
Chapter 1

Antiviral Silencing and Suppression of Gene
Silencing in Plants

Tibor Csorba and József Burgyán

Abstract RNA silencing is an evolutionary conserved sequence-specific gene

inactivation mechanism that contributes to the control of development, maintains

heterochromatin, acts in stress responses, DNA repair and defends against invading

nucleic acids like transposons and viruses. In plants RNA silencing functions as one

of the main immune systems. RNA silencing process involves the small RNAs and

trans factor components like Dicers, Argonautes and RNA-dependent RNA poly-

merases. To deal with host antiviral silencing responses viruses evolved mecha-

nisms to avoid or counteract this, most notably through expression of viral

suppressors of RNA silencing. Due to the overlap between endogenous and

antiviral silencing pathways while blocking antiviral pathways viruses also impact

endogenous silencing processes. Here we provide an overview of antiviral silencing

pathway, host factors implicated in it and the crosstalk between antiviral and

endogenous branches of silencing. We summarize the current status of knowledge

about the viral counter-defense strategies acting at various steps during virus

infection in plants with the focus on representative, well studied silencing suppres-

sor proteins. Finally we discuss future challenges of the antiviral silencing and

counter-defense research field.

Keywords RNA silencing • Virus infection • Antiviral defense • Silencing

suppressor strategies • Host-pathogen interaction

1.1 RNA Silencing

1.1.1 Introduction

RNA silencing is a sequence-specific gene-inactivation mechanism conserved from

lower eukaryotes to mammals (Shabalina and Koonin 2008; Weiberg and Jin 2015).

RNA silencing, also known as RNA interference (RNAi), has diverse functions
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including growth and developmental regulation, DNA repair, biotic and abiotic

stress response or host immunity against invading nucleic acids like transposons or

viruses (Castel and Martienssen 2013; Martinez de Alba et al. 2013; Pumplin and

Voinnet 2013). The trademark molecules of silencing are the small RNAs (sRNAs)

(Hamilton and Baulcombe 1999) of 21–24 nt length. These guide the sequence-

specific effector steps either at transcriptional or at post-transcriptional levels.

During transcriptional gene silencing (TGS) target genes are inhibited by epigenetic

modification of chromatin (e.g histone protein post-translational modifications and

DNA methylation) (Castel and Martienssen 2013) while during post-transcriptional

gene silencing (PTGS) gene inactivation occurs through mRNA cleavage or trans-

lational repression (Martinez de Alba et al. 2013). Depending on the sRNA type and

effector proteins involved, silencing pathways provide diverse and dedicated

functions.

1.1.2 Biochemical Framework of Silencing

RNA silencing process can be partitioned mechanistically into three distinct phases:

initiation phase, effector phase and in some specific circumstances amplification

phase. Most of the knowledge comes from the model plant Arabidopsis thaliana,
therefore the nomenclature of components relays on these components.

1.1.2.1 Initiation of Silencing

Initiation of silencing comprises of two main steps: biogenesis of sRNAs and their

loading into effector complexes. The trigger of silencing initiation is always a

double-stranded RNA (dsRNA) molecule present within the cell: perfect or imper-

fect dsRNA structures can be formed by single-stranded RNA (ssRNA) transcripts

folding into a hairpin secondary structure, may come from the inter-molecular

interaction of two partially reverse complementary single-stranded RNAs

(ssRNAs) produced either by convergent transcription from the sense and antisense

strands of the loci (in cis) or by pairing of homologue regions of transcripts

originating from different loci (in trans). Alternatively, perfectly complementary

dsRNAs may arise as the product of RNA-dependent RNA polymerases by con-

version of ssRNA molecules into dsRNAs. The dsRNA molecules/regions are

recognized by a member of the RNase III type enzyme family DICERS, in plants

named DICER-LIKE proteins, (DCLs, in Arabidopsis DCL1-4) (Bernstein

et al. 2001; Hamilton and Baulcombe 1999; Hutvagner et al. 2001). DCLs contain
a helicase, a PAZ, two RNase-III and two dsRNA-binding domains. The PAZ and

RNA-binding domains position the dsRNA substrate in such a way that the two

RNase-III pseudo-dimers catalyzes processing of the dsRNA molecules/regions

into sRNA duplexes of 21–24 nt lenght, with specific 2-nt-long 30 overhangs

(having 50-P and 30-OH ends).
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For the accurate and effective excision of sRNAs from their precursor molecules

DCLs require cooperation of DOUBLE-STRANDED RNA BINDING proteins

(DRB, in Arabidopsis DRB1-5). Sometimes specific DCL-DRB interaction is

required for the transfer of sRNA duplex into specific effector complexes (Eamens

et al. 2012a, b; Han et al. 2004; Hiraguri et al. 2005). Following processing, the

sRNAs are stabilized at their 30 end by the HUA Enhancer 1 (HEN1)-dependent

20-O-methylation (a process found only in plants and flies so far) (Boutet

et al. 2003; Yang et al. 2006) and exported from the nucleus to the cytoplasm by

HASTY (HST), the homologue of mammalian exportin-5 (Bollman et al. 2003;

Park et al. 2005; Peragine et al. 2004) to be loaded into effector complexes. It is

believed that methylation may occur both in the nucleus and cytoplasm (Lozsa

et al. 2008).

1.1.2.2 Effector Phase of Silencing

The essential catalytic components of effector complexes of silencing are the

Argonaute proteins (AGOs, in Arabidopsis AGO1-10), RNase-H type endonucle-

ases (Fagard et al. 2000; Hammond et al. 2001; Hutvagner and Simard 2008; Liu

et al. 2004; Mallory and Vaucheret 2010). AGOs together with accessory proteins

form the effector complex of silencing: the RNA-Induced Silencing Complex

(RISC) that acts during PTGS (Lee et al. 2004; Pham et al. 2004; Tomari

et al. 2004), or the RNA-Induced Transcriptional Silencing Complex (RITSC)

that acts during TGS (Castel and Martienssen 2013; Ekwall 2004). RISC/RITSC

assembly comprises of two clearly distinguishable steps: (i) loading of ds-sRNAs

and (ii) unwinding of sRNAs (Kwak and Tomari 2012). Biogenesis and loading of

ds-sRNAs seems to be coupled (at least in the case of miRNAs) (Reis et al. 2015).

AGO-loading process requires Hsp70-Hsp90 chaperone machinery and ATP

hydrolysis to drive AGO conformational changes. The size and the 50 nucleotide
type contributes to the sorting of sRNAs into specific AGO partners (e.g 21-nt-long

50 U sRNAs are preferentially loaded into AGO1 etc.) (Mallory and Vaucheret

2010). The strand having less stable 50-end pairing (within the ds-sRNA molecule)

is retained within the AGO while the other, the so-called “star” strand is eliminated

(Khvorova et al. 2003; Schwarz et al. 2003). Guided by the sRNA sequence, RISC

induces slicing or translational repression of its target RNAs (during PTGS) in a

sequence-specific manner (Brodersen and Voinnet 2009; Kim et al. 2014). The

cleavage products of RISC are eliminated by the general mRNA decay and quality

control machinery present within the cell (Martinez de Alba et al. 2015; Parent

et al. 2015b; Ren et al. 2014; Souret et al. 2004; Yu et al. 2015). RITSC complex

causes histone and/or DNA methylation, resulting in transcriptional gene silencing

(TGS) of the homologous gene (Castel and Martienssen 2013; Creamer and Par-

tridge 2011). AGO1, 2, 3, 5, 7 and 10 have roles in PTGS while AGO4, 6 and 9 are

involved in TGS (AGO8 is considered as pseudo-gene) (Mallory and Vaucheret

2010).
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1.1.2.3 Amplification of Silencing

Cytoplasmic RNA silencing may be activated also by the presence of RNAs having

aberrant features (without CAP-structure, lacking polyA tail etc.) or endo-

nucleolytically cleaved RISC fragments. RNA-DEPENDENT RNA POLYMER-

ASES (RDRs, in Arabidopsis RDR1, 2, 3a, 3b, 3c and 6) (Wassenegger and Krczal

2006) protein recognize these molecules as their substrates and convert them into

dsRNAs that enter/re-enter into silencing through DCL-mediated sRNA produc-

tion. RDR6 is the main cytoplasmic enzyme to be involved in this process

(Branscheid et al. 2015; Martinez de Alba et al. 2015; Mourrain et al. 2000; Parent

et al. 2015b; Sijen et al. 2001; Vaistij et al. 2002; Voinnet et al. 1998). Usage of

RISC cleavage products by RDRs results in amplification of silencing response that

may have also non-cell-autonomous consequences.

AGO-mediated target cleavage and amplification by RDR enzymes are inti-

mately linked in the nuclear TGS as well. RNA polymerase IV (PolIV, a plant

specific polymerase) transcribes short precursor ssRNAs from loci to be silenced.

RDR2 physically associates with PolIV to convert its transcripts into dsRNA.

DCL3 cleaves the dsRNA to produce sRNAs that are loaded mainly into AGO4

(alternatively AGO6 or 9). AGO4 associates with accessory proteins to form

RITSC. Guided by the sRNA, RITSC is tethered to nascent transcripts synthetized

by RNA polymerase V (PolV) and induce silencing of the target loci by recruiting

histone and/or DNA modification complexes (Castel and Martienssen 2013).

1.1.3 Endogenous Pathway Diversification

The combined activities of specific (sometimes partially redundant) trans factors of

silencing (DCLs, DRBs, AGOs and RDRs) and the involvement of different sRNA

precursor molecules result in parallel gene silencing pathways (Bologna and

Voinnet 2014; Hiraguri et al. 2005; Mallory and Vaucheret 2010; Wassenegger

and Krczal 2006). These pathways rely on various sRNAs like microRNAs

(miRNAs), trans-acting small interfering RNAs (ta-siRNAs), natural-antisense

RNAs (nat-siRNAs), repeat-associated siRNAs (ra-siRNAs), viral siRNAs

(vsiRNAs) and virus-activated siRNAs (vasiRNAs) and provide dedicated func-

tions/roles of silencing (Martinez de Alba et al. 2013).

1.1.4 Systemic Silencing

Amplification of RNA silencing has been implicated in the spread of an RNA

silencing signal (Kalantidis et al. 2008; Molnar et al. 2010, 2011; Schwach

et al. 2005). Small RNAs of 21–24 nt lengths generated during cell-autonomous
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RNA silencing spread from the site of initiation to the neighboring cells through

plasmodesmata. Besides this, silencing signal is able to spread systemically over

long distances through the phloem. The exact nature of silencing signal is not clear,

although sRNAs are known to be involved; sRNAs may be associated with proteins

(e.g AGOs) during translocation that could protect them against cellular nucleases.

Mobile sRNAs, similarly to their cell-autonomous counterparts, are able to trigger

transcriptional or post-transcriptional silencing. It was shown that silencing signal

movement has roles in the formation of patterns within a tissue (e.g. leaf polarity)

(Chitwood et al. 2009), contributes to the reinforcement of transposon silencing in

generative cells (Borges et al. 2011; Slotkin et al. 2009), initiate epigenetic events

during genome defense (Cui and Cao 2014) and respond to external stimuli

(Katiyar-Agarwal et al. 2006). Silencing signal movement has also important

implication in antiviral defense and plant recovery (Havelda et al. 2003; Szittya

et al. 2002).

1.2 Antiviral Roles of RNA Silencing

1.2.1 Introduction

The antiviral function of RNA silencing was demonstrated in plants and inverte-

brates (Bronkhorst and van Rij 2014; Pumplin and Voinnet 2013). Recent reports

have provided evidence that antiviral silencing also operates in mammals, espe-

cially in ESC cells, however its role still remains controversial (Castel and

Martienssen 2013; Cullen et al. 2013; Maillard et al. 2013). Is it believed that the

ancient function of silencing was the antiviral defense itself (Pumplin and Voinnet

2013; Wang and Metzlaff 2005). Specific members of DCL’s, DRB’s, AGO’s, and
RDR’s contribute to the antiviral pathway during the various host-virus combina-

tions (see Table 1.1 and relevant references within).

1.2.2 Biogenesis of vsiRNAs

As one of the first sRNA type discovered, the existence of vsiRNAs provided the

first hint that silencing may have antiviral roles (Hamilton and Baulcombe 1999).

Biogenesis of vsiRNAs requires DCL enzymes. Viral substrate molecules for DCLs

vary depending on the virus replication strategy. In case of RNA viruses the highly

structured fold-back regions of viral single-stranded RNAs (ssRNA) and replicative

intermediates (RI) may be the primary source of vsiRNA production (Ahlquist

2002; Donaire et al. 2009; Molnar et al. 2005; Szittya et al. 2010; Kontra

et al. unpublished). In case of DNA viruses the overlapping convergent/bidirec-

tional read-through transcripts or fold-back structure of specific regions of RNA
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transcripts contribute to vsiRNA biogenesis (Akbergenov et al. 2006; Aregger

et al. 2012; Blevins et al. 2006, 2011; ; Chellappan et al. 2004) (Fig. 1.1). Genetic

studies and deep sequencing analysis of vsiRNAs involving Arabidopsis dcl
mutants revealed that a strong hierarchy exists between DCLs regarding their

contribution to vsiRNA production. The main DCL in case of RNA virus infections

is the DCL4 while DCL2 becomes critical in its absence (in dcl4 mutant) (Andika

RNA viruses

RdRP
repl. intermediate

ssRNA sec. struct.

vsiRNA
21-22nt

HEN1

DCL4/2
DRB

AGO1/2

AGO1/2

vsiRISC

slicing of viral RNA
translational repression

aberrant RNA
(vsiRISC cl. prod.)

aberrant RNA
(replicative
byproduct)

pass. strand
elimination

systemic
signalling

dsRNA binding
e.g. p38

AGO destabil.
e.g. p0, 2b

vsiRNA seq/degr.
e.g. p19/RNase3

GW

DCL4 block
RYMV P1

DCL
DRB

RDR6

?

meth. block
HC-Pro

ampl. block
e.g. HC-Pro

AGO1-
miR168
feed-back
disruption
e.g. p19
vsiRISC block
e.g. SPMMV P1

a

Fig. 1.1 Biochemical framework of antiviral RNA silencing and its suppression by VSRs.

Antiviral RNA silencing is initiated by the recognition of viral dsRNA structures (replicative

intermediate, partially double-stranded fold-back structures or overlapping RNA transcript

pairing), which are processed into viral siRNAs (vsiRNAs) by Dicer-like proteins (DCLs).

Subsequently vsiRNAs 21–22 nt or 24 nt long are incorporated into effector complexes

RNA-induced silencing complex (RISC) or RNA-Induced transcriptional Silencing Complex

(RITSC), respectively. Question mark represents unknown cofactors. The vsiRISC targets viral

RNAs by slicing or translational inhibition (a), while RITSC induces genome modification (b).
Cleavage producs and vsiRNA may enter an amplification loop through the actions of

RNA-dependent RNA polymerases (RDRs) and cofactors (SGS3 and SDE5) to give rise of

secondary vsiRNAs. Antiviral silencing pathway may be halted at various points by viral silencing

suppressors (VSRs) (a and b) (dash-line boxes)
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et al. 2015; Deleris et al. 2006; Donaire et al. 2009; Dzianott et al. 2012; Garcia-

Ruiz et al. 2010; Qu et al. 2008; Urayama et al. 2010). Additional functional

diversity between DCL4 and DCL2 has been reported: DCL2 stimulates transitivity

and secondary siRNA production, while DCL4 is sufficient for silencing on its own

(Parent et al. 2015a). DCL3 has only a minor role against RNA viruses

(Qu et al. 2008; Raja et al. 2014). The fact that silencing suppressors of RNA

viruses interfere with DCL3 pathway suggests that DCL3 contributes to antiviral

silencing (Azevedo et al. 2010; Hamera et al. 2012; Lacombe et al. 2010). During

antiviral silencing against DNA viruses DCL3 is essential and works presumably by

inducing chromatin modifications (Akbergenov et al. 2006; Blevins et al. 2006;

Raja et al. 2014). DCL1 may act as a negative regulator limiting DCL4 and DCL3

through miRNA pathway (Azevedo et al. 2010; Qu et al. 2008).

DCLs’ cofactors, the DRB proteins are also required for vsiRNA biogenesis.

DRB4, the cofactor of DCL4, takes part in antiviral defense against RNA viruses

(Curtin et al. 2008; Jakubiec et al. 2012; Qu et al. 2008). The observation that P6

DNA viruses

overlapping
transcripts

ssRNA sec. struct.
e.g 35S leader

vsiRNA
21-24nt

HEN1

DCL3/4/2
DRB

AGO

AGO1/2

vsiRISC

slicing /
translational repression

aberrant RNA
(vsiRISC cl. prod.)

aberrant RNA
(aborted transcr.)

pass. strand
elimination

systemic
signalling

GW

amplif.
block
e.g. V2

RDR6

?

DRB4
block
e.g. P6

vsiRITSC

histone/DNA
methylation

DCL
DRB

effector block
e.g. AC2, AC4

PolV-GW
DRM2

RDM1
KTF1-GW

AGO4

24nt 21-22nt

DCL3 block
e.g. p38

b

Fig. 1.1 (continued)
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silencing suppressor of Cauliflower mosaic virus (CaMV) inhibits DRB4, strongly

suggests that DRB4 is an antiviral factor against DNA viruses as well. DRB3, the

cofactor of DCL3, contributes to antiviral defense through chromatin modification

against DNA viruses (Raja et al. 2014).

HEN1-mediated vsiRNA methylation is critical for effective antiviral defense

(Vogler et al. 2007). hen1 mutants are more susceptible to Cucumber mosaic virus
(CMV) and Turnip crinkle virus (TCV) virus infections (Boutet et al. 2003; Zhang
et al. 2012). vsiRNA-binding viral silencing suppressor were shown to inhibit

methylation (Csorba et al. 2007; Lozsa et al. 2008).

1.2.3 Effector Step of Antiviral Silencing

Dicing per se is not sufficient for an efficient antiviral silencing response (Wang

et al. 2011), suggesting that the DCLs’ substrates may be only the byproducts of the

viral replication process. vsiRNA-binding VSRs do not compromise dicing, but

efficiently inhibit antiviral silencing (Csorba et al. 2015). The downstream

AGO-dependent effector step is therefore necessary to restrict virus replication

and spread of both RNA and DNA viruses (Azevedo et al. 2010; Carbonell

et al. 2012; Harvey et al. 2011; Pantaleo et al. 2007; Qu et al. 2008; Raja

et al. 2014; Raja et al. 2008; Wang et al. 2011). The properties of vsiRNAs like

50-nucleotide, length, thermodynamical properties of sRNA duplex ends and

sRNA’s duplex structure define loading and sorting into AGO effectors (Khvorova

et al. 2003; Mi et al. 2008; Schuck et al. 2013; Schwarz et al. 2003; Zhang

et al. 2014; Kontra et al. unpublished). During RNA virus infections AGO1 and

AGO2 are the most important effectors, while AGO5, 7, 10 may have additional

roles or act during specific host-virus combinations (Carbonell and Carrington

2015) (Fig. 1.1).

AGO1 was identified as the main effector against Brome mosaic virus (BMV),

CMV, TCV, Turnip mosaic virus (TuMV) in Arabidopsis thaliana (Dzianott

et al. 2012; Garcia-Ruiz et al. 2015; Morel et al. 2002). AGO1 participate in

removal of TuMV viral RNA through slicing activity (Carbonell et al. 2012).

AGO1 translational repression activity was also found to play a role during Tomato
ringspot virus (ToRSV) infection in Nicotiana benthamiana (Ghoshal and

Sanfacon 2014). It was shown that during RNA virus infections AGO1 homeostasis

(Mallory et al. 2008) is disrupted and AGO1 protein levels are decreased probably

through translational repression of AGO1 mRNA by miR168 activity (Varallyay

et al. 2010). Arabidopsis ago1 and ago2 mutants are hypersusceptible to CMV,

TuMV and TCV (Carbonell et al. 2012; Harvey et al. 2011; Morel et al. 2002;

Takeda et al. 2008). As AGO1 is the negative regulator of AGO2 through miR403

action, in the absence of AGO1 activity AGO2 levels are elevated (Azevedo

et al. 2010; Harvey et al. 2011). AGO2 therefore emerges as a second layer in

antiviral pathways. AGO2 was shown to be important in defense against CMV,

TCV and Potato virus X (PVX) viruses in A. thaliana (Brosseau and Moffett 2015;
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Harvey et al. 2011; Jaubert et al. 2011). The phenotype of ago1ago2 double mutant

indicates that the two proteins act in a synergistic manner and have non-overlapping

functions, as suggested by their phylogenetic distance (Mallory and Vaucheret

2010; Wang et al. 2011).

Our knowledge about the function of AGO proteins during PTGS in species

other than Arabidopsis is much limited due to lack of genetic tools. In

N. benthamiana it was shown that AGO2 protects against TBSV, TMV, PVX,

Cucumber necrosis virus (CNV) and Cymbidium ringspot virus (CymRSV) (Fatyol

et al. 2016; Odokonyero et al. 2015; Scholthof et al. 2011). Recently, however

AGO1 was proposed to be the essential effector against CymRSV (Kontra et al.,

unpublished) and is also required for recovery during ToRSV infection (Ghoshal

and Sanfacon 2014).

In rice there are 19 AGOs categorized into four clades (Nonomura et al. 2007).

Genetic and biochemical data suggest that in rice the AGO1 and AGO18 are the

main antiviral effectors against Rice stripe virus (RSV), Rice dwarf phytoreovirus
(RDV) (Hong et al. 2015; Jiang et al. 2012; Wu et al. 2015). AGO18 is induced

during virus infection and may confer a broad-spectrum resistance: AGO18 do not

bind efficiently vsiRNAs, instead, by sequestration of miR168 it interferes with

AGO1 homeostasis. This action leads to elevated levels of AGO1 required for

antiviral defense (Wu et al. 2015).

Effectors AGO4, 5, 7 and 10 were also proposed to possess additional antiviral

roles against RNA viruses. CMV 2b silencing suppressor protein directly interacts

with AGO4 and inhibits its slicer activity and methylation and thus creates a

favorable niche for CMV proliferation (Hamera et al. 2012). AGO5 (besides

AGO2) was shown to be required to inhibit PVX systemic infection (Brosseau

and Moffett 2015). AGO7 seems to work as a surrogate of AGO1 but with a

preference for the less structured RNA targets (Qu et al. 2008; Takeda

et al. 2008). AGO5, 7 and 10 had minor contribution in leaves while AGO10

(alongside AGO1) had antiviral functions in inflorescence during systemic TuMV

infection (Garcia-Ruiz et al. 2015).

The nuclear localized AGO4 has been shown to possess important antiviral

functions against geminiviruses. Arabidopsis dcl3, drb3 and ago4 mutants fail to

hypermethylate the viral genome that is required for host recovery (Raja

et al. 2014). Besides, AGO4 was proposed to be important in transcriptional

regulation of host transcriptional response during CMV virus infection (Hamera

et al. 2012) or to be involved in PVX virus resistance induced by NB-LRR proteins

involving AGO4-mediated translational control (Bhattacharjee et al. 2009).

AGOs loaded with vsiRNAs are able to form high molecular weight complexes

(Csorba et al. 2010; Pantaleo et al. 2007). The knowledge about RISC (including

antiviral RISC, vsiRISC) cofactors that cooperate with AGOs in plants is very

limited (Omarov et al. 2016). Heat shock protein 70 and 90 (HSP70, HSP90) have

been found to be important players in AGO loading by using an in vitro cell-free

system that recapitulates the loading process (Iki et al. 2010). Further understanding

of RISC components, assembly and function may be helped by in vitro and transient
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sensor systems (Fatyol et al. 2016; Iki et al. 2010; Omarov et al. 2016; Schuck

et al. 2013).

1.2.4 Amplification of Silencing

To achieve a robust silencing response RISC cleavage fragments sometimes are

channeled back into silencing by RDR-mediated dsRNA synthesis (Bologna and

Voinnet 2014; Wassenegger and Krczal 2006). Subsequently to the AGO endo-

nucleolytic cleavage, ssRNA fragments lacking bona fide features like cap structure
or polyA tail are recognized by RDR polymerases with or without the help of

primary vsiRNA and converted into long dsRNAs that are substrates of DCLs

(Gazzani et al. 2004; Moreno et al. 2013; Parent et al. 2015b) (Fig. 1.1). RDR1,

RDR2 and RDR6 (SDE1/SGS2) were all found to be important factors in vsiRNA

production during PVX, CMV, TMV, Sugarcane mosaic virus (SCMV), TuMV,

Tobacco rattle virus (TRV) infections (Diaz-Pendon et al. 2007; Donaire

et al. 2008; Garcia-Ruiz et al. 2010; Qu et al. 2008; Schwach et al. 2005).

RDR-synthetized dsRNAs are processed by DCL4 and DCL2 into 21–22 nt long

vsiRNAs, respectively. Both 21 and 22 nt long vsiRNA were effective in antiviral

response against a number of viruses like CMV, Oilseed rape mosaic virus
(ORMV), TCV, TRV, Cabbage leaf curl virus (CaLCuV), CaMV (Blevins

et al. 2006; Bouche et al. 2006; Deleris et al. 2006; Donaire et al. 2008). 22 nt

long vsiRNAs contribute to secondary siRNA production and mediate systemic

silencing (Garcia-Ruiz et al. 2010; Wang et al. 2011). In case of robustly replicating

RNA viruses the involvement of RDRs seems to be less important. Upon

tombusvirus infection the major part of vsiRNAs derives from the positive RNA

strand of the virus genome suggesting that they are primary DCL cleavage products

of viral RNA fold-back structures (Aregger et al. 2012; Blevins et al. 2011; Donaire

et al. 2008; Molnar et al. 2005; Szittya et al. 2010; Kontra et al. unpublished). In a

similarly RDR-independent manner, massive amount of hairpin-derived vsiRNAs

are produced from 35S leader of CaMV (Blevins et al. 2011). The majority of viral

siRNAs accumulating during CaLCuV geminivirus infection were RDR1/2/6-

independent primary siRNAs generated by pairing of bidirectional read-through

transcripts of the circular viral genome (Aregger et al. 2012).

RDR6 activity is facilitated by protein cofactors SUPPRESSOR OF GENE

SILENCINIG 3 (SGS3) (Mourrain et al. 2000), SILENCING DEFECTIVE

5 (SDE5) (Hernandez-Pinzon et al. 2007) and SILENCING DEFECTIVE

3 (SDE3) (Dalmay et al. 2001). SGS3, a plant specific protein associate to RISC

complex (Allen et al. 2005; Yoshikawa et al. 2005), stabilizes the RISC-cleavage

products following slicing and enhance their conversion into dsRNA by RDR6

(Yoshikawa et al. 2013). Elimination of SGS3 leads to enhanced susceptibility to

CMV but not to TuMV or Turnip vein-clearing virus (TVCV) infections (Adenot
et al. 2006; Yoshikawa et al. 2013). SGS3 was shown to be required for CaLCuV

virus induced VIGS of endogenous genes and was further suggested to be involved
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in the antiviral response against DNA viruses (Muangsan et al. 2004). This is

supported by the fact that Tomato yellow leaf curl virus (TYLCV) encodes a

silencing suppressor to compromise SGS3 activity (Glick et al. 2008). SDE5 is an

RNA trafficking protein homologue of human mRNA export factor. SDE5 acts

together with RDR6 to convert ssRNAs into dsRNA. sde5 mutant plants are

hypersusceptible to CMV but not to TuMV infection (Hernandez-Pinzon

et al. 2007). Silencing amplification is facilitated by the SDE3, an RNA-helicase

like protein. SDE3 was shown to bind to AGOs through its GW domains (Garcia

et al. 2012). sde3 mutant plants are more susceptible to CMV or PVX but not to

TRV infections (Dalmay et al. 2001). SDE3 activity occurs downstream to RDR6

and requires AGO1 and AGO2 activities (Garcia et al. 2012). SDE3 was proposed

therefore to facilitate the amplification process by unwinding a fraction of RDR6-

sythetized dsRNA products using helicase activity.

In rice there are five RDRs annotated, but our knowledge about their involve-

ment in vsiRNA biogenesis is very limited. OsRDR6-silenced transgenic rice plants

were shown to be hypersusceptible to RSV and RDV (Hong et al. 2015; Jiang

et al. 2012). The rise in viral symptoms was associated with an increase in viral

genomic RNA and reduced levels of vsiRNAs. Interestingly, the protein level of the

overexpressed OsRDR6 in transgenic rice was reduced during RDV infection,

suggesting a negative translational control induced by the virus upon RDR6

expression (Hong et al. 2015).

1.3 Viral Silencing Suppressor Strategies

1.3.1 Introduction

The most common strategy of viruses to protect themselves against antiviral RNA

silencing is to express proteins that act as suppressors of silencing. These proteins

are the viral suppressors of RNA silencing (VSRs). Discovery of VSRs provided a

strong support of RNA silencing being an antiviral mechanism. Available evi-

dences suggest that most viruses encode at least one VSR that, in most cases is

essential for successful virus infection. Silencing suppression by VSRs has been

described in insect and fungus-infecting viruses as well (Bronkhorst and van Rij

2014). Diversity of VSR’s in sequence and structure indicates that they have

evolved independently. VSRs were shown to block virtually all steps of RNA

silencing like silencing initiation, effector phase, amplification phase, chromatin

modification during TGS or modulation of host gene products for a more favorable

infection. Here we review the most important strategies employed by presenting the

most studied/relevant examples of VSRs (Fig. 1.1).
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1.3.2 Blocking Initiation of Antiviral Response

1.3.2.1 Inhibition of DCL’s Activities

Initiation of silencing may be blocked by inhibition of dicing itself, either through

dsRNA sequestration or through impeding DCLs or their cofactors. Pothos latent
aureusvirus (PoLV) P14, TCV p38 and CMV 2b have been all shown to bind long

dsRNA and thus block vsiRNA biogenesis (Deleris et al. 2006; Goto et al. 2007;

Merai et al. 2005). The nuclear localized P6 suppressor of CaMV diminishes dicing

through protein-protein interaction: P6 interacts with the nuclear DRB4, a cofactor

required for DCL4-dependent vsiRNA processing (Haas et al. 2008). In addition,

during CaMV infection massive amounts of vsiRNAs derive from the 35S leader

sequence recognized by all four DCLs. 35S leader RNA therefore serves as decoy

to divert the effectors of the silencing machinery from more important viral features

(Blevins et al. 2011). Red clover necrotic mosaic virus (RCNMV) recruits DCL

enzymes into its replication complex and therefore deprives them from the silenc-

ing machinery. dcl1 mutant plants are less susceptible to RCNMV infection

(Takeda et al. 2005). Similar strategies were described in insect-infecting viruses

(Bronkhorst and van Rij 2014).

Viruses may modulate endogenous regulatory pathways in order to alter the

strength of silencing in their favor. RNASE THREE_LIKE 1 (RTL1) enzyme was

described as and endogenous silencing suppressor: RTL1 is induced during virus

infections and prevents vsiRNA production by cleaving viral dsRNAs prior to

DCL2/3/4-processing but does not interfere with DCL1-mediated miRNA pathway

(Shamandi et al. 2015).

1.3.2.2 vsiRNA Sequestration

Ds-siRNA sequestration is a widespread strategy used by several VSRs originating

from diverse genera (P19, Hc-Pro, P21, p15, p122/p126/p130, γB, NS3, NSs, Pns10
etc.) (Csorba et al. 2007; Harries et al. 2008; Hemmes et al. 2007; Kubota

et al. 2003; Lakatos et al. 2006; Merai et al. 2005, 2006; Silhavy et al. 2002).

Amongst these, probably the best known is the tombusviral p19 protein (Silhavy

et al. 2002). Crystallographic studies have shown that p19 homodimer acts as a

molecular caliper to sequester the sRNA duplexes size-specifically (Silhavy

et al. 2002; Vargason et al. 2003; Ye et al. 2003). sRNA sequestration prevents

RISC assembly as shown by the heterologous in vitro Drosophila embryo extract

system (Lakatos et al. 2006). It seems that p19-mediated vsiRNA sequestration

affects selectively AGO1- but not AGO2-loading in N. benthamiana during

CymRSV virus infection (Kontra et al., unpublished). It was shown that due to

the structural similarly between vsiRNAs and endogenous sRNAs p19 prevents

RISC-loading of endogenous sRNA species in transgenic A. thaliana and

N. benthamiana plants (Schott et al. 2012; Kontra et al. unpublished). During
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authentic virus infections however, p19-sequestration of endogenous sRNA is not

efficient (Lozsa et al. 2008; Kontra et al. unpublished). The tombusviral vsiRNAs

bind more efficiently to p19 to outcompete endogenous sRNAs. The basis of

vsiRNA competition, besides the massive amount of vsiRNAs, could be the struc-

tural preference of p19 for perfect ds-vsiRNAs forms (contrary to the mismatch-

containing endogenous sRNAs) (Kontra et al. unpublished).

A consequence of sRNA binding by VSRs is the block of HEN1-dependent

methylation of sRNAs (Csorba et al. 2007; Lozsa et al. 2008; Vogler et al. 2007).

When sequestered, the methylation of sRNAs is inhibited (Csorba et al. 2007;

Lozsa et al. 2008). Whether blocking of vsiRNA methylation leads to a faster

decay and this has any biological significance remains a question.

It was shown that Sweet potato chlorotic stunt crinivirus (SPCSV) suppressor
RNase3 cleaves the 21–24 nt vsiRNAs into 14 bp products rendering them inactive

(Cuellar et al. 2009; Kreuze et al. 2005). Although this is a completely different

strategy to siRNA-binding, it has a very similar outcome: vsiRNAs are unavailable

for AGO-loading.

1.3.2.3 Blocking Systemic Silencing

Although p19 sequesters vsiRNAs very efficiently, its effect to block cell-

autonomous silencing and restrict virus replication is mild. The VSR-deficient

CymRSV (Cym19stop) replicates as efficiently as the wild type CymRSV in

N. benthamiana protoplasts (Silhavy et al. 2002). The true strength of p19 lies in

blocking systemic silencing through inhibition of vsiRNA mobilization into naive

surrounding tissue or long distance (Dunoyer et al. 2010; Havelda et al. 2003;

Molnar et al. 2010). RNA binding suppressors NS3 (RSV) and 2b (CMV) were also

shown to prevent efficiently the spread of silencing signal (Guo and Ding 2002;

Xiong et al. 2009).

1.3.2.4 Interfering with AGO-Loading

An efficient arrest of silencing initiation can be achieved through the block of

functional RISC assembly. P0 the suppressor of Poleroviruses (Mayo and Ziegler-

Graff 1996) was shown to enhance the degradation of effector AGOs (AGO1,

2, 4–6, 9) by inhibition of holo-RISC assembly (Baumberger et al. 2007;

Bortolamiol et al. 2007; Csorba et al. 2010; Derrien et al. 2012; Pazhouhandeh

et al. 2006) P0-mediated AGO degradation occurs through autophagy pathway

(Derrien et al. 2012). ToRSV CP, that acts as a VSR as well, binds to AGO1 to

suppress its translational inhibitory activity and to enhance AGO1 degradation

through autophagy (Karran and Sanfacon 2014). It was shown that PVX p25

physically interacts with multiple AGOs (AGO1, 2, 3 and 4) to promote their

destabilization in a proteasome-dependent manner (Chiu et al. 2010). In the absence

of central AGO effector, silencing cannot be programmed/initiated.

1 Antiviral Silencing and Suppression of Gene Silencing in Plants 15



VSRs are able to modulate AGO1 availability in a more subtle way. AGO1

homeostasis depends on the miR168-guided AGO1 mRNA cleavage and transla-

tional inhibition control (Mallory and Vaucheret 2009; Rhoades et al. 2002). To

counteract AGO1-based defense a number of unrelated siRNA-binder VSRs (p19,

p122, p38, Hc-Pro and 2b) promote miR168 transcriptional induction that results in

miR168-guided AGO1 down-regulation to create a better environment for virus

infection. It was shown that (during tombusvirus infection) the miR168 accumula-

tion spatially correlated with the virus localization and was dependent on the

presence of p19 (Varallyay and Havelda 2013; Varallyay et al. 2010).

1.3.2.5 Arrest of Programmed RISC Activity

The Sweet potato mild mottle ipomovirus (SPMMV) suppressor protein P1 interacts

directly with siRNA and/or miRNA-loaded AGO1 present in the high molecular

weight holo-RISC but not minimal-RISC through GW/WG-motifs (AGO-hook)

and inhibits si/miRNA-loaded RISC activity. The GW/WG-motif containing pro-

teins (GW182 family) were shown to interact with AGOs and support diverse RISC

functions (Eulalio et al. 2009). P1 AGO-hook motifs are necessary for both binding

and suppression of AGO1 function (Giner et al. 2010; Szabo et al. 2012).

P38 of TCV (Azevedo et al. 2010) and 2b of CMV (Zhang et al. 2006) and

Tomato aspermy virus (TAV) (Chen et al. 2008) suppressors were proposed to act at
multiple steps of silencing (during initiation and effector phase) including RISC

activity block through AGO protein interaction.

The block of effector step can be achieved also through targeting the RNA

component (the guide vsiRNA) within the vsiRISC. African cassava mosaic virus
(ACMV) encoded AC4 is able to bind to the ss- but not ds-sRNA forms in vitro.
Transgenic AC4 decreases accumulation of miRNAs and up-regulates target

mRNAs. AC4 acts downstream of the unwinding process by binding miRNAs

presumably loaded into AGO (Chellappan et al. 2005; Xiong et al. 2009; Zhou

et al. 2006). RSV suppressor NS3 was found to bind to various RNA forms like

ss-siRNA, ds-siRNA or long ssRNA (but not long dsRNA). By this, NS3 is able to

suppress and revert local silencing but also prevent the long distance spread of

silencing signal (Chellappan et al. 2005; Xiong et al. 2009; Zhou et al. 2006).

Similarly, Grapevine virus A (GVA) p10 suppressor was also suggested to act

through both ss- and ds-si/miRNA binding (Chellappan et al. 2005; Xiong

et al. 2009; Zhou et al. 2006).

1.3.3 VSR Activities Affecting TGS

Several DNA viruses encode VSRs that have been described to alter the effector

step of TGS, the chromatin structure modification. AL2 suppressor of Tomato
golden mosaic virus (TGMV) and L2 suppressor of Beet curly top virus (BCTV)
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inhibit adenosine kinase (ADK) activity that plays crucial role in adenosine and

methyl-cycle maintenance or cytokinin regulation. AL2 and L2 induce global

reduction in cytosine methylation that leads to inactivation and reversal of antiviral

silencing (Buchmann et al. 2009; Wang et al. 2003, 2005). In vitro methylated

TGMV cannot replicate in protoplasts suggesting that viral genome methylation is a

bona fide defense against geminiviruses (Bisaro 2006). Similarly, ßC1 suppressor

of Tomato yellow leaf curl China virus (TYLCCNV) interacts and inhibits activity

of S-adenosyl-homocystein-hydrolase (SAHH) that is involved in methyl-cycle and

therefore indirectly affects TGS (Yang et al. 2011).

1.3.4 Suppression of Antiviral Silencing Amplification

Blocking RDR activities by VSRs is a very effective strategy employed by viruses

since it dampens cell-autonomous silencing amplification and systemic signal

movement in distant tissues to facilitate the virus replication and spread (Ren

et al. 2010; Schwach et al. 2005). V2 suppressor of TYLCV inhibits RDR6-

mediated amplification by direct interaction with SGS3, the cofactor of RDR6

(Glick et al. 2008). Alternatively, V2 may compete with SGS3 for dsRNA having

50 overhang ends that may be an RDR6/SGS3 substrate/intermediate during

vsiRNA amplification (Fukunaga and Doudna 2009; Kumakura et al. 2009). Sim-

ilarly, TRIPLE GENE BOX PROTEIN1 (TGBp1) encoded by PVX was shown to

inhibit RDR6/SGS3-dependent dsRNA synthesis (Okano et al. 2014). βC1 suppres-
sor of TYLCCNV DNA satellite interacts with the endogenous suppressor of

silencing calmodulin-like protein (rgsCAM) in N. benthamiana to repress RDR6

expression (Li et al. 2014). SCMV encoded HC-Pro, TAV 2b and Pns10 of RDV

were all shown to downregulate RDR6 to limit amplification and decelerate sys-

temic silencing (Ren et al. 2010; Zhang et al. 2008). Plant RDR1 however, was

suggested to have adverse functions: RDR1 is an antagonist of RDR6-mediated

sense-PTGS making it an endogenous silencing suppressor (Ying et al. 2010).

1.3.5 Targeting Multiple Steps of Antiviral Pathways

Many VSRs have multiple silencing suppressor functions and therefore are capable

to act at multiple points to modulate antiviral response. 2b of CMV (CM95R strain)

and TAV exhibit high affinity for long dsRNAs and ds-sRNAs (Chen et al. 2008;

Duan et al. 2012; Gonzalez et al. 2012; Goto et al. 2007). CMV 2b (Fny and SD

strains) was also shown to interact with AGO1 through the PAZ- and partly PIWI

domains and blocks RISC slicer activity (Duan et al. 2012; Zhang et al. 2006).

Additionally, CMV 2b (SD strain) alters RdDM pathway as well. 2b facilitates

cytosine methylation through the transport of siRNAs into the nucleus (Kanazawa

et al. 2011). 2b interacts both with AGO4-related siRNAs and with AGO4 protein
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through PAZ and PIWI domains. The interaction with 2b reduces AGO4 access to

endogenous target loci and consequently modulates endogenous transcription to

create a favorable niche for CMV infection (Duan et al. 2012; Gonzalez et al. 2010,

2012; Hamera et al. 2012).

P38 of TCV may also suppress silencing at multiple levels. P38 possesses

dsRNA-binding activity (Merai et al. 2006). Since in the presence of p38, siRNAs

are undetectable therefore it was proposed that p38 suppress DCLs’ activity

(Qu et al. 2003). Genetic evidences also supported the role of p38 in inhibiting

DCL4 (Deleris et al. 2006). In a later study however, p38 suppressor impact on

DCL4 was attributed to an indirect effect of AGO1-mediated DCL-homeostasis and

has been shown that p38 blocks AGO1 but not AGO4 activity through its GW-motif

binding (Azevedo et al. 2010). P38 is capable to bind and inactivate AGO2 as well

(Zhang et al. 2012). Site-directed mutagenesis (GW-to-GA) in the p38 proved that

GW motif is absolutely required for both binding and suppression of AGO1

function (Azevedo et al. 2010). Pelargonium line pattern virus (PLPV) coat protein
p37 (an orthologue of TCV p38) is a GW-containing protein that functions as a

VSR as well. It was shown that the mutations within its GW-motif affect p37

localization, interaction with AGO1 and its sRNA-binding ability. Furthermore,

GW-mutations also abolished TCV p38 sRNA and long dsRNA-binding capacity

(Perez-Canamas and Hernandez 2015). It seems therefore that the domain for

different functions may overlap in p37/p38 VSRs. This brings up the possibility

that the parallel suppressor functions could cooperate during their interaction with

host silencing machinery (e.g. p37/p38 interaction with AGO1 could enhance

sRNA duplex sequestration in order to more efficiently prevent RISC

programming).

1.3.6 VSRs’ Interaction with Host Factors to Modulate
Silencing

Besides blocking antiviral silencing VSRs are able to modulate host endogenous

pathways in order to fine-tune the host-pathogen interaction. The suppressor of

Tobacco etch virus (TEV) helper-component protease (HC-Pro) is a

multifunctional protein involved in many aspects of virus infection

(Anandalakshmi et al. 1998; Carrington et al. 1989; Guo et al. 2011; Kasschau

et al. 1997; Lakatos et al. 2006; Mallory et al. 2001). HC-Pro sequesters vsiRNA

that leads to inhibition of their methylation and inability to load into vsiRISC

(Lakatos et al. 2006; Lozsa et al. 2008). HC-Pro was also found to interact with

rgsCAM an endogenous silencing suppressor (Anandalakshmi et al. 2000; Endres

et al. 2010; Marquardt et al. 2014). In another study it was shown that rgsCAM

counteracts HC-Pro through binding to its positively charged dsRNA-binding

surface, prevents HC-Pro siRNA-sequestration and promotes HC-Pro degradation

through autophagy pathway (Nakahara et al. 2012). Suppression of silencing by
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TuMV HC-Pro requires another host factor, RAV2, a transcription factor. RAV2

targets include FIERY1 and CML38, endogenous suppressors of silencing

(Anandalakshmi et al. 2000; Endres et al. 2010; Gy et al. 2007). RAV2 was required

for suppression of silencing by Carmoviral p38 as well (Endres et al. 2010)

suggesting that RAV2 is a cross-talk point between antiviral and endogenous

silencing pathways, and may be efficiently used by suppressors to modulate host

defense. HC-Pro of another potyvirus, Papaya ringspot virus (PRSV), interacts

with calreticulin to modulate calcium signaling and thus host defense (Shen

et al. 2010a, b). HC-Pro (of Potato virus A (PVA), Potato virus Y (PVY) and

TEV) interacts also with microtubule-associated protein (HIP2) through its highly

variable region (HVR). Virus accumulates at lower level when HIP2 is depleted.

Mutations affecting HC-Pro HIP2 interaction induces necrosis and hormone (eth-

ylene- and jasmonic acid-) mediated induction of host pathogen-related defense

genes (Haikonen et al. 2013a, b).

1.3.7 vsiRNAs May Regulate Host Genes by Exploiting
Endogenous Silencing Itself

The high sequence variability of vsiRNAs and the fast evolution of viral genomes,

may lead to the production of vsiRNAs that could potentially target endogenous

genes/transcripts. By this, viruses may modulate host response to their benefit.

There are a few examples to support this idea. vsiRNAs derived from the

CMV-Y satellite RNA (Y-Sat) targets magnesium protoporphyrin chelatase subunit

I (CHLI), a key component of chlorophyll biosynthesis pathway. vsiRNA-mediated

downregulation of CHLI mRNA leads to yellowing of the plant leaves, that was

suggested to enhance virus spreading by insects (Shimura et al. 2011). sRNA

derived from Peach latent mosaic viroid (PLMVd) targets chloroplastic heat-

shock protein 90 (cHSP90) in peach. Cleavage of cHSP90 (that participates in

chloroplast biosynthesis and plasmid-nucleus signal transduction) induces albinism

and may contribute to a more favorable host environment for viroid infection

(Navarro et al. 2012). Callose synthase genes encode proteins with role in callose

formation during pollen development. Potato spindle tuber viroid (PSTVd)-derived
sRNAs suppress CalS11-like and CalS12-like mRNAs that greatly affects the

severity of disease symptoms (Adkar-Purushothama et al. 2015).

1.4 Perspectives

With the advancement of high throughput technologies the in-depth profiling of

vsiRNA generation, their loading into effectors (vsiRISC or RDR complexes) and

their involvement in systemic signaling of RNA silencing will lead to a more and
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thorough understanding of antiviral defense at cellular, tissue and organism level.

In addition to this, the development of novel in vitro systems and in vivo cellular

assays hopefully will make it possible to better understand the mechanistic details

at molecular level. The interaction of host with viral pathogens is very complex: the

exact details such as how, when, and where in the cell viral RNAs are initially

accessed by the RNA silencing machinery and how VSRs counteract silencing

response remain elusive. It was recently reported that potyvirus-induced granules

(PG) protects PVA viral RNA from antiviral silencing when active viral translation

does not occur optimally (Hafren et al. 2015). Antiviral silencing, translation and

RNA quality control pathways, alongside with general RNA degradation pathways

all compete for endogenous and viral RNAs (Christie et al. 2011). How exactly

these pathways share substrates and cooperate during viral infection will be hope-

fully addressed by further research.

Until recently most studies on antiviral silencing were conducted in the model

Arabidopsis due to the plethora of genetic tools available. The use of Arabidopsis,

however, has a major drawback since this plant model hosts only very few plant

viruses. Availability of the full genome sequence of the viral model plant Nicotiana
benthamiana (sensitive to almost all plant viruses) and the development of

CRIPSR/CAS9 genome editing technology will hopefully allow the study of

antiviral RNA silencing during several other virus infections.

An important aim of antiviral silencing research is to gather knowledge in order

to be able to design resistant crops. Great advances have been made to develop

methods for viral disease control with the expression of artificial sRNAs/miRNAs

targeting viral genomes in economically important plants (Kis et al. 2016; Lin

et al. 2009; Niu et al. 2006). Similar biotechnological approaches may be very

useful to elaborate in the future for economically important crop protection.
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Glossary

RNAi: RNA interference

TGS: Transcriptional Gene Silencing

PTGS: Post Transcriptional Gene Silencing

sRNA: small RNA

dsRNA: double-stranded RNA

ssRNA: single-stranded RNA

DCL: Dicer-Like enzymes

PAZ: Piwi/Argonaute/Zwille-domain
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AGO: Argonaute protein

RDR: RNA-dependent RNA polymerase

RISC: RNA-Induced Silencing Complex

RITSC: RNA-Induced Transcriptional Silencing Complex

miRNA : micro RNA

siRNA: small interfering RNA

ta-siRNA: trans-acting small interfering RNA

nat-siRNA: natural-antisense small interfering RNA

ra-siRNA: repeat-associated small interfering RNA

vsiRNA: viral small interfering RNA

vasiRNA: virus-activated small interfering RNA

(+) ssRNA Virus

BMV: Brome mosaic virus
CMV: Cucumber mosaic virus
CNV: Cucumber necrosis virus
CymRSV: Cymbidium ringspot virus
GVA: Grapevine virus A
ORMV: Oilseed rape mosaic virus
PLPV: Pelargonium line pattern virus
PoLV: Pothos latent virus
PRSV: Papaya ringspot virus
PVA: Potato virus A
PVX: Potato virus X
PVY: Potato virus Y
RCNMV: Red clover necrotic mosaic virus
RYMV: Rice yellow mottle virus
SCMV: Sugarcane mosaic virus
SPCSV: Sweet potato chlorotic stunt virus
SPMMV: Sweet potato mild mottle virus
TAV: Tomato aspermy virus
TEV: Tobacco etch virus
TBSV: Tomato bushy stunt virus
TCV: Turnip crinkle virus
TMV: Tobacco mosaic virus
ToRSV: Tomato ringspot virus
TRV: Tobacco rattle virus
TuMV: Turnip mosaic virus
TYMV: Turnip yellow mosaic virus
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(�) ssRNA Virus

RSV: Rice stripe virus
TSWV: Tomato spotted wilt virus

dsRNA Virus

OsEV: Oryza sativa endornavirus
RDV: Rice dwarf phytoreovirus

ssDNA Virus

ACMV: African cassava mosaic virus
BCTV: Beet curly top virus
CaLCuV: Cabbage leaf curl virus
TGMV: Tomato golden mosaic virus
TYLCV: Tomato yellow leaf curl virus
TYLCCNV: Tomato yellow leaf curl China virus

dsDNA Virus

CaMV: Cauliflower mosaic virus
TVCV: Turnip vein-clearing virus
viroid: non-protein coding infectios RNAs

PLMVd: Peach latent mosaic viroid
PSTVd: Potato spindle tuber viroid
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