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1. Introduction. A classical Diophantine m-tuple is a set of m positive
integers, {a1, . . . , am}, such that aiaj + 1 is a square for all 1 ≤ i < j ≤ m.
Dujella [6] proved that there is no Diophantine sextuple and that there are
only finitely many Diophantine quintuples. A folklore conjecture is that there
are no Diophantine quintuples. Various variants of the notion of Diophantine
tuples have been considered in which the set of squares has been replaced
by some other arithmetically interesting subsets of the positive integers. For
instance, the case of kth powers was considered in [3], while the case of
the members of a fixed binary recurrence was considered in [7, 13, 14]. In
[10], it is proved that there is no triple {a, b, c} of positive integers such
that all of ab + 1, ac + 1, bc + 1 belong to the sequence {un}n≥0 of the
recurrence un = Aun−1 − un−2 for n ≥ 2 with initial values u0 = 0 and
u1 = 1. For related results, see [1, 8, 9]. Diophantine tuples with values in
the set of S-units for a fixed finite set S of primes were considered in [16, 19].
For a survey on this topic, we recommend the Diophantine m-tuples page
maintained by A. Dujella [5].

Here we take an integer g ≥ 2 and recall that a repdigit N in base g is a
positive integer all of whose base g digits are the same. That is,

(1.1) N = d
gk − 1

g − 1
for some d ∈ {1, . . . , g − 1}.

These numbers fascinated both mathematicians and amateurs. Questions
concerning Diophantine equations involving repdigits have been considered
by Keith [11], Marques and Togbé [17] and Kovács et al. [12], to name just
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a few. In this paper, we combine the Diophantine tuples with repdigits and
thus consider Diophantine triples having products increased by 1 in the set
of repdigits in a fixed base g.

To avoid trivialities, we only look at repdigits with at least two digits.
That is, the parameter k appearing in (1.1) satisfies k ≥ 2. We denote by
Rg the set of all positive integers that are repdigits in base g. In this pa-
per, we are interested in triples (a, b, c) ∈ N3 with c < b < a such that
ab+ 1, ac+ 1 and bc+ 1 are all elements of Rg. Let us denote by Dg the set
of all such triples. The reason why we exclude the one-digit numbers from
our analysis is, that in some sense, these are degenerate examples. Further-
more, if we allow ab + 1, ac + 1 and bc + 1 to be one-digit numbers in a
large base g, we will have many small examples, which however are of no
interest.

Our main result is the following.

Theorem 1.1. Assume that (a, b, c) ∈ Dg. Then

a ≤ g186 − 2

2
for all integers g ≥ 2, and

a ≤ g124 − 2

2
for all integers g ≥ 106.

Moreover,

#Dg ≤
(185g − 185)(185g − 186)(185g − 187)

6

for all bases g and

(1.2) #Dg � g1+o(1) as g →∞.

In the next section, we estimate the greatest common divisor of two
numbers of a special shape, which is an important step in the proof of
Theorem 1.1. In Section 3, we prove Theorem 1.1 except for the asymptotic
bound (1.2), which is proved later in Section 4.

We want to emphasize that our proof of Theorem 1.1 yields a rather
efficient algorithm to compute Dg for a given g. In particular, we have com-
puted all sets Dg for 2 ≤ g ≤ 200, and we give the details and the results of
this computation in the last section.

2. Estimates for the GCD of some numbers of special shape.
The main result of this section is:

Lemma 2.1. Let g ≥ 2, k1, k2 ≥ 1, t1, w1, t2, w2 be non-zero integers,
and set C := max{g, |t1|, |w1|, |t2|, |w2|}. Let

∆ = gcd(t1g
k1 − w1, t2g

k2 − w2)



Diophantine triples with repdigit values 135

and let X be any real number with X ≥ max{k1, k2, 3}. If t1g
k1/w1 and

t2g
k2/w2 are multiplicatively independent, then

∆ ≤ 2C2+5
√
X .

The proof of this lemma depends, among other things, on the follow-
ing result whose proof is based on the pigeon-hole principle and appears
explicitly in [15].

Lemma 2.2 ([15, Claim 1]). Let m, n and X be non-negative integers
such that m and n are not both zero, and X ≥ max{3,m, n}. Then there
exist integers (u, v) 6= (0, 0) such that

max{|u|, |v|} ≤
√
X and 0 ≤ mu+ nv ≤ 2

√
X.

Proof of Lemma 2.1. Set λi = gcd(tig
ki , wi) for i = 1, 2. We have

tig
ki − wi = λi(tig

ki/λi − wi/λi) (i = 1, 2).

Then ∆ = λ1λ2∆1, with

∆1 = gcd(t1g
k1/λ1 − w1/λ1, t2g

k2/λ2 − w2/λ2).

Since |λi| ≤ |wi| ≤ C for i = 1, 2, we get the upper bound

(2.1) ∆ ≤ C2∆1.

Thus, it remains to bound ∆1.

Now, consider the pair of congruences

(2.2) tig
ki/λi ≡ wi/λi (mod ∆1) (i = 1, 2)

and note that wi/λi and tig
ki/λi are invertible modulo ∆1. Indeed, by (2.2)

there exists an integer q such that

tig
ki/λi − wi/λi = q∆1.

If wi/λi and ∆1 have a common prime factor p, then p | tigki/λi, contradict-
ing the fact that tig

ki/λi and wi/λi are coprime.

By Lemma 2.2, we can find a pair of integers (u1, u2) 6= (0, 0) such
that

max{|u1|, |u2|} ≤
√
X and 0 ≤ u1k1 + u2k2 ≤ 2

√
X.

Since both sides of (2.2) are invertible modulo ∆1, it makes sense to take
the uith powers on both sides of (2.2) for i = 1, 2. Multiplying the resulting
two congruences, we get

(2.3)
tu11 t

u2
2 g

k1u1+k2u2

λu11 λ
u2
2

− wu11 w
u2
2

λu11 λ
u2
2

≡ 0 (mod ∆1).

The rational number on the left-hand side of (2.3) is non-zero, since other-
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wise (
t1g

k1

w1

)u1( t2gk2
w2

)u2
= 1,

which implies that t1g
k1/w1 and t2g

k2/w2 are multiplicatively dependent
because (u1, u2) 6= (0, 0). But this is excluded by our hypothesis. Thus, the
left-hand side of (2.3) is a non-zero rational number whose numerator is
divisible by ∆1.

Therefore we can write

(2.4)
tu11 t

u2
2 g

k1u1+k2u2

λu11 λ
u2
2

=
AB1B2

C1C2
,

where A = gk1u1+k2u2 and {B1, B2, C1, C2} = {t|u1|1 , t
|u2|
2 , λ

|u1|
1 , λ

|u2|
2 }. Simi-

larly, we have

wu11 w
u2
2

λu11 λ
u2
2

=
D1D2

E1E2
,

where {D1, D2, E1, E2} = {w|u1|1 , w
|u2|
2 , λ

|u1|
1 , λ

|u2|
2 }. Clearly, |A| ≤ C2

√
X ,

whereas

max
i=1,2
{|Bi|, |Ci|, |Di|, |Ei|} ≤ C

√
X .

First, assume that u1u2 ≥ 0. Then u1 and u2 have the same sign and

max{k1, k2} < k1|u1|+ k2|u2| = |k1u1 + k2u2| ≤ 2
√
X,

which yields

(2.5) ∆1 ≤ max{|t1gk1 − w1|, |t2gk2 − w2|} ≤ 2C1+2
√
X ≤ 2C5

√
X .

Next, assume that u1u2 < 0, which immediately implies that {C1, C2}
and {E1, E2} have a common element. Without loss of generality, we may
assume that u1 > 0 and u2 < 0. Then we can choose λu11 = C1 = E1 and
∆1 divides the numerator of

AB1B2

C1C2
− D1D2

C1E2
=
AB1B2E2 − C2D1D2

C1C2E2
.

That is, ∆1 |AB1B2E2 −D1D2C2. Since AB1B2E2 −D1D2C2 6= 0, we ob-
tain

(2.6) ∆1 ≤ 2C5
√
X .

Therefore, we conclude by (2.5) and (2.6), together with (2.1), that

∆ ≤ 2C2+5
√
X .
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3. Proof of Theorem 1.1. Assume that (a, b, c) ∈ Dg. By the definition
of Dg, we have

ab+ 1 = d3
gn3 − 1

g − 1
,

ac+ 1 = d2
gn2 − 1

g − 1
,(3.1)

bc+ 1 = d1
gn1 − 1

g − 1
,

where di ∈ {1, . . . , g − 1} and ni ≥ 2 for i = 1, 2, 3. It is clear that
n1 ≤ n2 ≤ n3. Further, we may assume that g ≥ 3, since if g = 2, then
d1 = d2 = d3 = 1,

ab = 2n3 − 2 = 2(2n3−1 − 1),

ac = 2n2 − 2 = 2(2n2−1 − 1),

bc = 2n1 − 2 = 2(2n1−1 − 1),

and by multiplying the above equations we get

(abc)2 = 8(2n3−1 − 1)(2n2−1 − 1)(2n1−1 − 1),

which yields a contradiction since the left-hand side is a square and the
right-hand side is divisible by 8 but not by 16.

Next, we claim that

(3.2) n3 ≤ 2n2.

In order to prove (3.2), we note that

a < ac+ 1 ≤ gn2 − 1,

and therefore

gn3−1 + gn3−2 + · · ·+ 1 ≤ d3(g
n3 − 1)

g − 1
= ab+ 1 < a2 < (gn2 − 1)2 < g2n2 .

Thus, n3 < 2n2 + 1, and (3.2) is proved. Furthermore, note that

(3.3) a > (ab+ 1)1/2 ≥ (gn3−1 + gn3−2 + · · ·+ 1)1/2 > g(n3−1)/2.

Let us fix some notation for the rest of this section. We rewrite (3.1) as:

ab =
λ3
g − 1

(
d3g

n3

λ3
− d3 + g − 1

λ3

)
=:

λ3
g − 1

(x3 − y3),

ac =
λ2
g − 1

(
d2g

n2

λ2
− d2 + g − 1

λ2

)
=:

λ2
g − 1

(x2 − y2),(3.4)

bc =
λ1
g − 1

(
d1g

n1

λ1
− d1 + g − 1

λ1

)
=:

λ1
g − 1

(x1 − y1),

where

λi = gcd(dig
ni , di + g − 1), xi =

dig
ni

λi
, yi =

di + g − 1

λi
(i = 1, 2, 3).
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Note that gcd(xi, yi) = 1 for i = 1, 2, 3. Hence, the fractions xi/yi are
reduced. Note also that xi > yi for i = 1, 2, 3.

In order to prove Theorem 1.1, we consider several cases.

Case 1: x1/y1 and x2/y2 are multiplicatively dependent and so are x1/y1
and x3/y3. In this case all the fractions xi/yi with i = 1, 2, 3 belong to the
same cyclic subgroup of Q∗+. Let α/β > 1 be a generator of this subgroup,
where α, β are coprime integers. Since xi/yi > 1 for i = 1, 2, 3, there exist
positive integers ri for i = 1, 2, 3 such that

xi = αri and yi = βri , i = 1, 2, 3.

We split this case up into further subcases and start with:

Case 1.1: There exist i 6= j such that ri = rj. Let us start with the case
r3 = r2. We then get

αr3 =
d3g

n3

λ3
=
d2g

n2

λ2
= αr2 .

Hence,

gn3−n2 =
d2λ3
d3λ2

.

We claim that n3 − n2 ∈ {0, 1}. Note that d2 ≤ g− 1 and λ3 ≤ 2(g− 1),
which yield d2λ3 ≤ 2(g − 1)2. In case d3λ2 ≥ 2, we obtain

gn3−n2 ≤ 2(g − 1)2

2
= (g − 1)2 < g2,

so we have n3 − n2 ∈ {0, 1}. Therefore, we are left with the case when
d3λ2 = 1, i.e. d3 = λ2 = 1. But in this case,

λ3 = gcd(d3g
n3 , d3 + g − 1) = gcd(gn3 , g) = g,

so

gn3−n2 =
d2λ3
d3λ2

= d2λ3 ≤ g(g − 1) < g2.

Thus, in all cases we have n3 − n2 ∈ {0, 1}.
Consider now the case n3 − n2 = 0. This means that

(3.5)
d3
λ3

=
d2
λ2
.

But we also have

(3.6) βr3 =
d3 + g − 1

λ3
=
d2 + g − 1

λ2
= βr2 .

Combining (3.5) and (3.6), we obtain (g − 1)/λ3 = (g − 1)/λ2, so λ2 = λ3.
Now we deduce by (3.5) that d2 = d3. Altogether this yields ab+1 = ac+1,
contradicting our assumption that b > c.
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Now, consider the case n3 − n2 = 1. Instead of (3.5), we now have

(3.7)
d3g

λ3
=
d2
λ2
.

Combining (3.6) and (3.7), we get

d2 + g − 1

d3 + g − 1
=
λ2
λ3

=
d2
d3g

,

which leads to

(3.8) d3g(d2 + g − 1) = d2(d3 + g − 1).

Assuming that d3 ≥ 2, equation (3.8) yields

2g2 ≤ d3g(d2 + g − 1) = d2(d3 + g − 1) ≤ 2(g − 1)2,

a contradiction, so we may assume that d3 = 1. Inserting d3 = 1 into (3.8)
yields

g(d2 + g − 1) = d2g,

or equivalently g(g− 1) = 0, which is obviously false. In particular, we have
proved that the case r2 = r3 yields no solution.

The same arguments hold if we replace the quantities r3, r2, n3, n2, d3, d2
by r2, r1, n2, n1, d2, d1 and r3, r1, n3, n1, d3, d1 respectively. Thus, Case 1.1
yields no solution and we assume from now on that r1, r2 and r3 are pairwise
distinct.

Case 1.2: r3 > max{r1, r2}. With our notation, we have

(g − 1)ab = λ3(α
r3 − βr3) and (g − 1)ac = λ2(α

r2 − βr2),

and obviously a(g−1) is a common divisor of λ3(α
r3−βr3) and λ2(α

r2−βr2).
Thus, we have

(g − 1)a | gcd
(
λ3(α

r3 − βr3), λ2(α
r2 − βr2)

)
.

Taking a closer look at the greatest common divisor on the right-hand side
above, we obtain

(g − 1)a |λ2λ3(αr − βr),
where r = gcd(r3, r2). Similarly,

(g − 1)b |λ3λ1(αs − βs),
where s = gcd(r3, r1). Together, the last two inequalities give

(g − 1)2ab < λ1λ2λ
2
3α

r+s.

Write r = r3/δ and s = r3/λ for some divisors δ > 1 and λ > 1 of r3.
Note that we cannot have δ = λ = 2: this would yield r2 = r1 = r3/2, which
was excluded by Case 1.1. Thus,

ab <
λ1λ2λ

2
3α

r+s

(g − 1)2
≤ 16(g − 1)2αr+s,
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and therefore

ab < 16(g − 1)2αr+s = 16(g − 1)2αr3(1/δ+1/λ) ≤ 16(g − 1)2α5r3/6.

On the other hand, we have

(g − 1)ab = λ3(α
r3 − βr3) ≥ αr3 − βr3 ≥ αr3 − 2(g − 1),

where we have used the fact that βr3 = (d3 + g − 1)/λ3 ≤ 2(g − 1). Hence,

αr3 − 2(g − 1) ≤ (g − 1)ab < 16(g − 1)3α5r3/6,

and a crude estimate now yields

αr3 < 16(g − 1)3α5r3/6 + 2(g − 1) < 17(g − 1)3α5r3/6.

Thus,

αr3 < 176(g − 1)18.

Now combining the various estimates we obtain

gn3−1 <
d3(g

n3 − 1)

g − 1
− 1 = ab =

λ3
g − 1

(αr3 − βr3)

< 2αr3 < 2× 176(g − 1)18.

Since g ≥ 3, the above inequality gives n3 ≤ 28, and therefore this case does
not yield any solution with n3 ≥ 29.

Case 1.3: r3 < max{r1, r2}. Assume for the moment that r3 < r2. Then

(3.9) (g − 1)ab = λ3(α
r3 − βr3) and (g − 1)ac = λ2(α

r2 − βr2).

Write gcd(r2, r3) = r2/δ with some integer δ > 1. Then, as before,

(g − 1)a ≤ λ2λ3(αr2/δ − βr2/δ)
and by the second equation of (3.9), we get

(3.10) c ≥ λ2(α
r2 − βr2)

λ2λ3(αr2/δ − βr2/δ)
>
αr2(δ−1)/δ

2(g − 1)
.

The above bound yields

(3.11) 2αr3 ≥ λ3
g − 1

(αr3 − βr3) = ab > c2 >
α2r2(δ−1)/δ

4(g − 1)2
.

If we assume that δ ≥ 3, then since r2 > r3, we get

2r2(δ − 1)/δ > 4r3/3.

If we assume that δ = 2, then

2r2(δ − 1)/δ = r2 = 2r3 > 4r3/3.

In both cases inequality (3.11) implies

αr3/3 < 8(g − 1)2.
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Hence,

gn3−1 <
d3(g

n3 − 1)

g − 1
− 1 = ab =

λ3
g − 1

(αr3 − βr3) < 2αr3 < 210(g − 1)6,

which has no solution for n3 ≥ 12 and g ≥ 3.

The case when r1 > r3 can be dealt with similarly. In particular, instead
of (3.10) we obtain

b ≥ αr1(δ−1)/δ

2(g − 1)
,

where r1/δ = gcd(r1, r3). Using the inequality ab > b2 instead of ab > c2 in
the middle of (3.11), we obtain the same bound for n3.

Case 2: x3/y3 and x2/y2 are multiplicatively independent. By (3.1), we
have

(g − 1)ab = d3g
n3 − (d3 + g − 1),

(g − 1)ac = d2g
n2 − (d2 + g − 1).

Hence, we get an upper bound for a:

(3.12) (g − 1)a ≤ gcd
(
d3g

n3 − (d3 + g − 1), d2g
n2 − (d2 + g − 1)

)
.

Since, by assumption,

x3
y3

=
d3g

n3

d3 + g − 1
and

x2
y2

=
d2g

n2

d2 + g − 1

are multiplicatively independent, we may apply Lemma 2.1 with the param-
eters

(t1, w1, t2, w2, k1, k2) = (d3, d3 + g − 1, d2, d2 + g − 1, n3, n2),

where

max{|t1|, |w1|, |t2|, |w2|} ≤ 2(g − 1) and max{k1, k2, 3} ≤ n3.
Thus, by Lemma 2.1 and (3.12), for a we get the upper bound

(3.13) a ≤ 4(2g − 2)5
√
n3+1.

On the other hand, we have an upper bound for n3 given by (3.3):

(3.14) n3 <
2 log a

log g
+ 1.

Combining (3.13) and (3.14), we obtain

(3.15) n3 <
(10
√
n3 + 2) log(2g − 2) + log 16

log g
+ 1.

From (3.15), we get

(3.16) n3 ≤ 178,
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which actually occurs when g = 4. Note that if g = 3 then (3.15) yields
n3 ≤ 171, while for larger values of g we obtain better upper bounds for n3.
In particular, we have n3 ≤ 105 provided g is large enough. If we only assume
g ≥ 200 and g ≥ 106 we find that n3 ≤ 135 and n3 ≤ 116, respectively.

Case 3: x3/y3 and x2/y2 are multiplicatively dependent and x3/y3 and
x1/y1 are not. As in Case 1, we may write

x3 = αr3 , y3 = αr3 and x2 = αr2 , y2 = αr2 .

Note that in the proof of Case 1.3 we never used the quantity r1 when we
considered the case r2 < r3. Therefore, we may assume r3 > r2.

Similarly to Case 2, we find an upper bound for b, but we use

(g − 1)ab = d3g
n3 − (d3 + g − 1),

(g − 1)bc = d2g
n1 − (d1 + g − 1)

instead. Therefore, by Lemma 2.1, we obtain the upper bound

(3.17) b ≤ 4(2g − 2)5
√
n3+1.

Next we want to find an upper bound for a. To this end, we consider

(3.18) ab =
λ3
g − 1

(αr3 − βr3) and ac =
λ2
g − 1

(αr2 − βr2).

Hence, we obtain

(g − 1)a |λ3λ2 gcd(αr3 − βr3 , αr2 − βr2) < 4(g − 1)2αr,

where r = gcd(r2, r3). Thus,

(3.19) a < 4(g − 1)αr.

On the other hand,

ab+ 1 =
d3(g

n3 − 1)

g − 1
≥ gn3−1 + gn3−2 + · · ·+ 1,

that is, a ≥ gn3−1/b, whence by (3.17) we get

(3.20) a ≥ gn3−1

4(2g − 2)5
√
n3+1

.

By using (3.17) and the fact that d3 ≥ 1 and d2 ≤ g−1, we find the following
lower bound for b:

b ≥ b

c
=
ab

ac
>
ab+ 1

ac+ 1
=
d3(g

n3 − 1)

d2(gn2 − 1)
≥ gn3−n2

g − 1
,

which yields

(3.21) gn3−n2 < (g − 1)b.

Recall that

αr2 =
d2g

n2

λ2
≥ gn2

2(g − 1)
and αr3 =

d3g
n3

λ3
≤ (g − 1)gn3 .
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As in Case 1, let r = gcd(r2, r3). We then find that

(3.22) αr ≤ αr3−r2 ≤ 2(g − 1)2gn3−n2 < 2(g − 1)3b,

where the last inequality is due to (3.21). We combine (3.17), (3.19), (3.20)
and (3.22) to obtain

gn3−1

4(2g − 2)5
√
n3+1

≤ gn3−1

b
≤ a < 4(g − 1)αr

< 8(g − 1)4b ≤ 32(g − 1)4(2g − 2)5
√
n3+1.

Taking logarithms we obtain a similar inequality for n3 to the one in Case 2:

(3.23) n3 <
(10
√
n3 + 2) log(2g − 2) + 4 log(g − 1) + log 128

log g
+ 1.

The above yields

(3.24) n3 ≤ 186.

Note that we obtain n3 ≤ 186 if g ∈ {4, 5}, whereas in all other cases we
obtain better bounds. In particular, if we assume that g ≥ 200, then we
obtain n3 ≤ 143, and if we assume that g ≥ 106, then we get n3 ≤ 124.
Finally, if g is large enough, then we may even assume that n3 ≤ 113.

Let us summarize our results so far:

Proposition 3.1. Assume equations (3.1) hold. Then n3 ≤ 186. If we
assume that g ≥ 200 or that g ≥ 106, then we have n3 ≤ 143 and n3 ≤ 124,
respectively. Moreover, we may even assume that n3 ≤ 113 if g is large
enough (g > 10153).

Now a simple combinatorial argument concludes the proof of the first
part of our theorem. Indeed, the distinct tuples (n1, d1), (n2, d2), (n3, d3)
may be selected from a set of cardinality 185(g − 1) and altogether in

(185g − 185)(185g − 186)(185g − 187)

ways. Since only those results are acceptable where

d1
gn1 − 1

g − 1
< d2

gn2 − 1

g − 1
< d3

gn3 − 1

g − 1
,

we are left with

(185g − 185)(185g − 186)(185g − 187)

6

possibilities for the tuple (d1, n1, d2, n2, d3, n3). Further, for a given sextuple
(d1, n1, d2, n2, d3, n3), the system of equations (3.1) has at most one solution
in positive integers (a, b, c). Additionally, since b ≥ 2, d3 ≤ g − 1, n3 ≤ 186
and (3.1), the estimate for a is trivial. This concludes the proof of the first
part of Theorem 1.1.
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4. Counting the number of triples. We are left with the proof of the
last statement of Theorem 1.1. The main purpose of this section is to prove
Theorem 4.1 below. Let R̃g be the set of repdigits together with the integers

of digit length 1 in base g. Denote by D̃g the set of triples (a, b, c) ∈ N3 such

that 1 ≤ c < b < a and ab + 1, ac + 1 and bc + 1 are elements of R̃g. We
prove the following theorem:

Theorem 4.1. We have

#D̃g � g3/2 (g →∞),

#Dg � g1+o(1) (g →∞).

Since g is fixed throughout this section, we will omit the index of Dg
and D̃g and write only D and D̃, respectively. In the course of the proof

of Theorem 4.1, we consider several subsets of D̃ which will be denoted by
D1, . . . ,D4. We emphasize that in the following a subscript of D does not
refer to the base g, but instead to a certain subset of D̃.

Proof. Clearly, D̃ can also be identified with the set of all sextuples

(d1, d2, d3, n1, n2, n3) where 1 ≤ di ≤ g − 1 for i = 1, 2, 3,

such that there exist positive integers c < b < a satisfying (3.1). Under
this identification and using Proposition 3.1, for g large enough we have
n1 ≤ n2 ≤ n3 ≤ 113 and 1 ≤ di ≤ g − 1 for i = 1, 2, 3. So, trivially,
#D̃ � g3. Let us improve this trivial bound. Let D1 be the subset of D̃ such
that n3 = 1, and D2 = D̃\D1. We prove:

(i) #D1 � g3/2 as g →∞.
(ii) #D2 � g1+o(1) as g →∞.

The conclusion of Theorem 4.1 follows from (i), (ii) and the fact that

#D̃ = #D1 + #D2.

First, let us deal with (i). For the lower bound, we choose a > b > c all
three in {1, . . . , b

√
g − 2c}. For each of these choices,

ab+ 1 ≤ b
√
g − 2c2 + 1 ≤ g − 1,

so ab+ 1 = d1 ∈ [1, g − 1] and similarly ac+ 1 = d2 and bc+ 1 = d3. Thus,
(a, b, c) is in D1, and we get

(4.1) #D1 ≥
(
b
√
g − 2c
3

)
� g3/2.

For the upper bound, note that we have to count the integers a > b > c
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satisfying (3.1) with n1 = n2 = n3 = 1. In particular, we have to count the
triples (a, b, c) satisfying

(4.2) 1 ≤ a ≤ g − 2 and 1 ≤ c < b < min

{
a,
g − 1

a

}
.

For fixed a there are � min{a, g/a}2 pairs (b, c) satisfying (4.2). Therefore

#D1 �
g�

1

min{a, g/a}2 da =

√
g�

1

a2 da+

g�
√
g

(
g

a

)2

da� g3/2,

which is the desired upper bound.

For (ii), let D3 be the subset of D2 such that n3 ≥ 3. Due to Proposi-
tion 3.1, for g large enough we may assume that n3 ≤ 113 and d3 ≤ g − 1.
We look at

(4.3) ab = d3
gn3 − 1

g − 1
− 1.

Clearly, since n3 ≥ 3, we have a2 > ab ≥ (g2 + g + 1) − 1 > g2, so a > g.
Since d3 and g are fixed and n3 ≤ 113, the number of ways of choosing (a, b)
such that a > b and (4.3) holds is

τ

(
d3(g

n3 − 1)

g − 1
− 1

)
� go(1) as g →∞,

where τ(n) is the number of divisors of n. The asymptotic bound on the right
side follows from a well-known upper bound for the divisor function (e.g. see
[18, Theorem 2.11] or [4, Chapter 7.4]). It remains to find out in how many
ways we can choose c. Well, let us also fix n2 ≤ n3. Then d2 ∈ {1, . . . , g− 1}
is such that

d2
gn2 − 1

g − 1
≡ 1 (mod a).

This puts d2 into a fixed arithmetic progression αn2 modulo a, where αn2

is the inverse of (gn2 − 1)/(g − 1) modulo a. We show that this progression
contains at most one value for d2. Assuming this is not the case, let d2 and d′2
be both congruent to αn2 and in the interval [1, g−1]. Assume that d2 < d′2;
then a | d′2 − d2, so

g < a ≤ d′2 − d2 ≤ g − 2,

which is false. This shows that indeed once d3, n3 and a (hence also b) are de-
termined, then any choice of n2 ≤ n3 determines d2 (hence c) uniquely. Thus,

(4.4) #D3 ≤
g−1∑
d3=1

113∑
n3=3

n3∑
n2=1

τ

(
d3(g

n3 − 1)

g − 1
− 1

)
� g1+o(1) (g →∞).
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It remains to find an upper bound for the cardinality of D4 := D2\D3.
These triples are the ones that have n3 = 2. We fix d3 and write

(4.5) ab = d3(g + 1)− 1.

There are at most τ(d3(g + 1) − 1) = go(1) possibilities for a > b satisfying
the above relation (4.5) as g → ∞. It remains to determine the number of
choices for c. Let us also fix n2 ≤ n3 = 2. Then determining c is equivalent
to determining the number of choices for d2 such that

(4.6) d2
gn2 − 1

g − 1
≡ 1 (mod a), 1 ≤ d2 ≤ g − 1.

Congruence (4.6) puts d2 in a certain fixed arithmetic progression modulo a,
and the number of such numbers 1 ≤ d2 ≤ g − 1 is at most

1 +

⌊
g − 1

a

⌋
.

We assume that a ≤ g− 1, otherwise there is at most one choice for d2, and
the counting function of such examples is at most g1+o(1) by the argument
for #D3. Then the number of choices for c is at most

1 +

⌊
g − 1

a

⌋
≤ 1 +

g − 1

a
<

2g

a
≤ 2g√

d3(g + 1)− 1
�
√
g

√
d3
.

This shows that

#D4 �
∑
n2≤2

g−1∑
d3=1

τ(d3(g + 1)− 1)

√
g

√
d3

� g1/2+o(1)
∑

1≤d3≤g−1

1√
d3
� g1/2+o(1)

g−1�

1

dt

t1/2

� g1/2+o(1)
(

2t1/2
∣∣∣t=g−1
t=1

)
� g1+o(1) (g →∞).

Together with (4.4), we get

#D2 ≤ #D3 + #D4 ≤ g1+o(1) (g →∞),

which is (ii).

5. The case of small bases g. For the bases 2 ≤ g ≤ 200 we have com-
puted all triples (a, b, c) ∈ Dg. In particular we found the following triples:

g a b c

23 65 17 7

42 136 93 6

104 292 187 32

171 5607 619 5

190 439 248 67
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In our computations, we considered all values of 2 < g ≤ 200 one by one and
we split our work depending on the size of a. If g ≤ 100, we set B := 1000,
and for 101 ≤ g ≤ 200, we set B := 10000.

For every a < B we proceed as follows: for 2 ≤ b < a we check whether
ab + 1 is a repdigit number in base g. If yes, we also check if we can find
c < b such that ab+ 1, ac+ 1 and bc+ 1 are all repdigit numbers in base g.

For a ≥ B we proceed as follows: We use equations (3.1) and (3.2). For
all integer values of 2 ≤ n2 ≤ 186, and all integer values of n3 between n2,
and the minimum of 186 and 2n2, and for all possible digits d2 and d3, we
compute

ab = d3
gn3 − 1

g − 1
− 1, ac = d2

gn2 − 1

g − 1
− 1.

Since a ≤ gcd(ab, ac), the cases when gcd(ab, ac) < B are covered by the
cases when a < B, so we only have further work to do if

gcd

(
d3
gn3 − 1

g − 1
− 1, d2

gn2 − 1

g − 1
− 1

)
≥ B.

In this case, for every integer 2 ≤ n1 ≤ n2 and every digit d1, we check
whether (

d3
gn3 − 1

g − 1
− 1

)(
d2
gn2 − 1

g − 1
− 1

)(
d1
gn1 − 1

g − 1
− 1

)
is a square, and if yes, then we check whether the corresponding values of
a, b and c are integers. If yes, then we found a solution.

We implemented the above algorithm in Magma [2], and the running time
was less than four days on an Intel(R) Core(TM) 960 3.2GHz processor.
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[17] D. Marques and A. Togbé, On repdigits as product of consecutive Fibonacci numbers,

Rend. Istit. Mat. Univ. Trieste 44 (2012), 393–397.
[18] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory. I. Classical

Theory, Cambridge Stud. Adv. Math. 97, Cambridge Univ. Press, Cambridge, 2007.
[19] L. Szalay and V. Ziegler, On an S-unit variant of Diophantine m-tuples, Publ.

Math. Debrecen 83 (2013), 97–121.

Attila Bérczes
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