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Abstract—In this short research note we obtain double def-
inite integral expressions for the Kapteyn type series built by
Kummer’s M (or confluent hypergeometric ; /) functions. These
kind of series unify in natural way the similar fashion results
for Neumann—, Schlomilch— and Kapteyn—Bessel series recently
established by Pogany, Siili, Baricz and Jankov MasSirevi¢.

Index Terms—Dirichlet series, Integral representation, Kampé
de Fériet function, Kapteyn series, Kummer function, Neumann
series, Schlomilch series.

I. INTRODUCTION AND PRELIMINARIES

HE series of Bessel (or Struve) functions in which sum-

mation is realized with respect to the indices appearing
in the order of the building term functions and/or wrapped
arguments of the same input functions, can be unified in a
double lacunary form:

By, 0, (2 Zan%’zl(n (b2(n)2). (1)

n>0
Here © — (;(z) = pj + ajz, j € {1,2}, z € {0,1,...},
z € C and 4, can be chosen from one of Bessel, Struve, Dini
and another related special functions and/or their products, [1],
[2]. This extension of the classical theory of the so—called
Fourier—Bessel series of the first type is based on the case
when %, = J,, for which the thorough account was given in
famous Watson’s monograph [3] with extensive references list
therein. However, specifying varying the coefficients of ¢; and
{5, we appear to three cases related not only to physical models
and have physical interpretations in many branches of science,
technics and technology (consult for instance the corner-stone
paper by Pogany and Siili [4] and [5, Introduction]), but are
also of mathematical interest, like e.g. zero function series
[3]. Thus, we differ the Neumann series (a1 # 0, a2 = 0) [4],
[6], [7], Schlomilch series (a; = 0, a2 # 0) [8] and the most
general Kapteyn series (a; - a2 # 0) introduced by Willem
Kapteyn in [9], [10].

As our main goal concerns the Kapteyn series we will focus
our exposition to this kind of series, pointing out that a set of
problems associated with Kapteyn type series are solved in
[11], [12].

The Kummer’s differential equation [13, §13.2]

d?w dw
zﬁ—i—(b )E—awzo,
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is the limiting form of the hypergeometric differential equation
with the first standard series solution

_ (@)n 2" _
M(a,bz) =Y @, °F C,beC\Zj .
n>0
The series converges for all z € C. Here (a), = a(a +

1)---(a+mn — 1) stands for the standard Pochhammer sym-
bol. Another notations which occur for Kummer’s function:
D(a;b;2),1F1(a; b; 2).

Having in mind the structure of Fourier—Bessel series (1)
let us introduce the Kapteyn—Kummer series as

o= 0 )
:ZmnM a—f—om,b-l—ﬁn,z(l-i-Cn)), 2
n>0

where k,, € C; the parameter range and the z—domain will
be described in the sequel. We point out that for at least one
non-zero «, 3, and ¢ = 0, this series becomes a Neumann—,
while in the case a = § = 0,( # 0 we are faced with the
Schlomilch—-Kummer series.

We are motivated by the fact that Kummer’s function
M (a,b, z) generate diverse special functions such as [14, pp.
507-8, §13.6. Special Cases]

M+ 12v+1,2i2) =T z)

(1+v)e
M(—v+4,-2v+1,2iz) =I'(1 - )V
(
I'(

"
e (32
x [cos(vm)Jy(2) —sm(wr)Y( )]
Mv+3,2v+1,22) = 1+1/) “(32) " L(2)
Muv+32v+1,22) =n" e *(22)7V K, (2),

where J,(I,,),Y, (K,) stand for the Bessel (modified Bessel)
functions of the first and second kind of the order v respec-
tively, for which their Fourier—Bessel series have been studied
n [1], [2], [4], [6], [7], [8] and [12], among others. Further
special cases of M listed in [14, pp. 507-8, §13.6.] are: Hankel,
spherical Bessel, Coulomb wave [15], Laguerre, incomplete
gamma, Poisson—Charlier, Weber, Hermite, Airy, Kelvin, error
function and elementary functions like trigonometric, expo-
nential and hyperbolic ones. These links from Kummer’s M
to above mentioned special functions and then a fortiori to
their Schlomilch—, Neumann— and Kapteyn—series obviously
justify the definition of the Kapteyn—Kummer 7, —series (2).

Our main aim here is to establish integral representation for-
mula for the Kapteyn—Kummer series .%,;. The main derivation
tools will be the associated Dirichlet series, the famous Cahen
formula [16] and the Euler—Maclaurin summation formula
firstly used in similar purposes in [17] and in [4].
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II. MAIN RESULTS

The derivation of the integral representation formula we
split into few crucial steps assuming that all auxiliary param-
eters a, b, a, B mutatis mutandis are non-negative, and ( real.
Further necessary constraints between them follow in step—
by—step exposition.

1. The convergence issue. Having in mind the integral
expression of Kummer’s function [14, p. 505, Eq. 13.2.1]

F(b) 1ezt a—1 _ 4\b—a—-1
7“[)_&)%)/0 =11 — =l dr, (3)

valid for all R(b) > R(a) > 0, we transform the Kapteyn—
Kummer series into

ZI‘b—a+

1
x/ e#(14(m)t yatan—1(] _ pb-at(B-a)n—1gy (4
0

M(a,b,z) =

I'(b+ 6n)
a)n)(a + an)

Hence, for all 3 > a > 0 using (4) we yield

/inI‘bJrﬁn
ZF | |( )

—a+ (B—a)n)l(a+ an)
1
% / §R(z)(1+{n)t ta-i—an—l(l _ t)b—a-l—(,@—a)n—l dt

|Fn|T(b + Bn)
<ZFb—a—|— a)n)l(a + an)

o / IR+l gatan—1(1 _ pyb—a+(B=a)n=1 gy
< RG] Z o [ | b+5n)em S
—a+ (f—a)n)l'(a+ an)
« /1 ta-l—an—l(l _ t)b—a-s-(ﬁ—u)n—l d+
_ e\%fé(z)\oz PR COLY )
n>0

Here we employ the Euler Beta function’s integral form and
its connection to the Gamma function:

L'(p)I'(q)

Bp.g) = [ -t =

where min (R(p), R(g)) > 0. Indeed, specifying p = a + an,
q = b—a+(8—a)n (5) immediately follows. Finally, by virtue
of e.g. Cauchy’s convergence test we get the convergence
region of % (2):

R.(C) = {z € C: [(R(2)| < —log lim <1/|nn|} ,
for any fixed real (.

2. The associated Dirichlet series. The Dirichlet series

r)= Z ap e "

n>1

where R(r) > 0, having positive monotone increasing di-
vergent to infinity sequence (\,), possesses Cahen’s Laplace
integral representation formula [16, p. 97]

:@a(r)—r/ et Z a, dt

n: A, <t

o
=/

where 9, = 1+ {z}:L and a € C}(R}); (a,) = a
[17], [4]." Indeed, the so—called counting sum

§ Gp

n: A, <t

uw)dtdu,

N’ consult

we calculate by the Euler—Maclaurin summation formula, see

[17], [4]. Hence,
(A~ 1(t)]

as A\: R, — R, is monotone, there exists unique inverse A\ ~*
for the function A: Ry — R4, being |y = (Ap).

The integral representation formula (3) of Kummer’s func-
tion enables to re—formulate the series (4) into the following

form
ZI‘ b—a+(

1
% / ez(l+(n)t ta-i—om—l(l _ t)b—a-‘r(,é’—a)n—l dt
0

/\_1(t)]

vQ{a (t) = du s

(b + fn)
a)n)(a + an)

1
:/ et (1 — )bl g (1) dt (6)
0

where the Dirichlet series

_ K D(b+ Bn)e P"
D (t) = Z r'b—a+ (8—a)n)l'(a+an)’

n>0

Here the parameter p; = log (¢~*(1 —t)*~#) — 2(t should
have positive real part. In turn, bearing in mind that for
(R(z) <0 forall t €(0,1) itis

R(p:) = —alogt — (8 —a)log(1 — ) —

we have to take into account the following subset of R/ (¢):

R.(¢) = {z eC: lognlgr;o Vikn| < (R(2) < 0} .

Using z € R, (¢) being ¢ fixed real, applying Cahen’s formula
and the consequent Euler—-Maclaurin summation’s condensed
writing developed in [17], we arrive at

Theorem 1: Let k € CY(R,) be the function which re-
striction into Ny is the sequence (ky). For all b > a > 0;
B>a>0; ¢ €R and for all z € R;(¢), we have

Hor(b) > —pis
F(b—a)F(a)ert/o e . (s)ds, (1)

CR(z)t >0,

D, (t) =

"Here, [z] and {z} = z — [z] denote the integer and fractional part of
z € R, respectively.
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=log (t7*(1 — t)*Pe=*") and

(s] (b
. () :/ Ou( r(w) Db+ fu) ) u.
0 I'b—a+ (8 —a)u)l(a+ au)
Proof: Tt only remains to explain the sum-structure of
(7). As to the use of Cahen formula for the Dirichlet series,
which involves summation over n € N, we re—write
K F b + —pn
0 + Z pn)e _
INQZ I'(b—a —i— —a)n)I'(a+ an)

where P

Di(t) =

The rest is straightforward. O
Remark 1: Obviously the constituting addend constant term
kol'(b) (T'(b—a)T'(a)) ! can be avoided in the Dirichlet series’
integral expression (7) by considering xo = 0 without loss of
any generality. |

3. The master integral formula for .77, (z). In this subsection
of the section II we will need further special functions and
auxiliary results. Firstly, we recall the double series definition
of the so—called Kampé de Fériet hypergeometric function
of two variables [18] in a notation given by Srivastava and
Panda [19, p. 423, Eq. (26)]. For this, let (Hj) denotes
the sequence of parameters (H;,---,H}) and for nonneg-
ative integers signify the product of Pochhammer symbols
((Hp)) = (H1)n(H3)n---(Hp)pn, where when n = 0,
the product is understood to reduce to unity. Therefore, the
convenient generalization of the Kampé de Fériet function is
defined as follows:

h:ab|:( ) (Aa ’ ]
gedl (Gy) - (Cc),
((Hn))m+ ((Aa)) ((Bo))n 2™ y"
-2 (Ga))msn((Ce))m((Da))n m! n!

m,n>0

Putting now the integral expression (7) of the Dirichlet series
2, (t) into the integral form (6) of the Kapteyn—Kummer series
H(2), by (3), we deduce

Hi(2) = ko M(a,b, 2)

/w/ R

Let us concentrate to the double integral .%,(z) appearing
above. By the legitimate change of integration order we have

o] 1
_ / MK(S) / ez(1+§s)t
0 0

% ta+ocsfl(1 _ t)bfaJr(,@foz)sfl

— )b L, (s) dtds. (8)

x (Czt + alogt + (B — ) log(1 — t)) dt) ds

o0 0
,/0 ﬂK(S)(CZ/K(Z,l)+a%/f€(z70)

+ﬁ%;@@m»m,

where for p € {0, 1} the following auxiliary integral occurs:

€))

1
jn(z,p) = / ez(1+§s)tta+as—1+p(1_t)b—a+([3_o¢)5_1ds.
0

In turn, by (3) it is explicitly

Fw(z,p) =Tp(s) M(a+as+p,b+ Bs+p,z(1+(s)),
where we use the short—hand
I'b—a+ (8 — I'(a + as+
P (s) = DO =0t (8= a)s)r( o)

L'(b+ Bs+p)
Theorem 2: Let k € CY(R.) be the function for which

/£| = (kp). Forallb >a >0; > a>0; ¢ € R and
foralleR (€), we have
H(2) —moMabz)
/ / > k(u) T'(b+ Bu) )
u —a+ (f—a)u)'(a+ au)

X (Cz[‘l(s) M(a +as+1,b4 Bs+1,2(1+(s))

+ M* (ﬁgro(s) + aagro(s))
OM*
Oa

where <7,.(s) and T',(s),p = 0,1 are described previously,
while M* := M(a +as,b+ Bs,z(1 + (s)). Accordingly

+r0(s)(6— +a S )dsdu. (10)

oM™ z(1+(s)
da b+ Bs
XF1;1;2|: at+as+1:1;1,a+ as z(l—i—(s)}
02,6+ Bs+1: —a+as+112(1+(s)
oM*  (a+ as)z(14(s)
ob (b+ Bs)?
XF112|: at+as+1:1;1,b+ Bs z(l—l—(s)}.
2oL 2 b+ Bs+1: 2(14 (s)

Proof: Collecting all these expressions, that is (8) and (9),
we finish the proof. So, from

Hi(2)

= ko M(a,b, z)
/ /[Sl k(u) T(b + Bu) )
—a+ (B —au)l(a+ au)

X ((zl"l(s) M(a +as+1,b+08s+1,z(1+ Cs))
+ 5%I‘0(8) M(a+ as,b+ fBs,z(1+4(s))

+ 21"0(5)M(a +as,b+ Bs,z(1+ Cs)))ds du,

oa
with some algebra the double integral will take the form
/°° /[S]D k(u) (b + Bu) )
o Jo "\To—a+(B—a)u)l(a+au)
X (Czl"l(s) M(a+as+1,b+ Bs+1,2(1+(s))
wf, 0 0
+M (ﬁ%]f‘o(s) + a%FO(s))
oM™ oM*
+ I‘O(s)(ﬁ % +a %a ))dsdu.
Applying the formulae [20], [21]
1o} Z 112 a+1:1;1,a z
%M(a,b,z) - EFQOJ[ 2,b+1:—a+11 z }
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az 1:1;2
= Fo01

0
—M(a,b,2) = 2 P20

a+1:1;1,b z}
b

2,b+1:—b4+11 2

getting the partial derivatives of M*, in which should be
specified @ — a4+ as, b = b+ s and z — z(1 + (s),
we arrive at the assertion of the Theorem 2. O

III. TOWARD TO NEUMANN-KUMMER AND
SCHLOMILCH-KUMMER SERIES

As we have mentioned earlier in limiting case A. « — 0
we get a two—parameter Kapteyn—Kummer series; when either
B.{ — 0or C. o, ¢ = 0, this imply a Neumann—Kummer
series.

In the last possible common-sense case D. 3 — 0 we
earn a Schlémilch—-Kummer series — all from ¢ (z) under
the conditions of Theorem 2.

We point out that for the sake of simplicity in this section
we take vanishing k.

A. a — 0. Since @ — 0 independently of f, in this case we
have a Kapteyn—-Kummer series:

L

x | ¢zal1(s) M(a+1,b+ Bs+1,2(1+(s))

(w)T (b+5u))

%( b—a+ﬂu)

Oﬂc'

* 8 aJ\4*|oz:0
+ﬂ(M ooz To(5) +I‘0(S)T) ds du.
B. ¢ — 0. This case results in a two—parameter Neumann—

Kummer series

[s] —I{ (u)T'(b+ Su)/T(a + au)
larmod =, [ et )
X M*|<:0(5%F0(5)+0¢%F0(5))
+ T(s) (B aM(;)f:O +a aM(,;f:O) ds du.

C. a, ¢ — 0. Further simplification of the previous integral
gives one—parameter Neumann—Kummer series, reads as fol-
lows:

ab |\ _ [S] T'(b+ Bu)
A o.p,0 %) = (Fo=arm)
3 OM™| o=
X | M*|ac= O@b ()"‘Fo(s)% ds du.

D. B — 0. We end this overview of special cases of Mas-
ter Theorem 2 with the Schlomilch—-Kummer series integral
representation formula

o

X M(a+1,b+1, z(1+<s))dsdu.

a,b

%(oog'
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