)Hν+1(hν,1) > 0, since the smallest positive zero of 
Hν−1 is nearer the origin than that of Hν , and the positive zeros of Hν and Hν−1 separate each other, 
according to [13, p. 373]. Now, since the expression Δν(x) is even in x, these in turn imply that (1.2) holds 
true for |x| ≤ hν,1.

c. By using (1.7) for ν and ν + 1 we obtain

Δν(x)
H2

ν(x) = 1
x

Hν+1(x)
Hν(x) +

[
Hν+1(x)
Hν(x)

]′
.

On the other hand, the Mittag–Leffler expansion (1.5) for ν + 1 instead of ν implies that

[
Hν(x)

Hν+1(x)

]′
= −2ν + 3

x2 +
∑
n≥1

−2(x2 + h2
ν+1,n)

(x2 − h2
ν+1,n)2 ≤ 0

for all ν ∈
[
−3

2 ,−
1
2
]
, and x �= hν+1,n, n ∈ {1, 2, . . . }. This implies that the Turán type inequality (1.10) is 

valid for x ∈ R and ν ∈
[
−3

2 ,−
1
2
]
. By using [13, p. 373, Proposition 6] and (1.15) for ν + 1 instead of ν, 

we obtain that (1.11) holds for x ∈ (0, hν,1) and ν ∈
(
−3

2 ,−
1
2
]
, and hence (1.11) is valid for |x| < hν,1 and 

ν ∈
(
−3

2 ,−
1
2
]
.

d. By using (1.7), (1.9) and (1.13) we obtain

Δ′
ν(x) = 2

x
Hν−1(x)Hν+1(x) +

(
x
2
)ν−1

√
πΓ
(
ν + 1

2
) [ x

2ν + 1Hν(x) − Hν+1(x)
]
.

In view of the integral representation of Hν [11, p. 292]

Hν(x) =
2
(
x
2
)ν

√
πΓ
(
ν + 1

2
) 1∫

0

(1 − t2)ν− 1
2 sin(xt)dt, (1.16)

we get that

x

2ν + 1Hν(x) − Hν+1(x) =
2
(
x
2
)ν+1

√
πΓ
(
ν + 3

2
) 1∫

t2(1 − t2)ν− 1
2 sin(xt)dt,
0
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which is nonnegative if x ∈ [0, π]. On the other hand, it is known [11, p. 291] that Hν(x) ≥ 0 if x > 0 and 
ν ≥ 1

2 , and combining this with the above result, we obtain that Δ′
ν(x) ≥ 0 when x ∈ [0, π] and ν ≥ 3

2 . 
This implies that Δν(x) ≥ 0 when x ∈ [0, π] and ν ≥ 3

2 , and using again the fact that Δν(x) is even in x, 
we conclude that (1.2) holds for |x| ≤ π and ν ≥ 3

2 .
e. We define the function Hν : R → R by Hν(x) = 2νx−νΓ 

(
ν + 1

2
)
Hν(x). In view of (1.16) this function 

may be represented as

Hν(x) = 2√
π

1∫
0

(1 − t2)ν− 1
2 sin(xt)dt.

Since the above integrand is log-convex in ν when x ∈ (0, π) and the integral preserves the log-convexity, it 
follows that ν 	→ Hν(x) is log-convex on 

(1
2 ,∞

)
for x ∈ (0, π) fixed. Here we used tacitly the inequality [11, 

p. 291] Hν(x) > 0, which holds for ν > 1
2 and x > 0. Thus, for all ν1, ν2 > 1

2 , α ∈ [0, 1] and x > 0 we have

Hαν1+(1−α)ν2(x) ≤ [Hν1(x)]α [Hν2(x)]1−α
.

Choosing ν1 = ν − 1, ν2 = ν + 1, α = 1
2 , the above inequality reduces to the Turán type inequality

H
2
ν(x) −Hν−1(x)Hν+1(x) < 0,

which is valid for ν > 3
2 and x > 0, and this is equivalent to the Turán type inequality (1.12). �

Concluding remarks and further results. A. We note that the right-hand side of (1.3) is negative when 
ν > 1, and thus the Turán type inequality (1.3) is interesting only when ν < 1. Now, if one looks at the 
right-hand sides of (1.3) and (1.11) it is natural to ask what is best constant αν depending on ν and not 
depending on x for which we have the Turán type inequality

H2
ν(x) − Hν−1(x)Hν+1(x) ≥ ανH2

ν(x).

Since close to the origin the Struve function behaves as a simple power, that is, as x → 0 we have

Hν(x) ∼ xν+1

2ν
√
πΓ
(
ν + 3

2
) ,

it follows that as x → 0 we get

Δν(x)
H2

ν(x) ∼ 1
ν + 3

2
.

This implies that αν = 1/ 
(
ν + 3

2
)
, and then (1.11) can be improved. Now, as the argument approaches 

infinity, the Struve function generally behaves either as a power or as a damped sinusoid, that is, for ν > 1
2

we have

Hν(x) ∼ xν−1

2ν−1√πΓ
(
ν + 1

2
) ,

which implies that as x → ∞ and ν > 3
2 ,

Δν(x)
H2(x) ∼ 1

1 .

ν ν + 2
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This shows that the constant 1/ 
(
ν + 1

2
)

in (1.12) is optimal, and cannot be improved by using any other 
constant depending only on ν. Thus, in this sense the Turán type inequality (1.12) is sharp.

B. It is worth also to mention that by using the formula [11, p. 292]

Hν(x) =
( x

2π

) 1
2 ∑
n≥0

(
x
2
)n

n!
(
n + 1

2
)Jn+ν+ 1

2
(x),

we obtain that

Δν(x) = x

2π
∑
n≥0

n∑
m=0

(
x
2
)n

n!(n−m)!
(
m + 1

2
) (

n−m + 1
2
) · JΔν(x),

where

JΔν(x) = Jm+ν+ 1
2
(x)Jn−m+ν+ 1

2
(x) − Jm+ν− 1

2
(x)Jn−m+ν+ 3

2
(x).

Now, by using Nicholson’s formula [11, p. 225]

Jμ(z)Jν(z) = 2
π

π
2∫

0

Jμ+ν(2z cos θ) cos(μ− ν)dθ

we obtain that

JΔν(x) = 2
π

π
2∫

0

Jn+2ν+1(2x cos θ) [cos(kθ) − cos((k + 2)θ)] dθ = 1
πx

2x∫
0

Jn+2ν+1(u)Φ(u)du,

where

Φ(u) = Φ(2x cos θ) = cos(kθ) − cos((k + 2)θ)
sin θ

and k = n − 2m. Thus, to verify the Turán type inequality Δν(x) ≥ 0 it would be enough to show the 
positivity of the integral 

∫ 2x
0 Jn+2ν+1(u)Φ(u)du. On the other hand, according to [5, Lemma 2.1], if the 

function ϕ is positive non-increasing and continuous for 0 < t < x, then for ν > −1 and x > 0 we 
have 

∫ x

0 Jν(t)ϕ(t)dt > 0. Consequently, it would be enough to show that Φ is positive and non-increasing. 
However, we were unable to show this for each m ∈ {0, 1, . . . , n} and n ∈ {0, 1, . . . }.

C. We would like to note also that the infinite product representation (1.4) and the Mittag–Leffler 
expansion (1.5) may be useful also to deduce other inequalities for the Struve function Hν. For example, 
we can obtain some lower and upper bounds for Hν in terms of the Bessel function of the first kind Jν. 
According to Steinig [13, p. 367] for all n ∈ {1, 2, . . . } and |ν| < 1

2 we have that jν,n < hν,n < jν,n+1, where 
jν,n stands for the nth positive zero of the Bessel function Jν. By using these inequalities we obtain for 
|ν| < 1

2 and x ∈ (0, jν,1)

∏
n≥1

(
1 − x2

j2
ν,n

)
<
∏
n≥1

(
1 − x2

h2
ν,n

)
<
∏
n≥1

(
1 − x2

j2
ν,n+1

)
,

which in turn implies that

Γ(ν + 1)( 3)xJν(x) <
√
πHν(x) < Γ(ν + 1)( 3) j2

ν,1

j2 − x2xJν(x).

Γ ν + 2 Γ ν + 2 ν,1
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Here we used the infinite product representation of the Bessel function of the first kind [11, p. 235]

Jν(x) =
(
x
2
)ν

Γ(ν + 1)
∏
n≥1

(
1 − x2

j2
ν,n

)
.

Another example is an improvement of the inequality (1.15). Namely, by using again the inequalities hν,n <

jν,n+1, n ∈ {1, 2, . . . }, we obtain for x ∈ (0, hν,1) and |ν| ≤ 1
2 the inequality

∑
n≥1

2
x2 − h2

ν,n

< −
∑
n≥1

2
h2
ν,n

< −
∑
n≥1

2
j2
ν,n+1

= 2
j2
ν,1

−
∑
n≥1

2
j2
ν,n

= 2
j2
ν,1

− 1
2(ν + 1) ,

which implies that

xHν−1(x)
Hν(x) < 2ν + 1 +

(
2
j2
ν,1

− 1
2(ν + 1)

)
x2.

Note that this is indeed an improvement of (1.15) since [6, eq. 6.7] j2
ν,1 > 4(ν + 1) for ν > −1.

D. We mention that the Turán type inequality (1.10) can be deduced from a Laguerre type inequality. 
More precisely, by using (1.4) and (1.7) we obtain that

[
H′

ν(x)
Hν(x)

]′
= ν + 1

x2 +
[
H′

ν(x)
Hν(x)

]′
= 2ν + 1

x2 +
[
Hν−1(x)
Hν(x)

]′
= −

∑
n≥1

2(h2
ν,n + x2)

(h2
ν,n − x2)2 ,

which implies that the next Laguerre type inequality is valid

[H′
ν(x)]2 −Hν(x)H′′

ν (x) ≥ 0 (1.17)

for all |ν| ≤ 1
2 and x ∈ R. But, this inequality is equivalent to

Δν−1(x) ≥ 2ν + 1
x2 H2

ν(x) + 1
x
Hν(x)Hν−1(x),

which implies (1.10). Note that (1.17) is in fact a particular case of a more general inequality. For this recall 
that the real entire function φ, defined by

φ(z) = ϕ(z; t) =
∑
n≥0

bn(t)z
n

n! ,

is said to be in the Laguerre–Pólya class, if φ(z) can be expressed in the form

φ(z) = czde−αz2+βz
ω∏

n=1

(
1 − z

zn

)
e

z
zn , 0 ≤ ω ≤ ∞,

where c and β are real, zn’s are real and nonzero for all n ∈ {1, 2, . . . , ω}, α ≥ 0, d is a nonnegative 
integer and 

∑ω
n=1 z

−2
n < ∞. If ω = 0, then, by convention, the product is defined to be 1. Now, recall the 

following result (for more details we refer to Skovgaard’s paper [12]): if a real entire function φ belongs to 
the Laguerre–Pólya class then satisfies the Laguerre type inequalities

[
φ(m)(z)

]2
− φ(m−1)(z)φ(m+1)(z) ≥ 0,
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for m ∈ {1, 2, . . . } and all admissible values of z. The infinite product representation (1.4), and the result 
of Steinig [13] concerning the fact that the zeros of the Struve function Hν are real when |ν| ≤ 1

2 , show that 
the function Hν belongs to the Laguerre–Pólya class, since exponential factors in the product are cancelled 
due to the symmetry of the zeros with respect to the origin. This in turn implies that the following Laguerre 
type inequality is valid for all |ν| ≤ 1

2 , x ∈ R and m ∈ {1, 2, . . . }

[
H(m)

ν (x)
]2

−H(m−1)
ν (x)H(m+1)

ν (x) ≥ 0.

For m = 1 the above inequality reduces to (1.17).
E. Finally, we note that from Hadamard theorem [9, p. 26] actually we get that the infinite product 

in (1.4) is absolutely convergent on compact subsets of the complex plane. This in turn implies that if we 
take the purely imaginary number ix instead of x in (1.5), then for |ν| ≤ 1

2 and x ∈ R we get the new 
Mittag–Leffler expansion

Lν−1(x)
Lν(x) = 2ν + 1

x
+
∑
n≥1

2x
x2 + h2

ν,n

, (1.18)

where

Lν(x) = −ie− 1
2πiνHν(ix) =

(x
2

)ν+1∑
n≥0

(
x
2
)2n

Γ
(
n + 3

2
)
Γ
(
n + ν + 3

2
)

stands for the modified Struve function of the first kind (see [11, p. 288]). Moreover, following the lines of 
the proof of part a of Theorem 1 we obtain that

L2
ν−1(x) − Lν−2(x)Lν(x)

L2
ν(x) = 1

x

Lν−1(x)
Lν(x) −

[
Lν−1(x)
Lν(x)

]′
= 2(2ν + 1)

x2 +
∑
n≥1

4x2

(x2 + h2
ν,n)2 ≥ 0

for all |ν| ≤ 1
2 and x �= 0. Thus, we obtained the Turán type inequality

L2
ν(x) − Lν−1(x)Lν+1(x) ≥ 0,

where ν ∈
[
−3

2 ,−
1
2
]

and x ∈ R. For ν > −3
2 and x > 0 this Turán type inequality was proved also in [4,7]

by using completely different methods.

2. Turán type inequalities for Struve functions of the second kind

In this section we concentrate on the Struve function of the second kind Kν, which for ν > −1
2 has the 

integral representation [11, p. 292]

Kν(x) = Hν(x) − Yν(x) =
2(x2 )ν

√
πΓ(ν + 1

2 )

∞∫
0

(1 + t2)ν− 1
2 e−xtdt. (2.1)

Here Yν stands for the Bessel function of the second kind of order ν. Now, consider the function Kν : R →
(0, ∞), defined by Kν(x) = 2νx−νΓ 

(
ν + 1

2
)
Kν(x). The next result is the counterpart of the similar results 

for modified Struve functions of the first and second kind, see [3,4].
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Theorem 2. The following assertions are true:

a. The function x 	→ Kν(x) is completely monotonic and log-convex on (0, ∞) for all ν > −1
2 . Moreover, 

the following inequality is valid for ν > −1
2 and x > 0

xK′
ν(x)

Kν(x) < ν. (2.2)

b. The function ν 	→ Kν(x) is completely monotonic and log-convex on (−1
2 , ∞) for all x > 0. Moreover, 

the following Turán type inequality is valid for all x > 0 and ν > 1
2

K2
ν(x) − Kν−1(x)Kν+1(x) ≤ 1

ν + 1
2
K2

ν(x). (2.3)

c. The function x 	→ Kν(x) is completely monotonic and log-convex on (0, ∞) for all ν ∈
(
−1

2 , 0
]
.

d. The function x 	→ xK′
ν(x)/Kν(x) is increasing on (0, ∞) for all ν > 1

2 . Moreover, the following Turán 
type inequality holds for ν > −1

2 and x > 0

K2
ν(x) − Kν−1(x)Kν+1(x) ≤ 2

x
Kν(x)Kν+1(x). (2.4)

e. For all x > 0 and ν ∈
(
−1

2 , 0
)

we have

Kν(x) < Γ(−ν)
Γ(1

2 − ν)
. (2.5)

f. For all x, y > 0 and ν ∈
(
−1

2 , 0
)

we have

Kν(x + y) ≥
Γ(1

2 − ν)
Γ(−ν) Kν(x)Kν(y). (2.6)

g. For all ν > 3
2 and x > 0 we have

Kν−1(x)Kν+1(x) < K 1
2
(x)K2ν− 1

2
(x) (2.7)

and the reverse inequality holds when ν ∈
( 1

2 ,
3
2
)

and x > 0.

Proof. a. & b. By using (2.1) we obtain that for ν > −1
2 the next integral representation is valid

Kν(x) = 2νx−νΓ
(
ν + 1

2

)
Kν(x) = 2√

π

∞∫
0

(1 + t2)ν− 1
2 e−xtdt. (2.8)

Consequently, for n, m ∈ {0, 1, 2, . . .} and ν > −1
2 we have

(−1)n[Kν(x)](n) = 2√
π

∞∫
0

tn(1 + t2)ν− 1
2 e−xtdt,

and
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(−1)m ∂mKν(x)
∂νm

= 2√
π

∞∫
0

(
log 1

1 + t2

)m

(1 + t2)ν− 1
2 e−xtdt.

Therefore the functions x 	→ Kν(x) and ν 	→ Kν(x) are completely monotonic and hence are log-convex, since 
every completely monotonic function is log convex (see [17, p. 167]). Alternatively, the log-convexity of these 
functions can be proved also by using the Hölder–Rogers inequality for integrals. Complete monotonicity 
and log-convexity of Kν can be concluded also by noticing that this function is in fact a Laplace transform.

Now, to prove the Turán type inequality (2.3), note that ν 	→ Kν(x) is log convex on (−1
2 , ∞) for all 

x > 0, which implies that for all ν1, ν2 > −1
2 , α ∈ [0, 1] and x > 0 we have

Kαν1+(1−α)ν2(x) ≤ [Kν1(x)]α [Kν2(x)]1−α
.

Choosing ν1 = ν − 1, ν2 = ν + 1, and α = 1
2 , the above inequality reduces to the Turán type inequality

K2
ν(x) −Kν−1(x)Kν+1(x) ≤ 0,

which is equivalent to the inequality (2.3).
Alternatively, (2.3) can be proved also as follows. For this let us consider the notation

Θν(x) = K2
ν(x) − Kν−1(x)Kν+1(x).

By using the integral representation (2.1) we get

Θν(x) = 4
π

(x
2

)2ν
∞∫
0

∞∫
0

e−x(t+s)(1 + t2)ν− 1
2 (1 + s2)ν− 3

2

[
1 + s2

Γ2
(
ν + 1

2
) − 1 + t2

Γ
(
ν − 1

2
)
Γ
(
ν + 3

2
)
]
dtds

= 4
π

(x
2

)2ν
∞∫
0

∞∫
0

e−x(t+s)(1 + s2)ν− 1
2 (1 + t2)ν− 3

2

[
1 + t2

Γ2
(
ν + 1

2
) − 1 + s2

Γ
(
ν − 1

2
)
Γ
(
ν + 3

2
)
]
dtds

= 2
π

(x
2

)2ν
∞∫
0

∞∫
0

e−x(t+s)(1 + t2)ν− 3
2 (1 + s2)ν− 3

2 · Eν(t, s)dtds,

where

Eν(t, s) = (1 + t2)
[

1 + s2

Γ2
(
ν + 1

2
) − 1 + t2

Γ
(
ν − 1

2
)
Γ
(
ν + 3

2
)
]

+ (1 + s2)
[

1 + t2

Γ2
(
ν + 1

2
) − 1 + s2

Γ
(
ν − 1

2
)
Γ
(
ν + 3

2
)
]

= 2(1 + t2)(1 + s2)
Γ2
(
ν + 1

2
) − (1 + t2)2

Γ
(
ν − 1

2
)
Γ
(
ν + 3

2
) − (1 + s2)2

Γ
(
ν − 1

2
)
Γ
(
ν + 3

2
)

= 1
Γ
(
ν + 1

2
)
Γ
(
ν + 3

2
)dν(t, s)

and

dν(t, s) = 2
(
ν + 1

2

)
(1 + t2)(1 + s2) −

(
ν − 1

2

)
(1 + t2)2 −

(
ν − 1

2

)
(1 + s2)2.

Since

dν(t, s) ≤ 2(1 + t2)(1 + s2) ⇐⇒ −
(
ν − 1

2

)
(t2 − s2)2 ≤ 0

for all t, s ≥ 0 and ν > 1 , it follows that
2
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Θν(x) ≤ 4
π

(x
2

)2ν 1
Γ
(
ν + 1

2
)
Γ
(
ν + 3

2
) ∞∫

0

∞∫
0

e−x(t+s)(1 + t2)ν− 1
2 (1 + s2)ν− 1

2 dtds,

which is equivalent to (2.3).
Now, we prove the inequality (2.2). Since for ν > −1

2 the function x 	→ x−νKν(x) is completely mono-
tonic on (0, ∞), in particular it is also decreasing. Consequently, the function x 	→ log (x−νKν(x)) is also 
decreasing on (0, ∞) for ν > −1

2 and hence (log (x−νKν(x)))′ < 0, which in turn implies (2.2).
c. By definition of Kν(x) we have

Kν(x) = xνKν(x)
2νΓ

(
ν + 1

2
) .

Note that x 	→ xν is completely monotonic on (0, ∞) for all ν ≤ 0. Thus by part a of this theorem the 
function x 	→ Kν(x), as a product of two completely monotonic functions, is completely monotonic and 
hence log-convex on (0, ∞) for all ν ∈

(
−1

2 , 0
]
.

d. By using Kν(x) = Hν(x) − Yν(x) and the corresponding recurrence relations for Hν and Yν we can 
see that the Struve function of the second kind Kν satisfies the same recurrence relations like the Struve 
function of the first kind Hν , that is, if we replace Hν with Kν in (1.7), (1.8), (1.9) and (1.13), then these 
recurrence relations remain true. The analogous of (1.7) is the following

Kν−1(x) = ν

x
Kν(x) + K′

ν(x). (2.9)

Now, by using (2.8) and (2.9) we obtain

[
xK′

ν(x)
Kν(x)

]′
=
[
xKν−1(x)

Kν(x)

]′
= (2ν − 1)

⎡
⎣ ∞∫

0

(1 + t2)ν− 3
2 e−xtdt

/ ∞∫
0

(1 + t2)ν− 1
2 e−xtdt

⎤
⎦
′

= (2ν − 1)
∞∫
0

∞∫
0

(1 + t2)ν− 3
2 (1 + s2)ν− 1

2 e−x(t+s)(s− t)dtds
/⎛
⎝ ∞∫

0

(1 + t2)ν− 1
2 e−xtdt

⎞
⎠

2

= (2ν − 1)
∞∫
0

∞∫
0

(1 + s2)ν− 3
2 (1 + t2)ν− 1

2 e−x(t+s)(t− s)dtds
/⎛
⎝ ∞∫

0

(1 + t2)ν− 1
2 e−xtdt

⎞
⎠

2

=
(
ν − 1

2

) ∞∫
0

∞∫
0

((1 + t2)(1 + s2))ν− 3
2 e−x(t+s)(t− s)2(t + s)dtds

/⎛
⎝ ∞∫

0

(1 + t2)ν− 1
2 e−xtdt

⎞
⎠

2

.

Thus, indeed the function x 	→ xK′
ν(x)/Kν(x) is increasing on (0, ∞) for all ν > 1

2 . Now, appealing to the 
above result and to the recurrence relation (2.9) we obtain for x > 0 and ν > 1

2

0 ≤
[
xKν−1(x)

Kν(x)

]′
= 2Kν−1(x)

Kν(x) − xΘν−1(x)
Kν−1(x) .

Changing ν with ν + 1 we get (2.4). Alternatively, (2.4) can be proved by using

0 ≥
[
Kν+1(x)
xKν(x)

]′
= Θν(x)

xK2
ν(x) − 2

x2
Kν+1(x)
Kν(x) ,

where x > 0 and ν > −1 .
2
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e. By part a of this theorem, the function Kν is decreasing on (0, ∞) for all ν > −1
2 , and hence we get

Kν(x) < 2√
π

∞∫
0

(1 + t2)ν− 1
2 dt.

Now, by using [11, p. 142]

B(a, b) = Γ(a)Γ(b)
Γ(a + b) =

∞∫
0

ta−1dt

(1 + t)a+b
=

∞∫
0

2u2a−1du

(1 + u2)a+b

it can be shown that for ν < 0 we have

2√
π

∞∫
0

(1 + t2)ν− 1
2 dt = Γ(−ν)

Γ(1
2 − ν)

.

Consequently, for all x > 0 and ν ∈
(
−1

2 , 0
)

we obtain the inequality (2.5).
f. From inequality (2.5) and part a of this theorem we have that the function

x 	→
Γ(1

2 − ν)
Γ(−ν) Kν(x)

maps (0, ∞) into (0, 1) and it is completely monotonic on (0, ∞) for all ν ∈
(
−1

2 , 0
)
. Now, recall the result of 

Kimberling [8], which says that if a function f , defined on (0, ∞), is continuous and completely monotonic 
and maps (0, ∞) into (0, 1), then log f is super-additive, that is, for all x, y > 0 we have

log f(x + y) ≥ log f(x) + log f(y)

or

f(x + y) ≥ f(x)f(y).

Applying this result the inequality (2.6) follows.
g. To prove the inequality (2.7) we use the Chebyshev integral inequality [10, p. 40]: Let f and g be 

functions which are integrable and monotone in the same sense (i.e. either both increasing or both decreasing) 
on (a, b) and let p be a positive and integrable function on (a, b). Then

b∫
a

p(t)f(t)dt
b∫

a

p(t)g(t)dt ≤
b∫

a

p(t)dt
b∫

a

p(t)f(t)g(t)dt. (2.10)

If f and g are monotone in opposite sense (i.e. one is decreasing and the other is increasing), then the 
inequality (2.10) is reversed.

Now let p, f and g be functions defined on (0, ∞) such that

p(t) = e−xt, f(t) = 2√
π

(1 + t2)ν− 3
2 and g(t) = 2√

π
(1 + t2)ν+ 1

2 .

Note that f is increasing if ν > 3
2 , and g is increasing if ν > −1

2 . Now substituting p, f and g in (2.10) and 
using the following
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H 1
2
(x) =

√
2
πx

(1 − cosx), Y 1
2
(x) = −

√
2
πx

cosx

and the definition of Kν(x) we have the desired inequality (2.7) valid for all ν > 3
2 and x > 0. As f is 

decreasing for ν < 3
2 , the inequality (2.7) is reversed when ν ∈

( 1
2 ,

3
2
)
. �
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