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Role of triplet states in geminal-based perturbation theory
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We show that to obtain accurate potential curves by perturbing geminal-type wave functions it
is insufficient to restrict the geminals to their singlet-coupled states. Including triplet excited
geminals to form 4-electron singlets via Serber coupling is essential to describe processes
involving simultaneous dissociation of two non-isolated single bonds.
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1. Introduction

The choice of an appropriate reference state for subsequent perturbative treatment
is a delicate question of current quantum chemistry. Many chemical processes re-
quire multi-reference states to form a qualitatively acceptable starting point. Multi-
reference quantum chemistry is therefore an actual and important field, and it is our
pleasure to highlight the work of Professor Sourav Pal in it (see e.g. Refs.[1–12]).
In cases where single-reference states are inappropriate, the theory of an-

tisymmetrized product of strongly orthogonal geminals offers an interesting
alternative[13–19]. This method is a generalization of the Hartree-Fock scheme
in the sense that the antisymmetrized one-electron orbitals used in the latter are
replaced by two-electron functions (geminals) :

|ΨAPSG⟩ = ψ†
1ψ

†
2 . . . ψ

†
N |vac⟩ (1)

where the geminals ψi can be expanded in orthogonal and mutually exclusive sub-
spaces of one-electron spin-orbitals µ, ν to ensure strong orthogonality:

ψ†
i =

(i)∑
µ<ν

Ci
µν a

†
µa

†
ν . (2)

Symbol (i) on the summation indicates the i-th subspace. In many applications
one restricts oneself to the Sz = 0 case, where the geminal is written in terms of
spatial orbitals as

ψq
i
†
=

(i)∑
mn

Ciq
mn a

†
mαa

†
nβ (3)
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where q labels the states of geminal i, and the expansion coefficients Ciq
mn are

obtained variationally, which is equivalent to solving the local Schrödinger equation∑
rs

(Ĥeff
i )mn,rs C

iq
rs = Eq

i C
iq
mn (4)

(for more details, see Ref.[20]. It is customary to use singlet coupled geminals in
which case coefficient matrices Ci are symmetric.
Geminals have been suggested for use already in the early days of quantum

chemistry[21–27], and were kept in a dormant state for some time. Geminal theory
is a special case of group function theory [28] and, as such it can be considered an
early forerunner of the approach presented here.
The advantage of geminal based approaches is that the dissociation of two-

electron bonds can be described correctly. The present renaissance of geminal
theories[29–42] is perhaps a consequence of the need of simple but flexible and
qualitatively correct reference states in multi-configuration theory.

2. Perturbing singlet geminals

We shall use the APSG wave function as a reference state, and aim to include
dynamical correlation perturbatively. As known, the results of perturbation the-
ory depend strongly on the partitioning applied. It was shown that the so-called
optimal partitioning[43, 44] of Rayleigh-Schrödinger perturbation theory recovers
the linearized coupled cluster method. For this reason, designation ’perturbation
theory’ and ’linearized coupled cluster’ is used interchangeably. Since the APSG
wave function constitutes a multi-configurational reference state, we work in the
spirit of Multireference Linearized Coupled Cluster (MR-LCC) theory[45–47] to
describe dynamical correlation.
We write the Schrödinger equation as

ĤeT̂ |APSG⟩ = EeT̂ |APSG⟩. (5)

An example for the cluster operator is

T̂ =
∑
i<j

ni∑
p

nj∑
q

tpqij ψ
+
ipψ

+
jqψ

−
j0ψ

−
i0, (6)

where p and q run over the excited states of geminals i and j respectively (ni is
the number of excited states of geminal i), and ψ+

ip and ψ+
jq refer to the excited

state creation operators of the corresponding geminal while ψ−
i0 and ψ−

j0 annihilate

ground-state geminals). The energy formula is given by

⟨APSG|e−T̂ ĤeT̂ |APSG⟩ = E (7)

Restricting to linearized coupled cluster approximation means a truncation of the
Baker-Campbell-Hausdorff expansion after the second term:

e−T̂ ĤeT̂ ≈ Ĥ + [Ĥ, T̂ ] (8)
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leading to the energy formula

E = ⟨APSG|Ĥ|APSG⟩+ ⟨APSG|[Ĥ, T̂ ]|APSG⟩. (9)

Here

T̂ =
∑
i<j

ni∑
p

nj∑
q

tpqij ψ
+
ipψ

+
jqψ

−
j0ψ

−
i0 =

∑
k

tkX̂k (10)

with straightforward notations for the geminal excitations X̂k = ψ+
ipψ

+
jqψ

−
j0ψ

−
i0 and

their amplitudes tk = tpqij .

Similarly to the above written dispersive-like excitations[14], cluster operators
for other types have to be considered, including those which transfer one or two
electrons between geminals.
To obtain the amplitude equations, we write

e−T̂ ĤeT̂ |APSG⟩ = E|APSG⟩. (11)

Projecting this equation with ⟨APSG|X̂†
j and linearizing again in the amplitudes

we get

⟨APSG|X̂†
j [T̂ , Ĥ]|APSG⟩ = ⟨APSG|X̂†

j Ĥ|APSG⟩. (12)

Substituting the expansion of the cluster operator, we obtain∑
i

⟨APSG|X̂†
j (X̂iĤ − ĤX̂i)|APSG⟩ti = ⟨APSG|X̂†

j Ĥ|APSG⟩ (13)

which is a linear system of equations of the shape

A t = b (14)

for the amplitudes t with straightforward notations.
When more bonds are involved in a dissociation process (or in case of multiple-

bond dissociation), the energy formula of Eq.(9) was found to perform well only
around equilibrium[14]. As Fig. 1. illustrates, a failure occurs at moderately
stretched geometry when elongating both OH bonds of H2O, and the error of
LCC corrected APSG is signifanctly increased in the dissociation limit.

3. Including triplet geminals in the reference

Instead of using merely singlet-coupled geminals with symmetric coefficients C
applied in Eq.(3), we may also allow for more general two-electron wave functions

|1S⟩ =
(i)∑
mn

1Ci
mn a

†
mαa

†
nβ (15)

3



June 19, 2015 Molecular Physics surjan

|3T 0⟩ =
(i)∑
mn

3Ci
mn a

†
mαa

†
nβ (16)

|3T ↑⟩ =
(i)∑

m<n

↑Ci
mn a

†
mαa

†
nα (17)

|3T ↓⟩ =
(i)∑

m<n

↓Ci
mn a

†
mβa

†
nβ (18)

Here the matrix of singlet coefficients 1Ci
mn is symmetric, that of Sz = 0 triplets

3Ci
mn is antisymmetric, and those of Sz ̸= 0 components are triangular to avoid

double counting of configurations.
For two geminals a and b, the singlet-coupled APSG wave function is constructed

with geminals of Eq.(15)

|ψI⟩ = |1S1
aSb⟩ . (19)

Triplet geminals of Eqs.(16)-(18) are coupled to a 4-electron singlet

|ψII⟩ =
1√
3

(
|3T 0

a
3T 0

b ⟩ − |3T ↑
a

3T ↓
b ⟩ − |3T ↓

a
3T ↑

b ⟩
)

(20)

with the appropriate Clebshes (cf. Serber-coupling[48]). Functions ψI and ψII are
considered to form a two-dimensional subspace. An improved reference state, de-
noted APSG-TT, is obtained as

|apsg-tt⟩ = cI |ψI⟩+ cII |ψII⟩ (21)

with cI and cII determined by diagonalizing the matrix of H formed in the two-
dimensional subspace, and using c2I + c2II = 1 for normalization. The MR-LCC
procedure based on the reference function of Eq.(21) is carried out in the manner
described in the previous section.

4. Illustration

We illustrate the role of triplet geminal states on the example of the symmetric
dissociation of water. The importance of triplets for this system was previously
emphasized by Li et al[49]. We use a simple split-shell basis set (6-31G) with the
oxygen core frozen and compare the results to full CI.
Fig. 1. shows absolute energy curves, while in Fig. 2. deviations from full-CI are

presented. Both figures illustrate well the message: the reference states APSG and
APSG-TT produce a potential curve with acceptable shapes, but lie rather far
from full CI. When perturbing these states with the MR-LCC approach, APSG-
LCC turns out to be useless the curve passing through a singularity, while the
APSG-TT+LCC results form a well-shaped potential curve approaching full CI
quite close.
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[14] T. Zoboki, Á. Szabados and P.R. Surján, J. Chem. Theory Comput. 9, 2602–2608 (2013).
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Figure 1. Potential curve for the symmetric dissociation of the water molecule. For notations, see text
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Figure 2. Relative energy differences wrt full CI for the symmetric dissociation of the water molecule. For
notations, see text
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