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Abstract This study is intended to give a brief overview of

some of the mathematical concepts and techniques relevant

to the study of thermodynamics, including the theory of

homogeneous functions and partly homogeneous functions,

Euler’s theorem, and Legendre transformation. The basic

thermodynamic functions of an ideal monatomic gas

(fundamental relations and thermodynamic potential

functions) have been selected as illustrative examples.
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Introduction

An ideal gas is a theoretical gas composed of many ran-

domly moving point particles. The essence of ideal gas

behavior is that the molecules of the gas do not interact

except when they collide elastically. A substance is said to

be an ideal gas [1, 2, 3].

(a) if it satisfies the following equation (mechanical

equation of state):

pV ¼ nRT ¼ m

M
RT

where n is the (chemical) amount, m is the mass, M is the

molar mass of the substance, p is the pressure, V is the

volume, T is the temperature, and R is the ‘‘universal’’ gas

constant, respectively, (b) for a single-component ideal gas

the molar internal energy (u) is a function only of the

temperature (and inversely), i.e.,

u ¼ u Tð Þ

(c) and the Helmholtz potential (or Helmholtz free energy)

F(T, V, n1, n2,…,nm) of a multicomponent ideal gas is

additive over the components:

F T ;V; n1; n2; . . .; nmð Þ ¼ F T;V ; n1ð Þ þ F T ;V; n2ð Þ þ � � �
þ F T ;V; nmð Þ

(The latter relationship is sometimes referred to as

‘‘Gibbs’s theorem’’).

In the IUPAC Gold Book [4] the ideal gas is defined as

follows:

‘‘Ideal gas. Gas which obeys the equation of state

pV = nRT (the ideal gas law; p is the pressure, V the

volume, n the amount of molecules, R the gas constant and

T the thermodynamic temperature). For an ideal gas the

fugacity, f, of each constituent B is equal to its partial

pressure, pB, fB = pB = xB�p, where xB is the amount

fraction of B’’.

In many textbooks the ideal gas is defined as a gas

whose particles don’t have any volume of their own and as

a gas where no interactions between the particles occur

(that is, there are no intermolecular potential energies). On

the other hand each of these particles has a mass, that is,

the molecules are point particles.

A ‘‘simple ideal gas’’ is characterized by the two

equations pV = nRT and U = cnRT where c is a constant

and U is the internal energy [1].
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Fundamental relations for the ideal gas

The compact form of the entropy fundamental relation

(fundamental equation, fundamental function) of a ‘‘sim-

ple’’ ideal gas can be given as [see Ref. [1], p. 68, Eq. 3.34,

or ‘‘Appendix 1’’, Eq. (59)].

S ¼ ns0 þ nR ln
U

U0

� �c
V

V0

� �
n

n0

� ��ðcþ1Þ
" #

ð1Þ

In Eq. (1) S is the entropy, U is the internal energy, V is the

volume of the system, n is the chemical amount of substance

of the gas (1 component), respectively, c is a constant

(‘‘monatomic ideal gases’’ have a value of c = 3/2), R is the

‘‘universal gas constant’’, U0, n0 and V0 are the parameters of

a fixed reference state, and

s0 ¼ ðS0=n0Þ ¼ ðcþ 1ÞR� ðl=TÞ0: ð2Þ

In Eq. (2) (l/T)0 is an undetermined integration constant

(see ‘‘Appendix 1’’). If the integration constant is known,

then Eq. (1) contains all possible thermodynamic infor-

mation about a simple ideal gas. Thus, for the special case

of an ideal monatomic gas we can write:

SðU;V ; nÞ ¼ n

n0

S0 þ nR ln
U

U0

� �3
2 V

V0

� �
n

n0

� ��5
2

" #
ð3Þ

or

U S;V ; nð Þ ¼ U0

n

n0

� �5
3 V0

V

� �2
3

exp
2

3R

S

n
� S0

n0

� �� �

¼ nU0

n

V

� �2
3 V

2=3
0

n
5=3
0

exp
2

3R

S

n
� S0

n0

� �� �
: ð4Þ

The function U(S, V, n) given is Eq. (4) can be called the

fundamental function of the internal energy of the ideal gas

with the entropy S, the chemical amount n, and the volume

V as the respective fundamental variables. This function is

probably the simplest example of a fundamental function

(fundamental relation) in thermodynamics which can be

given in an explicit form. On the other hand, this function

offers the opportunity to study and demonstrate the appli-

cation of important mathematical concepts (e.g., the theory

of homogeneous functions and partly homogeneous func-

tions, Euler’s theorem, and the Legendre transformation

[5, 6]) to real thermodynamic problems.

For instance multiplying all independent variables of the

functionU simultaneously by the same factor k[0 we obtain:

U kS; kV ; knð Þ ¼ knU0

kn

kV

� �2
3 V

2=3
0

n
5=3
0

� exp
2

3R

kS

kn
� S0

n0

� �� �

¼ knU0

n

V

� �2
3 V

2=3
0

n
5=3
0

exp
2

3R

S

n
� S0

n0

� �� �

¼ kUðS;V ; nÞ: ð5Þ

This means that the internal energy function is a homoge-

neous function of degree one with respect to all extensive

variables (see ‘‘Appendix 2’’, [6]), i.e., the following equation

must be valid as a mathematical consequence (see Euler’s

theorem for homogeneous functions in ‘‘Appendix 3’’, [5, 6]):

U S;V ; nð Þ ¼ oU

oS

� �
V ;n

Sþ oU

oV

� �
S;n

V þ oU

on

� �
S;V

n

¼ TS� pV þ ln: ð6Þ

In Eq. (6) T is the temperature, p is the pressure and l is

called the chemical potential.

On the other hand:

dU ¼ oU

oS

� �
V ;n

dSþ oU

oV

� �
S;n

dV þ oU

on

� �
S;V

dn

¼ TdS� pdV þ ldn: ð7Þ

The partial derivatives of U are:

oU

oV

� �
S;n

¼ � 2

3
U0

n

V

� �5
3 V

2=3
0

n
5=3
0

exp
2

3R

S

n
� S0

n0

� �� �

¼ �pðS;V; nÞ ð8Þ

oU

oS

� �
V ;n

¼ 2

3R
U0

n

V

� �2
3 V

2=3
0

n
5=3
0

exp
2

3R

S

n
� S0

n0

� �� �

¼ TðS;V; nÞ ð9Þ

oU

on

� �
S;V

¼ 5

3

n

V

� �2
3� 2

3R

S

n

� �
n

V

� �2
3

� �
n
�5=3
0 U0V

2=3
0

� exp
2

3R

S

n
� S0

n0

� �� �

¼ n

V

� �2
3 5

3
� 2

3R

S

n

� �� �
n
�5=3
0 U0V

2=3
0

� exp
2

3R

S

n
� S0

n0

� �� �
¼ lðS;V; nÞ: ð10Þ

It can be seen that p(S, V, n), T(S, V, n), and l(S, V, n)

are homogeneous functions of degree 0, since:
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pðkS; kV; knÞ ¼ 2

3
U0

kn

kV

� �5
3 V

2=3
0

n
5=3
0

exp
2

3R

kS

kn
� S0

n0

� �� �

¼ pðS;V ; nÞ ð11aÞ

TðkS; kV ; knÞ ¼ 2

3R
U0

kn

kV

� �2
3 V

2=3
0

n
5=3
0

exp
2

3R

kS

kn
� S0

n0

� �� �

¼ TðS;V ; nÞ ð11bÞ

lðkS;kV ;knÞ ¼ kn

kV

� �2
3 5

3
� 2

3R

kS

kn

� �� �
n
�5=3
0 U0V

2=3
0

� exp
2

3R

kS

kn
� S0

n0

� �� �
¼ lðS;V ;nÞ: ð11cÞ

Using Eqs. (6), (8), (9) and (10) it can be shown

explicitly that U is a homogeneous function of degree 1:

U S;V;nð Þ¼ oU

oS

� �
V ;n

Sþ oU

oV

� �
S;n

Vþ oU

on

� �
S;V

n

¼ 2

3R
U0

n

V

� �2
3V

2=3
0

n
5=3
0

exp
2

3R

S

n
�S0

n0

� �� �
S

�2

3
U0

n

V

� �5
3V

2=3
0

n
5=3
0

exp
2

3R

S

n
�S0

n0

� �� �
V

þ 5

3

n

V

� �2
3� 2

3R

S

n

� �
n

V

� �2
3

� �
U0

V
2=3
0

n
5=3
0

exp
2

3R

S

n
�S0

n0

� �� �
n

¼U0

V0

V

� �2
3 n

n0

� �5
3

exp
2

3R

S

n
�S0

n0

� �� �

¼ nU0

n

V

� �2
3V

2=3
0

n
5=3
0

exp
2

3R

S

n
�S0

n0

� �� �
: ð6aÞ

Equation (7) can also be written in the explicit form as:

dU ¼ oU

oS

� �
V ;n

dSþ oU

oV

� �
S;n

dV þ oU

on

� �
S;V

dn¼ TdS� pdV þldn

¼ 2

3R
U0

n

V

� �2
3 V

2=3
0

n
5=3
0

exp
2

3R

S

n
� S0

n0

� �� �
dS

� 2

3
U0

n

V

� �5
3 V

2=3
0

n
5=3
0

exp
2

3R

S

n
� S0

n0

� �� �
dV

þ 5

3

n

V

� �2
3� 2

3R

S

n

� �
n

V

� �2
3

� �
n
�5=3
0 U0V

2=3
0

� exp
2

3R

S

n
� S0

n0

� �� �
dn ð7aÞ

Equations (8)–(10) enable one to construct the equations

of state of the ideal gas, that is:

p � V ¼ 2

3
U0

n

V

� �5
3 V

2=3
0

n
5=3
0

exp
2

3R

S

n
� S0

n0

� �� �
� V

¼ 2

3
U0

n

n0

� �5
3 V0

V

� �2
3

exp
2

3R

S

n
� S0

n0

� �� �
; ð12Þ

on the other hand

n � R � T ¼ nR
2

3R
U0

n

V

� �2
3 V

2=3
0

n
5=3
0

exp
2

3R

S

n
� S0

n0

� �� �
; ð13Þ

consequently,

p � V ¼ n � R � T: ð14Þ

By comparing Eqs. (4) and (9) we can clearly see that:

U ¼ 3

2
n � R � T : ð15Þ

Similarly, in the reference state p0 ¼ 2
3
U0

V0
, T0 ¼ 2

3R
U0

n0
,

therefore

p0 � V0 ¼ n0 � R � T0: ð14aÞ

and

U0 ¼ 3

2
n0 � R � T0: ð15aÞ

Legendre transforms of the internal energy
function

We consider now the Legendre transforms of U(S, V, n)

with respect to some extensive variables. These new

functions are called thermodynamic potential functions (or

thermodynamic potentials): (a) the ‘‘free energy function’’,

‘‘Helmholtz free energy function’’ or ‘‘Helmholtz poten-

tial’’, F, is the Legendre transform of U with respect to S, it

is defined as:

F ¼ U � TS ð16aÞ

(b) the enthalpy function, H, is the Legendre transform of U

with respect to V, it is similarly defined as:

H ¼ U þ pV ð16bÞ

(c) the ‘‘Gibbs free energy function’’, ‘‘free enthalpy

function’’, or ‘‘Gibbs potential’’, G, defined as the Legen-

dre transform of the internal energy U with respect to the

entropy S and the volume V:

G ¼ U � TS þ pV ð16cÞ
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(d) the ‘‘grand potential function’’, ‘‘Landau free energy

function’’, ‘‘Kramers energy function’’ or ‘‘Landau poten-

tial’’, U, defined as the Legendre transform of the internal

energy U function with respect to the entropy S and the

chemical amount n:

U ¼ U � TS� ln ð16dÞ

The Helmholtz free energy function of an ideal

monatomic gas

The Helmholtz potential or the Helmholtz free energy, is the

partial Legendre transform (see [5, 6], and ‘‘Appendix 4’’) of

U that replaces the entropy by the temperature as the inde-

pendent variable. The internationally adopted symbol for the

Helmholtz potential isF. The natural variables of the Helmholtz

potential of the ideal gas are T, V, and n. That is, the functional

relation F(T, V, n) constitutes a fundamental relation.

The Legendre transformation of U

F ¼ U � TS

(see Eq. 16a) can be carried out as follows: The T(S, V, n)

function can be inverted, i.e., from Eq. (9):

S ¼ SðT ;V; nÞ ¼ n
3R

2
ln

3RT

2U0

n

V

� ��2
3 V

�2=3
0

n
�5=3
0

" #
þ n

S0

n0

ð17Þ

By using Eqs. (4) and (16a), the Legendre transform of

U with respect to S can be written as:

FðT ;V ;nÞ¼U�TS ¼ nU0

n

V

� �2
3V

2=3
0

n
5=3
0

exp
2

3R

S

n
�S0

n0

� �� �

�TS ¼ nU0

n

V

� �2
3V

2=3
0

n
5=3
0

�exp
2

3R

n3R
2

ln 3RT
2U0

n
V

� 	�2
3V

�2=3

0

n
�5=3

0

� �
þnS0

n0

n
�S0

n0

0
BB@

1
CCA

2
664

3
775

�T n
3R

2
ln

3RT

2U0

n

V

� ��2
3V

�2=3
0

n
�5=3
0

" #
þn

S0

n0

 !
ð18aÞ

Thus

F T ;V; nð Þ ¼ 3

2
nRT 1 � 2S0

3Rn0

� ln
3RT

2U0

V

n

� �2
3 n

5=3
0

V
2=3
0

" # !

ð18Þ

or by eliminating U0 in Eq. (18) with the help of Eqs. (14a)

and (15a):

F T ;V; nð Þ ¼ 3

2
nRT 1 � 2S0

3Rn0

� ln
T

T0

V

V0

� �2
3 n0

n

� �2
3

" # !
:

ð18bÞ

It can be clearly seen that at constant temperature

F(T, V, n) is a homogeneous function of degree one (see

‘‘Appendix 2’’) in the variables V and n, since

F T ; kV ; knð Þ ¼ 3

2
knRT 1 � 2S0

3Rn0

� ln
3RT

2U0

kV

kn

� �2
3n

5=3
0

V
2=3
0

" # !

¼ kF T ;V ; nð Þ

More precisely: the function F(T, V, n) is partly homo-

geneous of degree one in terms of the variables V and

n (‘‘Appendix 2’’).

We can note here that the chemical potential:

l T ;V; nð Þ ¼ oF

on

� �
T ;V

¼ 5

2
RT � TS0

n0

� 3

2
RT ln

3RT

2U0

V

n

� �2
3n

5=3
0

V
2=3
0

" #

can also be expressed as:

l T ;V; nð Þ ¼ oF

on

� �
T ;V

¼ F

n
þ RT :

The enthalpy function of an ideal monatomic gas

The enthalpy function is the partial Legendre transform

(see [5, 6] and ‘‘Appendix 4’’) of U that replaces the vol-

ume by the pressure as the independent variable. The

internationally adopted symbol for enthalpy is H. The

natural variables of the enthalpy are S, p, and n, that is,

H = H(S, p, n). The Legendre transformation of U.

H ¼ U þ pV

(see Eq. 16b) can be carried out as follows:

From Eq. (8):

V ¼ VðS; p; nÞ

¼ 2

3

� �3=5

U
3=5
0 p�3=5 n

n0

V
2=5
0 � exp

2

3R

S

n
� S0

n0

� �� �
: ð19Þ

By using Eqs. (4) and (19), the Legendre transform of U

with respect to V can be written as:

HðS; p; nÞ ¼ n5=3U0

V
2=3
0

n
5=3
0

exp
2

3R

S

n
� S0

n0

� �� �

� 2

3

� ��2=5

U
�2=5
0 p2=5 n

n0

� ��2=3

V
�4=15
0

� exp � 4

15R

S

n
� S0

n0

� �� �
þ p � 2

3

� �3=5

� U
3=5
0 p�3=5 n

n0

V
2=5
0 � exp

2

5R

S

n
� S0

n0

� �� �

ð20aÞ
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Thus the enthalpy function the ideal monatomic gas can

be given in the explicit form as.

HðS; p; nÞ ¼ 5

22=5 � 33=5

n

n0

U
3=5
0 p2=5V

2=5
0

� exp
2

5R

S

n
� S0

n0

� �� �
: ð20Þ

On the other hand:

TðS; p; nÞ ¼ oH

oS

� �
p;n

¼ 2=3ð Þ3=5

n0R
U

3=5
0 p2=5V

2=5
0 � exp

2

5R

S

n
� S0

n0

� �� �
:

ð21Þ

By comparing Eqs. (20) and (21) we get

HðS; p; nÞ ¼ 5

2
nRT : ð22Þ

It can be noted that at constant pressure H(S, p, n) is a

partly homogeneous function, i.e., a homogeneous function

of degree one (see ‘‘Appendix 2’’) in the variables V and n,

since at constant p

HðkS; p; knÞ ¼ 5

22=5 � 33=5

kn

n0

U
3=5
0 p2=5V

2=5
0

� exp
2

5R

kS

kn
� S0

n0

� �� �

¼ kHðS; p; nÞ

The Gibbs free energy of an ideal monatomic gas

The ‘‘Gibbs free energy’’, or Gibbs potential, is the (dou-

ble) Legendre transform of the internal energy U with

respect to the entropy S and the volume V (see Eq. 16c)

G ¼ U � TS þ pV :

From Eqs. (8) and (9) we get:

V T ; p; nð Þ ¼ nRT

p
ð23Þ

and

S T ; p; nð Þ ¼ 3

2
nR ln

3

2U0

� n0RTð Þ5=3

pV0ð Þ2=3

" #
þ nS0

n0

: ð24Þ

Thus, by taking into account that V = V (T, p, n) and

S = S (T, p, n):

G T;p;nð Þ¼nU0

n

V

� �2
3V

2=3
0

n
5=3
0

exp
2

3R

S

n
�S0

n0

� �� �

�T
3

2
nR ln

3

2U0

� n0RTð Þ5=3

pV0ð Þ2=3

" #
þnS0

n0

 !
þp

nRT

p

¼5

2
nRT 1� 2S0

5n0R
�3

5
ln

3

2

ðn0RTÞ5=3

U0V
2=3
0

p�2=3

" # !

ð25aÞ

that is

G T ; p; nð Þ ¼ 5

2
nRT 1 � 2S0

5n0R
� 3

5
ln

3

2

ðn0RTÞ5=3

U0V
2=3
0

p�2=3

" # !

ð25Þ

or by taking into account Eqs. (14a) and (15a):

G T ; p; nð Þ ¼ 5

2
nRT 1 � 2S0

5n0R
� 3

5
ln

T

T0

� �5=3
p0

p

� �2=3
" # !

:

ð25bÞ

Note, that there is apparently a small algebraic mistake

in the relevant expression for G given in [7, p. 64].

Alternatively, the Gibbs free energy function can be

obtained as:

G ¼ F þ pV

or

G ¼ H � TS

In the first case, by using Eqs. (18), (23) and (24) we

obtain that

G T ;p;nð Þ¼ 3

2
nRT 1� 2S0

3Rn0

� ln
3RT

2U0

V

n

� �2
3n

5=3
0

V
2=3
0

" # !
þpV

¼ 3

2
nRT 1� 2S0

3Rn0

� ln
3RT

2U0

nRT

np

� �2
3n

5=3
0

V
2=3
0

" # !
þp �nRT

p

¼ 5

2
nRT 1� 2S0

5n0R
�3

5
ln

3

2

ðn0RTÞ5=3

U0V
2=3
0

p�2=3

" # !
;

ð25cÞ

and in the second case we can obtain Eq. (25) from

Eqs. (20), (23) and (24).

We note here that
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lðT ;p;nÞ ¼ oGðT ;p;nÞ
on

� �
T ;p

¼ 5

2
RT 1� 2S0

5n0R
� 3

5
ln

3

2

ðn0RTÞ5=3

U0V
2=3
0

p�2=3

" # !

¼GðT ;p;nÞ
n

ð26Þ

and l is independent of n. The same conclusion also fol-

lows from the fact, that G (T, p, n) is a homogeneous

function of degree one with respect to n (see ‘‘Appendix

2’’, especially Eq. (60); in order to be more precise: the

function G is partly homogeneous of degree one in terms of

the variable n):

GðT;p;knÞ¼ 5

22=5 �33=5

kn

n0

U
3=5
0 p2=5V

2=5
0

� exp
2

5R

kS

kn
�S0

n0

� �� �
�TS

¼ 5

2
knRT 1� 2S0

5n0R
�3

5
ln

3

2

ðn0RTÞ5=3

U0V
2=3
0

p�2=3

" # !

¼ kGðT ;p;nÞ:

The grand potential function

of an ideal monatomic gas

The ‘‘grand potential function’’ is the (double) Legendre

transform of the internal energy U with respect to the

entropy S and the volume chemical amount n (see Eq. 16d)

U ¼ U � TS� ln:

From Eqs. (9) and (10) we get:

nðT ;V ; lÞ ¼ V

V0

3

2

� �3=2

n0

n0RT

U0

� �3=2

exp
l
RT

þ S0

n0R
� 5

2

� �

ð27Þ

and

SðT ;V ; lÞ ¼ V

V0

3

2

� �3=2

n0

n0RT

U0

� �3=2
5

2
R� l

T

� �

� exp
l
RT

þ S0

n0R
� 5

2

� �
: ð28Þ

The result of the double Legendre transformation of

U (S, V, n) with respect to S and n is:

UðT ;V ; lÞ ¼ � V

V0

3

2

� �3=2
n0RTð Þ5=2

U
3=2
0

� exp
l
RT

þ S0

n0R
� 5

2

� �

ð29Þ

We can easily prove that U (T, V, l) is a homogeneous

function of degree one with respect to V.

On the other hand, by introducing n (T, V, l) and

S (T, V, l) [see Eqs. (27) and (28)] into Eq. (8), we find

that the pressure p can be expressed as follows:

pðT ;V ; lÞ ¼ 3

2

� �3=2
n0RTð Þ5=2

V0U
3=2
0

� exp
l
RT

þ S0

n0R
� 5

2

� �

ð30Þ

From Eqs. (29) and (30) we can also see that p is inde-

pendent of V, and

pðT ;V ; lÞ ¼ � oUðT ;V; lÞ
oV

� �
T ;p

¼ �UðT;V ; lÞ
V

: ð31Þ

We note here that functions like U (T, V, l) are some-

times called ‘‘mechanical work functions’’. In statistical

mechanics, it is often referred to as ‘‘grand canonical

potential’’.

Other Legendre transforms
of the U(S, V, n) function

Other possible Legendre transforms of the internal energy

function U(S, V, n), which are used only infrequently and

which consequently are unnamed, are:

UðS;V ; lÞ ¼ U � ln ð32Þ

and

UðS; p; lÞ ¼ U � TS� ln: ð33Þ

It is to be remarked here, however, that in these cases the

equations for the inversions appear to involve the vari-

ables to be solved for in an essentially non-algebraic

way.

The ‘‘complete’’ Legendre transform of U(S, V, n) is

U(T, p, l). The fact that U(S, V, n) is a homogeneous

function of degree one with respect to all of its arguments

causes this latter function to vanish identically. For:

UðT ; p; lÞ ¼ U � TSþ pV � ln ð34Þ

which, by the Euler relation (see ‘‘Appendix 3’’), is iden-

tically zero, i.e.,

UðT ; p; lÞ � 0: ð35Þ

It should be stressed, however, that the above identity is

valid only for homogeneous functions of degree one. For

example, with fx ¼ of
ox
¼ ey, fy ¼ of

oy
¼ xey, x ¼ fy

fx
, and

y = ln fx, respectively, the (double) Legendre transform of

the function.

f ðx; yÞ ¼ x � ey ð36Þ

can be expressed as:
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gðfx; fyÞ ¼
fy

fx
� fx �

fy

fx
� fx � fy

ln fx ¼ �fy ln fx 6¼ 0:

ð37Þ

Some notes concerning the derivatives
of the thermodynamic potential functions

The temperature, pressure, and the chemical potential are

partial derivatives of functions of S, V, and n and conse-

quently are also functions of S, V and n. We thus have a set

of functional relationships (see Eqs. 8–10):

p ¼ pðS;V ; nÞ ð8aÞ
T ¼ TðS;V ; nÞ ð9aÞ
l ¼ lðS;V; nÞ: ð10aÞ

The expressions for p, T and l can be obtained from the

other thermodynamic potential functions by partial

derivation.

For example, the chemical potential functions can be

derived from the thermodynamic potential functions by

taking partial derivatives of the functions with respect to

the chemical amount n, and can be written as:

lðS;V ; nÞ ¼ oU

on

� �
S;V

¼ n

V

� �2
3 5

3
� 2

3R

S

n

� �� �
n
�5=3
0 U0V

2=3
0

� exp
2

3R

S

n
� S0

n0

� �� �
; ð38Þ

l T ;V; nð Þ ¼ oF

on

� �
T ;V

¼ 5

2
RT � TS0

n0

� 3

2
RT ln

3RT

2U0

V

n

� �2
3 n

5=3
0

V
2=3
0

" #
;

ð39Þ

l S; p; nð Þ ¼ oH

on

� �
S;p

¼ 5

22=5 � 33=5
1 � 2

5R

S

n

� �� �
U

3=5
0

n0

p2=5V
2=5
0

� exp
2

5R

S

n
� S0

n0

� �� �
; ð40Þ

lðT ; p; nÞ ¼ oG

on

� �
T ;p

¼ 5

2
RT � TS0

n0

� 5

3
RT ln

3

2

ðn0RTÞ5=3

U0V
2=3
0

p�2=3

" #
;

ð41Þ

that is the chemical potential functions are defined by

‘‘different equations’’.

On the other hand, it follows from the properties of

fundamental relations that for a given set of the extensive

variables (S1, V1, n1), i.e., in a given state, the value of l is

unambiguously determined (together with the values of the

other intensive variables). Consequently

l ðS1;V1; n1Þ ¼ l ðT1;V1; n1Þ ¼ l ðS1; p1; n1Þ
¼ l ðT1; p1; n1Þ: ð42Þ

This can be easily proved by substituting the relevant

expressions of T and p into Eqs. (39)–(41). (It is obvious

that equivalent relationships exist for the relevant T and

p functions as well).

The above example show that there is a difference in

meaning between a function f (x) and the value of the

function at the point x, that is the ‘‘function’’ and the

‘‘function value’’ are two distinct concepts. In classical

mathematics there has been no need to introduce separate

symbols for those concepts. In certain branches of mathe-

matics and in physics, however, this distinction becomes

absolutely necessary [8]. A rigorous distinction may seem

subtle in thermodynamics, but it is quite fundamental,

because confusing the two concepts can lead to a number

of errors and misinterpretations [9].

Concluding remarks

The fundamental functions in thermodynamics (U(S, V,

n 1,…, nm , …) or S(U, V, n 1 ,…, nm,…)) are probably the

most fundamental but not the most practical relations of

thermodynamics. In many situations, the variables used in

these expressions are not the ones controlled or measured

in practice. For instance, we cannot measure the entropy

(or the internal energy) directly, so that it must be calcu-

lated in terms of ‘‘measurable’’ (‘‘controllable’’ or ‘‘labo-

ratory’’) variables, which are, e.g., temperature, pressure,

volume, chemical amount, density, etc. It is well known

that with the help of Legendre transformations, funda-

mental equations can be transformed with conservation of

their fundamental nature, i.e., the property that they contain

all information about the thermodynamic properties of the

system. Nevertheless, some familiarity with basic mathe-

matical concepts is necessary for the calculations.

The internal energy function of a simple ideal gas is

probably the simplest example of a fundamental function

(fundamental relation) which can be given in an explicit

form. Due to its properties, this function can be effectively

used to study and demonstrate the application of important

mathematical concepts (e.g., the theory of homogeneous

functions and partly homogeneous functions, Euler’s the-

orem, and the Legendre transformation) to real thermody-

namic problems.
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Appendix 1

The derivation of the entropy fundamental equation

of a simple ideal gas

A ‘‘simple’’ ideal gas is characterized by the equations:

U ¼ cnRT ; ð43Þ

and

pV ¼ nRT ; ð44Þ

where c is a constant (e.g., for a ‘‘monatomic ideal gas’’

c = 3/2), n is the (chemical) amount of the substance, p is

the pressure, V is the volume, T is the temperature, and R is

the ‘‘universal’’ gas constant, respectively.

We can rewrite the above equations as:

1

T
¼ cR

n

U
¼ cR

u
; ð45Þ

and

p

T
¼ R

n

V
¼ R

v
: ð46Þ

The differential form of the entropy based fundamental

equation is

dS ¼ 1

T
dU þ p

T
dV �

X
i

li
T

dni; ð47Þ

and the integrated form of Eq. (47) can be written as (see

Euler’s theorem for homogeneous functions, Appendix 3)

S ¼ 1

T
U þ p

T
V �

X
i

li
T
ni: ð48Þ

The entropy-based Gibbs–Duhem equation follows

immediately from Eq. (48):

U d
1

T
þ Vd

p

T
�
X
i

ni d
li
T
¼ 0; ð49Þ

and for a one-component system:

U d
1

T
þ Vd

p

T
� nd

l
T
¼ 0: ð50Þ

Dividing Eq. (50) by the amount of substance n and

rearranging, we get

d
l
T
¼ ud

1

T
þ vd

p

T
: ð51Þ

Since d 1
T
¼

d 1
T

du

� �
du and d p

T
¼

d p
T

dv

� �
dv, with

Eqs. (45), (46) we obtain:

d
l
T
¼ u � cR

u2

� �
duþ v � R

v2

� �
dv

¼ �cR
du

u
� R

dv

v

ð52Þ

The first term on the right hand side of (52) is a function

of only u, the second term is a function of only v, therefore

we can integrate the first term only with respect to u and

the second one only with respect to v:

Zl=T

l=Tð Þ0

d
l
T
¼ �cR

Zu

u0

du

u
� R

Zv

v0

dv

v
; ð53Þ

that is

l
T
¼ �cR ln

u

u0

� R ln
v

v0

þ l
T

� �
0
: ð54Þ

In Eqs. (53) and (54) u0 and v0 are the parameters of a

fixed reference state, and (l/T)0 arises as an undetermined

constant of integration.

By substituting 1/T = cR/u, p/T = R/v, and l/T from

Eqs. (45), (46) and (53), respectively, into Eq. (48) we

have:

S ¼ 1

T
U þ p

T
V � l

T
n

¼ cR

u
U þ R

v
V þ cnR ln

u

u0

þ nR ln
v

v0

� n
l
T

� �
0
: ð55Þ

Since U=u ¼ V=v ¼ n;
u

u0

¼ U

n

n0

U0

, and
v

v0

¼ V

n

n0

V0

Eq. (55) can be write in terms of extensive variables:

S ¼ ncR þ nRþ cnR ln
n0U

U0n
þ nR ln

n0V

V0n

� n
l
T

� �
0
¼ ðcþ 1ÞnR� n

l
T

� �
0

þ nR ln
U

U0

� �c
V

V0

n0

n

� �cþ1
� �

; ð56Þ

or by introducing

S0 ¼ S0 U0;V0; n0ð Þ ¼ n0 ðcþ 1ÞR� l
T

� �
0

� �
; ð57Þ

i.e., the entropy in the reference state, we arrive at the

entropy fundamental equation of the simple ideal gas

S ¼ n

n0

S0 þ nR ln
U

U0

� �c
V

V0

� �
n0

n

� �cþ1
� �

ð58Þ

or
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S ¼ ns0 þ nR ln
U

U0

� �c
V

V0

� �
n

n0

� ��ðcþ1Þ
" #

: ð59Þ

Appendix 2

Homogeneous functions, partly homogeneous

functions

Definition

A homogeneous function is a function of one or several

variables that satisfies the following condition: when all

independent variables of a function are simultaneously

multiplied by the same (arbitrary) factor, the value of the

function is multiplied by some power of this factor. That is,

if:

f kx1; kx2; . . .; kxmð Þ ¼ knf x1; x2; . . .; xmð Þ ð60Þ

for all k[ 0, then f is said to be a homogeneous function of

degree n. The degree n can take on any value (positive,

negative, or zero). A function f is linearly homogenous if it

is homogeneous of degree 1.

If for a function f the equation

f kx1; . . .; kxm; y1; . . .; ywð Þ ¼ knf x1; . . .; xm; y1; . . .; ywð Þ
ð61Þ

is true then we say that this function is homogeneous of

degree n in the variables x1, x2, …, xm. Such functions are

called partly (or partially) homogeneous functions

[5, 6, 10]. A function f is called ‘‘partly homogeneous’’ of

degree 1 in terms of m among m ? w variables if

f kx1; . . .; kxm; y1; . . .; ywð Þ ¼ kf x1; . . .; xm; y1; . . .; ywð Þ
ð62Þ

i.e., the function f is homogeneous of degree one with

respect to certain variables (x1, x2, …, xm), but not homo-

geneous with respect to all of the variables. These func-

tions are important as they are frequently encountered in

thermodynamics. For more details see, e.g., [5, 6, 11].

Remark: It can be shown [6] that if f (x1, x2, …, xm) is a

homogeneous function of degree n, it can be represented by

f ¼ xn1g
x2

x1

; . . .;
xm

x1

� �
ð63Þ

with some function g. Since, conversely, every f function

formed by means of an appropriate function g of m-1

variables satisfies the condition of homogeneity, the

expression (63) represents the totality of homogeneous

functions of degree n.

Appendix 3

Euler’s theorem

Euler’s theorem states that, the differentiable function f of

m variables is homogeneous of degree n then the following

identity holds

nf x1; x2; . . .; xmð Þ ¼
Xm
i¼1

xi
of

oxi
: ð64Þ

It can be shown that the converse theorem also holds, that

is if the function f of the real variables x1, x2, …, xm sat-

isfies the identity (64), then the function f is homogeneous

of degree n. (see Refs. [6, 12] for more details).

Appendix 4

Legendre transformation

Let f (x1, x2,…,xm) an arbitrary analytic function of vari-

ables x1, x2,…,xm. The differential of f is:

df ¼ of

ox1

dx1 þ
of

ox2

dx2 þ � � � þ of

oxm
dxm

¼ p1dx1 þ p2dx2 þ � � � þ pmdxm: ð65Þ

Consider a new function g of the variables p1 and x2, x3,...,

xm:

gðp1; x2; . . .; xmÞ ¼ f x1ðp1Þ; x2; . . .; xmð Þ � p1x1ðp1Þ ; ð66Þ

where p1 ¼ o f
o x1

. A necessary condition is the existence of a

one to one relation between p1 and x1; that is, the function

p1(x1, x2,...,xm) can be inverted to give x1(p1). (This means

that p1 is bijective). (Note, that the transformation (66) is

often called the ‘‘negative Legendre transform’’, and the

Legendre transform is then defined as: g(p1, x2,…,xm) =

p1x1(p1) - f(x1(p1), x2,…,xm). For more details see Refs.

[1, 2, 6, 13, 14]).
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