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While an ordinary Fermi sea is perturbatively robust to interactions, the paradigmatic composite-fermion
(CF) Fermi sea arises as a nonperturbative consequence of emergent gauge fields in a system where there
was no Fermi sea to begin with. A mean-field picture suggests two Fermi seas, of composite fermions made
from electrons or holes in the lowest Landau level, which occupy different areas away from half filling and
thus appear to represent distinct states. Using the microscopic theory of composite fermions, which satisfies
particle-hole symmetry in the lowest Landau level to an excellent approximation, we show that the Fermi
wave vectors at filling factors ν and 1 − ν are equal when expressed in units of the inverse magnetic length,
and are generally consistent with the experimental findings of Kamburov et al. [Phys. Rev. Lett. 113,
196801 (2014)]. Our calculations suggest that the area of the CF Fermi sea may slightly violate the
Luttinger area rule.
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A fundamental property of a Landau Fermi liquid is
captured by Luttinger’s theorem [1], according to which the
volume occupied by the Fermi sea, appropriately defined,
remains invariantwhen the interaction is switched on, so long
as no phase boundary is crossed. Aviolation of this theorem
signifies non-Fermi liquid behavior, which has motivated
investigations [2–7] of its applicability for various strongly
correlated systems, such as high-temperature superconduc-
tors. This Letter investigates the Luttinger theorem for an
exotic emergent Fermi sea.
When two-dimensional electrons are subjected to a strong

magnetic field, they exhibit the phenomenon of the fractional
quantum Hall effect (FQHE) [8], which is understood in
terms of topological particles called composite fermions
[9–13]. Halperin, Lee, and Read [11] and Kalmeyer and
Zhang [14] theoretically predicted that at Landau level (LL)
filling factor ν ¼ 1=2, the externalmagnetic field is canceled,
in a mean-field (MF) approximation, by the emergent gauge
field carried by composite fermions, and they form a Fermi
sea. The composite-fermion (CF) Fermi sea is special in the
following sense. Ordinarily, we begin with the perfect Fermi
sea of noninteracting fermions and then ask how interactions
degrade or destroy it. In contrast, interactions are fully
responsible for creating the CF Fermi sea (CFFS) in a system
of electrons confined to the lowest LL (LLL) where,
originally, there was no Fermi sea and, in fact, no kinetic
energy and no composite fermions. The very existence of the
CFFS thus is a manifestation of strong correlations. The
essential validity of the CFFS has been confirmed in
extensive detail in many experiments [15–23], and it also
dovetails with the prominently observed sequences of
fractions at ν¼ n=ð2n�1Þ [9].

Kamburov et al. [24] have recently made accurate
measurements of the CF Fermi wave vector through
commensurability effects in the presence of a periodic
modulation. They have observed more commensurability
oscillations than before and thus provided the most detailed
confirmation of the CFFS state to date. Furthermore, the
unprecedented accuracy of their measurement has revealed
an intriguing puzzle. For electrons confined to the LLL, one
can take two exactly equivalent starting points: One can
define the problem in terms of either electrons at ν or holes
at 1 − ν. One can then go ahead and composite fermionize
either electrons or holes to produce what we will label eCFs
or hCFs, which experience an effective magnetic field given
by B� ¼ B − 2ρϕ0, where ϕ0 ¼ hc=e and ρ is the density
of composite fermions. (All CF quantities are marked by an
asterisk.) For ν ≠ 1=2 the eCFs and hCFs have different
densities, producing, in the MF description, different Fermi
wave vectors for the fully spin-polarized CFFS state:

MF for eCFFS∶ k�F ¼
ffiffiffiffiffiffiffiffiffiffi
4πρe

p
↔ k�Fl ¼

ffiffiffiffiffi
2ν

p
;

MF for hCFFS∶ k�F ¼
ffiffiffiffiffiffiffiffiffiffi
4πρh

p
↔ k�Fl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − νÞ

p
;

where l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p
is the magnetic length and the

electron and hole densities are given by ρe ¼ ρν ¼
ν=ð2πl2Þ and ρh ¼ ρ1−ν ¼ ð1 − νÞ=ð2πl2Þ, respectively.
The CFFS thus appears to have a split personality. This
raises many interesting conceptual questions. At a given ν,
do the eCFFS and hCFFS represent two distinct states, or
are they dual descriptions of the same state? If the former is
true, then which of these two, if either, occurs in real
systems? If the latter is true, how does one reconcile the
seemingly incompatible consequences of the MF picture,
and how does one understand the violation of the Luttinger
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theorem for at least one of the two descriptions? In either
case, what is the role of particle-hole (p-h) symmetry in the
LLL? Finally, how do we understand the remarkable
finding of Kamburov et al. [24] that the measured value
of the CF Fermi wave vector is consistent with that
expected from the smaller Fermi sea, namely,
k�Fl ¼ min½ ffiffiffiffiffi

2ν
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − νÞp �?

These observations have motivated two striking theo-
retical proposals that lead to experimentally testable pre-
dictions. Son has proposed [25] that viewing the composite
fermion as a Dirac fermion allows a p-h symmetric
description of the FQHE and the CFFS. Barkeshli,
Mulligan, and Fisher [26] have taken the experimental
observations to imply that the eCFFS and the hCFFS are
distinct states of matter and a spontaneous breakdown of
p-h symmetry within the LLL selects one of them. Within
the Chern-Simons (CS) formulation of composite fermions
[10,11], the MF Fermi wave vector k�MF

F l is not expected to
change to all orders in a perturbative treatment of the
Coulomb and the gauge interactions, suggesting that the
eCFFS and hCFFS are perturbatively disconnected, i.e., are
topologically distinct, for any ν ≠ 1=2 and, by extension,
also for ν ¼ 1=2. The CS formulation, however, does not
implement the LLL constraint and hence does not satisfy
the p-h symmetry, as has been stressed elsewhere in the
literature [25,27].
We determine the CFFS area by using a different

theoretical formulation of the CF paradigm, namely, the
microscopic wave functions of composite fermions
[9,12,13,28]. This theory (i) is explicitly restricted to the
LLL, (ii) satisfies p-h symmetry, and (iii) does not assume,
a priori, any specific value for k�Fl. We show that k�Fl
defined from Friedel oscillations in the pair-correlation
function has the same value for states at ν and 1-ν related by
p-h symmetry. We explicitly calculate k�Fl for filling
factors in the vicinity of ν ¼ 1=2.
We define the Fermi wave vector through the Friedel

oscillations in the pair-correlation function, for which we
take the form [29]

gðrÞ ¼ 1þ Aðr
ffiffiffiffiffiffiffiffiffiffi
4πρe

p
Þ−α sinð2k�Frþ θÞ; ð1Þ

where A, α, k�F, and θ are fitting parameters. We denote the
particle coordinates by either rj or zj ¼ xj − iyj and set
l ¼ 1. This form is motivated by the observation that for
noninteracting fully spin-polarized fermions in two dimen-
sions at B ¼ 0, the oscillatory part of gðrÞ for large rkF is
given by ð4=πr3k3FÞ sinð2kFrÞ. Let us consider a wave
function ϕν for a uniform density state at filling factor ν. Its
pair-correlation function is given by

gνðr; r0Þ ¼ ρ−2ν hϕνjΨ̂†ðrÞΨ̂†ðr0ÞΨ̂ðr0ÞΨ̂ðrÞjϕνi; ð2Þ

ϕν ¼
1

N!

Z YN
j¼1

d2rjϕνðr1;…rNÞ
YN
k¼1

Ψ̂†ðrkÞj0i; ð3Þ

where ϕνðr1;…rNÞ is the real space wave function, Ψ̂ðrÞ ¼P∞
m¼0 ηmðrÞcm is the electron annihilation operator in the

LLL, and Ψ̂†ðrÞ is the corresponding electron creation
operator, with the single-particle LLL wave function
defined as ηm ¼ ð2π2mm!Þ−1=2zm exp½−jzj2=4�. We can
similarly define the pair-correlation function for electrons
at 1 − ν, with

ϕ1−ν ¼
1

N!

Z YN
j¼1

d2rjϕ�
νðr1;…rNÞ

YN
k¼1

Ψ̂ðrkÞj1i; ð4Þ

where j1i is the state with the LLL fully occupied.
Substituting into the expression for the pair-correlation
function and noting h1jfðcm;c†mÞj1i¼h0jfðcm→c†m;c

†
m→

cmÞj0i produces the relation

g1−νðr; r0Þ ¼ ρ−21−νhϕνjΨ̂ðrÞΨ̂ðr0ÞΨ̂†ðr0ÞΨ̂†ðrÞjϕνi: ð5Þ
In terms of the LLL projected delta function [30,31]

δ̄ðr; r0Þ ¼ 1

2π
exp

�
−
1

4
ðjr − r0j2 − zz0� þ z0z�Þ

�
; ð6Þ

which satisfies δ̄ðr; r0Þ ¼ ½δ̄ðr0; rÞ��, we have fΨ̂ðrÞ;
Ψ̂†ðr0Þg≡ δ̄ðr; r0Þ, hϕνjΨ̂†ðrÞΨ̂ðr0Þjϕνi ¼ νδ̄ðr0; rÞ, and
hϕνjΨ̂ðrÞΨ̂†ðr0Þjϕνi¼ð1−νÞδ̄ðr;r0Þ. Straightforward alge-
bra gives the relation (assuming thermodynamic limit and
translational invariance and setting r0 ¼ 0)

g1−νðrÞ ¼
ð1 − 2νÞð1 − e−r

2=2Þ þ ν2gνðrÞ
ð1 − νÞ2 ; ð7Þ

where we have assumed the same magnetic lengths for
ν and 1 − ν. For r ≫ 1, this reduces to g1−νðrÞ ¼
1þ ½ν=ð1 − νÞ�2½gνðrÞ − 1�. The important point is that
an oscillatory term sinð2k�FrÞ in gν implies identical
oscillatory behavior for g1−ν, indicating that the states at
ν and 1 − ν have the same k�Fl. The “exact” k

�
Fl is thus the

same at ν and 1 − ν and is independent of whether the
problem is formulated in terms of electrons or holes.
We next determine the value of k�Fl in a microscopic

calculation from the oscillations in gðrÞ following
Refs. [29,32]. Being an equal time correlation function,
gðrÞ can be evaluated from the knowledge of the micro-
scopic wave functions for the ground state in the vicinity of
ν ¼ 1=2. We concentrate on the fractions ν ¼ n=ð2n� 1Þ
which approach ν ¼ 1=2 in the limit of sufficiently large n.
The microscopic Jain wave functions for these states are
given by [9]

Ψn=ð2n�1Þ ¼ PLLL

YN
j<k¼1

ðzj − zkÞ2Φ�n; ð8Þ

where PLLL denotes LLL projection and Φn is the wave
function of n filled LLs, with Φ−n ¼ ½Φn��. At first it may
appear that the above-mentioned dichotomy is present also
in the microscopic theory of composite fermion, as we
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illustrate by considering the fraction ν ¼ ½ðnþ 1Þ=
ð2nþ 1Þ�. [Similar considerations apply to ν ¼ n=
ð2nþ 1Þ.] According to the CF theory, there are two ways
of constructing a FQHE state at this fraction: (i) As the
electron partner of the ν� ¼ n integer QHE (IQHE) of hCFs
in positive B�, with the wave function given by
Cp-hPLLL

Q
j<kðzj − zkÞ2Φn, where Cp-h represents p-h

transformation; or, (ii) as the ν� ¼ nþ 1 IQHE of eCFs
in a negative B�, with the wave function given by
PLLL

Q
j<kðzj − zkÞ2½Φnþ1��. A priori, these appear to

represent two distinct FQHE states, and one may ask
which one applies to the real system. However, explicit
evaluations [33,34] have demonstrated the nontrivial result
that these two descriptions represent the same state. They
predict identical quantum numbers for the ground state and
the excitations (see Supplemental Material [35]), and there
is an almost perfect overlap between the two wave
functions wherever it has been evaluated (e.g., for the
ten-particle 2=3 state, the two wave functions have overlaps
of 0.996 and 0.994 with the exact Coulomb state [33]). We
have evaluated the gðrÞ’s ofΨðnþ1Þ=ð2nþ1Þ andΨn=ð2nþ1Þ and
found them to be related by p-h symmetry to a very high
accuracy (see Supplemental Material [35]). The wave
functions Ψn=ð2n�1Þ produce, in the limit of n → ∞, the
same CFFS from either side, because ΦðB� ¼ 0Þ is real
[36]. Furthermore, Rezayi and Haldane [37] have directly
constructed the wave function for the CFFS on a torus and
found that, for N ¼ 16 particles, it has an overlap of 0.9994
with its hole conjugate and 0.9925 with the exact p-h
symmetric Coulomb ground state [37]. The degree to which
the microscopic wave functions of the CF theory satisfy the
p-h symmetry may seem surprising but is a by-product of
the fact that these are excellent approximations of the exact
Coulomb states in the LLL which satisfy p-h symmetry
exactly.
The understanding of FQHE at ν ¼ ðnþ 1Þ=ð2nþ 1Þ as

ν� ¼ nþ 1 IQHE of eCFs in a negative B� becomes
essential when we consider the spin degree of freedom,
because it is the only known way to explain the nonfully
spin-polarized FQHE states here, e.g., the spin singlet state
at ν ¼ 2=3. (Recall that, for spinful states, p-h symmetry
relates ν to 2 − ν.) Extensive experimental [38–50] and
theoretical [33,34,51–57] literature on spin phase
transitions has validated the explanation of the ν¼ðnþ1Þ=
ð2nþ1Þ as ν� ¼ nþ 1 IQHE of eCFs.
The validity of Ψn=ð2n�1Þ for the incompressible states

has been established by extensive numerical studies
[12,33,36,58–60]. We will make the assumption that
Ψn=ð2n�1Þ remain valid to arbitrarily high n, i.e., that the
compressible region around ν ¼ 1=2 consists of unresolved
IQHE states of composite fermions. We stress that we
cannot rule out the possibility that the eCFFS and hCFFS
are in reality topologically distinct, as proposed in
Ref. [26], and a spontaneous breaking of the p-h symmetry
selects one of them. This would happen, for example, if the

half filled ground state were unstable to CF pairing [61–64]
and eCFFS and hCFFS are the normal states of the
topologically distinct Moore-Read Pfaffian and anti-
Pfaffian paired-CF states [65–68]. Nonetheless, the pres-
ently known facts do admit the possibility of a p-h
symmetric CFFS, and our aim here is to deduce its
properties, so experiments may distinguish between the
different proposals.
We have calculated the pair-correlation function for ν ¼

n=ð2nþ 1Þ up to 7=15 using the Metropolis Monte Carlo
method. For technical reasons, we find it convenient to use
the standard spherical geometry [69]; see Supplemental
Material for details [35]. The results extrapolated to the
thermodynamic limit apply to the planar geometry of the
experiments. The spherical analogs of the above wave
functions, as well as the details of LLL projection, can be
found in the literature [12,70,71]. All wave functions
considered below have uniform density and are transla-
tionally invariant (i.e., have orbital angular momentum
L ¼ 0 on the sphere). The gðrÞ’s for the largest systems in
our study are shown in Fig. 1(a). For incompressible
systems the pair-correlation function is expected to decay
in a Gaussian manner in the limit of r → ∞, but there is a
range of intermediate r where it exhibits well-defined
oscillations from which a Fermi wave vector can be
extracted. In fitting gðrÞ to Eq. (1), we avoid very small
r (where short distance correlations are important) and very
large r (where curvature effects become non-negligible).
From the results for finite systems, we obtain the thermo-
dynamic limits for the k�Fl (see [35]). We find that very
large systems (N > 100) are needed for a satisfactory
thermodynamic extrapolation of k�Fl. The thermodynamic
limits are shown in Fig. 1(b). [We have assumed exact
p-h symmetry, which implies that the k�Fl at ν ¼
ðnþ 1Þ=ð2nþ 1Þ is the same as that at ν ¼ n=ð2nþ 1Þ.]
The range of k�Fl includes uncertainly in the fits [estimated
by linear and quadratic fitting in 1=N for gðrÞ] as well as
uncertainty due to the curvature of the spherical geometry
(estimated by considering fits with r chosen as the chord or
the arc distance). For reference, Fig. 1(b) also shows the
values k�MF

F l ¼ ffiffiffiffiffi
2ν

p
and k�MF

F l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − νÞp

as expected
from a MF picture for the eCFFS and hCFFS.
For ν ¼ 1=2, we have estimated k�Fl by an extrapolation,

in the spherical geometry, of filled shell CF systems at zero
effective flux [36] occurring at N ¼ n2. For technical
reasons, we are not able to go to systems with N > 81
(which requires filling the tenth Landau-like level of
composite fermions, where the numerics become unstable).
We have therefore also studied the CFFS in the torus
geometry [37,72,73], where we can go up to N ¼ 153, and
find that the results are consistent with our spherical results.
Results in the torus geometry are presented in [35].
For ν away from 1=2, our calculated k�Fl is close, but not

equal, to the smaller of
ffiffiffiffiffi
2ν

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − νÞp

. Both from
extrapolation of the results from the sequences n=ð2n� 1Þ
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and from calculations directly at ν ¼ 1=2, our calculations
suggest that the CFFS area at ν ¼ 1=2 slightly deviates
from the value expected from the Luttinger rule.
The physics of the CFFS at ν ¼ 3=2 is analogous to that

at ν ¼ 1=2 once the B dependence of the density of either
eCFs or hCFs in the spin-reversed LL is accounted for
[23,74]. Near ν ¼ 1=4, both n=ð4nþ 1Þ and n=ð4n − 1Þ
are understood only in terms of eCFs, and thus one expects
k�Fl ≈

ffiffiffiffiffi
2ν

p
(as opposed to k�Fl ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − νÞp

), as observed
experimentally [24,74] and also in our calculations [35].
Analogous consideration for the CFFS at ν ¼ 3=4 gives
k�Fl ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − νÞp

.
We next investigate how robust the CFFS area is to LL

mixing. LL mixing requires a formulation in terms of
electrons (rather than holes of the LLL), and the LLL
electronic wave functions in Eq. (8) can be used as a
starting point to address this issue [75]. A realistic treat-
ment of LL mixing is outside the scope of the current study,
but we have considered the “unprojected” Jain wave
functions Ψun

n=ð2n�1Þ ¼
Q

N
j<k¼1ðzj − zkÞ2Φ�n, which con-

tain some amplitude outside of the LLL [29,76]. Even
though they do not give a realistic account of LL mixing, it
is likely that they are adiabatically connected to the
projected wave functions (as explicitly demonstrated for
ν ¼ 2=5 [77]) and hence to the actual Coulomb ground
states. For these wave functions, the gðrÞ’s of ν ¼
n=ð2n − 1Þ and ν ¼ n=ð2nþ 1Þ are identical for a given

N when plotted in units of the sphere radius, which in the
thermodynamic limit implies the relation

ðk�unF lÞn=ð2n−1Þ ¼
�
2nþ 1

2n − 1

�
1=2

ðk�unF lÞn=ð2nþ1Þ: ð9Þ

The calculated values of k�unF l using the eCF description
(see Supplemental Material for details) are shown in Fig. 2.
Our calculations thus provide evidence that k�Fl depends on
LL mixing. Another approximate wave function with LL
mixing is the CS MF state ΨMF

n=ð2n�1Þ ¼
Q

N
j<k¼1½ðzj − zkÞ=

jzj − zkj�2Φ�nðB�Þ. Given that its gðrÞ coincides with that

for Φ�nðB�Þ, we get k�MF
F ¼ ffiffiffiffiffiffiffiffiffiffi

4πρe
p

, i.e., k�MF
F l ¼ ffiffiffiffiffi

2ν
p

for
all ν ¼ n=ð2n� 1Þ. For the unprojected or the CS-MF
wave functions, k�Fl does not obey particle-hole symmetry,
as expected in the presence of LL mixing.
In summary, we have shown that, within the microscopic

theory of composite fermions, it is valid to consider
electron- (or hole-) based composite fermions for ν <
1=2 as well as ν > 1=2. We have calculated the CF
Fermi wave vector in the vicinity of ν ¼ 1=2 and find that
it is closer, but not equal, to the smaller of

ffiffiffiffiffiffiffiffiffiffi
4πρe

p
andffiffiffiffiffiffiffiffiffiffi

4πρh
p

. In terms of electron-based composite fermions, this
implies that the Luttinger theorem is slightly (substantially)
violated for ν < 1=2 (ν > 1=2). At ν ¼ 1=2, our results
suggest, but do not conclusively demonstrate, that the k�F
differs slightly (by a few percent) from the value

ffiffiffiffiffiffiffiffiffiffi
4πρe

p
predicted by the Luttinger area rule. We also provide
evidence that k�F varies as a function of LL mixing.

FIG. 2 (color online). The same as in Fig. 1 but for the
unprojected wave functions Ψun

n=ð2n�1Þ. Also shown for reference

is k�MF
F l ¼ ffiffiffiffiffi

2ν
p

corresponding to the Chern-Simons mean-field
theory for eCFs.

FIG. 1 (color online). (a) Pair-correlation function gðrÞ as a
function of r=l, where r is the arc distance on the sphere. The
projected wave functions in Eq. (8) have been used for its
evaluation. The solid lines are fits using Eq. (1) for the initial
oscillations. For clarity, the curves (except for 5=11) have been
shifted up or down by multiples of 0.02. (b) The calculated
thermodynamic values of k�Fl as a function of ν. The mean-field
values

ffiffiffiffiffi
2ν

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − νÞp

are also shown for reference.
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Note added.—Since the completion of this work, several
other articles have appeared addressing the nature of the
CFFS and the role of p-h symmetry [78–82].
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