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u., 1111 Budapest, Hungary. E-mail: rathb@math.bme.hu

We modify the definition of Aldous’ multiplicative coalescent process [3] and introduce the
multiplicative coalescent with linear deletion (MCLD). A state of this process is a square-
summable decreasing sequence of cluster sizes. Pairs of clusters merge with a rate equal to the
product of their sizes and clusters are deleted with a rate linearly proportional to their size. We
prove that the MCLD is a Feller process. This result is a key ingredient in the description of
scaling limits of the evolution of component sizes of the mean field frozen percolation model [22]
and the so-called rigid representation of such scaling limits [19].
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1. Introduction

Let us define

ℓÓ
8 “ t m “ pm1,m2, . . . q : m1 ě m2 ě ¨ ¨ ¨ ě 0 u,

ℓ
Ó
2 “ t m P ℓÓ

8 :
8ÿ

i“1

m2
i ă 8u,

ℓ
Ó
0 “ t m P ℓÓ

8 : D i0 P N : mi “ 0 for any i ě i0 u.

For m,m1 P ℓ
Ó
2 one defines the distance

dpm,m1q “ }m ´ m1}2 “
˜ÿ

iě1

pmi ´ m1
iq2

¸1{2

. (1.1)

The metric space
´
ℓ

Ó
2, dp¨, ¨q

¯
is complete and separable.

The multiplicative coalescent process (or briefly MC process), defined in [3, Section

1.5], is a continuous-time Markov process mt, t ě 0 with state space ℓ
Ó
2. The state mt

represents the ordered sequence of sizes of components, where two components of size
mi and mj merge with rate mi ¨ mj . By [3, Proposition 5], the multiplicative coalescent
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2 B. Ráth

process has the Feller property with respect to the metric dp¨, ¨q on ℓ
Ó
2. On the other

hand, if m0 P ℓ
Ó
8zℓÓ

2, then all of the components instantaneously coagulate and form one
component with infinite mass, see [18, Section 2.1]. In Section 2, we collect the basic
results about MC relevant for our study.

Let λ P R`. For any m P ℓ
Ó
2 we want to define a continuous time Markov process mt

with state space ℓ
Ó
2 where m0 “ m and mt represents the ordered sequence of sizes of

components of a coagulation-deletion process at time t. We want the dynamics of the
process mt, t ě 0 to satisfy

(i) two components of size mi and mj merge with rate mi ¨ mj ,
(ii) a component of size mi is deleted with rate λ ¨ mi.

(1.2)

We are going to call such a process a multiplicative coalescent with linear deletion with
deletion rate λ, and briefly denote it by MCLDpλq.

If m P ℓ
Ó
0 then the MCLDpλq process obviously exists and mt P ℓ

Ó
0 for any t ě 0.

In fact, if m P ℓ
Ó
8 with

ř8
i“1 mi ă 8 then the definition of MCLDpλq is still quite

simple because the time between consecutive coalescences/deletions is always positive.
On the other hand, for initial conditions with infinite total mass, the set of times when
a coalescence or deletion occurs will be dense in R`, and it is not a priori clear that a
well-defined stochastic process satisfying (1.2) exists (see Remark 1.4 below for related
non-existence results).

In Section 3 we will give a graphical construction of the process mt with initial state
m P ℓ

Ó
2 and deletion rate λ. This construction of MCLDpλq is similar to, but not as simple

as the graphical construction of the MC given in [3, Section 1.5] because MCLDpλq lacks
the monotonicity properties of MC, see Remark 1.3 below. In Section 3 we also prove the
following proposition.

Proposition 1.1. For any m P ℓ
Ó
2 our graphical construction of MCLDpλq (see Section

3) almost surely gives a function t ÞÑ mt with m0 “ m which is càdlàg with respect to
the dp¨, ¨q-metric.

The main result of this paper is that our construction indeed gives rise to a well-
behaved continuous-time Markov process on ℓ

Ó
2:

Theorem 1.2 (Feller property). Let mpnq, n P N be a convergent sequence of elements

of ℓÓ
2 with limit mp8q, i.e., limnÑ8 dpmpnq,mp8qq “ 0. For any t P R` and n P N` Yt8u,

denote by m
pnq
t the MCLDpλq process with initial condition mpnq at time t. For any t ě 0

we have
m

pnq
t

dÝÑ m
p8q
t , n Ñ 8, (1.3)

where
dÝÑ denotes convergence in distribution of random variables on the Polish space

pℓÓ
2, dp¨, ¨qq.
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Feller property of the MCLD 3

We will prove Theorem 1.2 in Section 4 using an argument that involves truncation
and coupling.

Remark 1.3. The reason why the proof of the Feller property for MCLDpλq is more
involved than the proof of the Feller property for MC (c.f. the proof of [3, Proposition 5] in
[3, Section 4.2]) is that the natural graphical construction of MCLDpλq is not monotone:

If we obtain m1
t, t ě 0 from mt, t ě 0 by inserting an extra deletion event at time

t1 then it might happen that this deletion prevents later coagulations and deletions, so
that m1

t2
has more/bigger components than mt2 for some t2 ą t1. Similarly, insertion

of an extra coagulation event at some time might lead to the deletion of more/bigger
components and thus create a state with fewer/smaller components at a later time.

1.1. Motivation, related results

Our reason for developing the theory of MCLDpλq on the state space ℓ
Ó
2 is that we want

to understand the scaling limit of the time evolution of large connected component sizes
in the self-organized critical mean field frozen percolation model [22], as we now explain.

The frozen percolation process on the binary tree was defined in [5]: the model is
a modification of the dynamical percolation process on the binary tree which makes
the following informal description precise: edges appear with rate 1 and if an infinite
component appears, we immediately “freeze” it, and we do not allow edges with an
end-vertex in a frozen component to appear.

Remark 1.4. I. Benjamini and O. Schramm showed that it is impossible to define
a similar modification of the percolation process on Z

2, c.f. [9, Section 3, Remark (i)].
Various modifications of the two-dimensional frozen percolation model where large finite
clusters are frozen are further explored in [7, 16, 8, 6]. The result of [17] about the closely
related model of two-dimensional self-destructive percolation implies non-existence of the
so-called two dimensional forest fire process, c.f. [17, Section 3.2]. However, the result
of [2] about self-destructive percolation on the high-dimensional lattice Z

d indicates that
the self-organized critical forest fire process on Z

d should exist if d is high enough. The
existence and uniqueness of the subcritical forest fire process on Z

d was proved in [14, 15].

Let us now recall the notion of mean-field frozen percolation process from [22] (using
slightly different notation).

Definition 1.5 (FPpn, λpnqq). We start with a graph F
pnq
0 on n vertices. Between

each pair of unconnected vertices an edge appears with rate 1{n; also, every connected
component of size k is deleted with rate λpnq¨k. (When a component is deleted, its vertices

as well as its edges are removed from the graph.) Let F
pnq
t be the graph at time t. Denote

by

Mpnqptq “
´
M

pnq
1 ptq,M pnq

2 ptq, . . .
¯

P ℓ
Ó
0
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4 B. Ráth

the sequence of component sizes of F
pnq
t , arranged in decreasing order.

Then Mpnqptq, t ě 0 is a Markov process – let us call it here the frozen percolation
component process on n vertices with lightning rate λpnq, or briefly FPpn, λpnqq. In fact,
up to time-change, Mpnqptq, t ě 0 evolves according to the rules (1.2) of MCLD.

Remark 1.6. We note that FPpn, λpnqq is a simplification of the mean field forest fire
model [23], the definition of which agrees with Definition 1.5 above, with the only differ-
ence that in the forest fire model we only delete the edges of the connected components
that are destroyed by fire, i.e., a destroyed component of size k is immediately replaced
by k singletons. The mean field forest fire model behaves very similarly to the mean field
frozen percolation model (e.g., the self-organized critical behaviour of the two models are
quite similar, see also Remark 1.10(iii) below), however the mathematics of the mean
field frozen percolation model is simpler than that of the mean field forest fire model, e.g.
the solution of the system of differential equations that appears in [22, Theorem 1.2] is
fairly explicit, while the system of differential equations that appears in [23, Theorem 2]
currently does not have an explicit solution.

Remark 1.7. One studies the asymptotic behaviour of the component size structure of
FPpn, λpnqq when 1 ! n and 1{n ! λpnq ! 1. Definition 1.5 above is slightly different
from the one proposed in [5, Section 5.5] and studied in [21] where connected components
are frozen when their size exceeds a threshold ωpnq satisfying 1 ! ωpnq ! n. The results
[21, Theorem 1.1] and [22, Theorem 1.2] are very similar: indeed, if one is interested
in small connected component densities then the two models produce exactly the same
(self-organized critical) behaviour. However, if one is interested in the scaling limit of big
component dynamics, the exact deletion mechanism does crucially enter the picture.

We are interested in identifying the scaling limit of FPpn, λpnqq as n Ñ 8. In order
to describe the kind of result we are after, let us recall that the large components of the

dynamical Erdős-Rényi random graph process in the critical window Gpn, 1`tn´1{3

n
q, t P R,

scaled by n2{3, converge in law to the standard multiplicative coalescent process pMptq, t P
Rq, see [3, Section 4.3].

Remark 1.8. The family of multiplicative coalescent processes defined for all t P R

(i.e., the eternal MC processes) are characterized in [4]. The class of inhomogeneous
random graph models whose scaling limit is the standard MC is explored in [10, 12] (see
also references therein). The scaling limits of other classes of inhomogeneous random
graph models are related to non-standard eternal MC processes, see [4, 11]. The contin-
uum scaling limit of the metric structure of critical random graphs is studied in [1, 13]
(see also references therein).

The next result gives a scaling limit for the frozen percolation process started from a
critical Erdős-Rényi graph.
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Feller property of the MCLD 5

Proposition 1.9. Fix u P R and let F
pnq
0 be an Erdős-Rényi graph Gpn, pq with edge

probability p “ 1`un´1{3

n
. Let λ ą 0 and let Mpnqptq, t ě 0 be the FPpn, λn´1{3q process

with initial state F
pnq
0 . Define mpnqptq, t ě 0 by

mpnqptq :“
´
n´2{3M

pnq
1 pn´1{3tq, n´2{3M

pnq
2 pn´1{3tq, . . .

¯
. (1.4)

Then as n Ñ 8 the finite dimensional marginals of the sequence of ℓÓ
2-valued processes

mpnqptq, t ě 0 converge in law to the finite dimensional marginals of the MCLDpλq process
pmptq, t ě 0q started from an initial state with distribution mp0q „ Mpuq (i.e., the state
of the standard multiplicative coalescent process at time u), i.e., for every k P N and
0 ď t1 ă t2 ă ¨ ¨ ¨ ă tk we have

´
mpnqpt1q,mpnqpt2q, . . . ,mpnqptkq

¯
dÝÑ

´
mpt1q,mpt2q, . . . ,mptkq

¯
, n Ñ 8.

The proof of Proposition 1.9 follows as an application of Theorem 1.2 (for details of
the proof, we refer to [19, Proposition 6.10]).

Remark 1.10.

(i) Loosely speaking, if pmptq, t ě 0q is the MCLDpλq process started from an initial
state with distribution mp0q „ Mpuq (this is the limit object that appears in Propo-
sition 1.9), then we have mptq „ Mpu ` t ´ Φptqq, where Φptq denotes the sum
of the sizes of the components deleted up to time t (see [19, Proposition 6.7(ii)]
for a precise formulation of this property). In fact, in [19, Proposition 6.7] we give
a representation of pmptq, t ě 0q on the probability space of a standard Brownian
motion using what we call the “rigid” representation of MCLDpλq. We note that
Theorem 1.2 is also crucially used when we extend our rigid representation results
from ℓ

Ó
0 to ℓ

Ó
2 in [19, Section 5].

(ii) In [20] we describe the possible scaling limits that can arise from a FPpn, λn´1{3q
process started from an empty graph. The possible limit objects are eternal MCLDpλq
processes (i.e., they are defined for any t P R). The “arrival at the critical window”
gives rise to a non-stationary MCLDpλq scaling limit, while the scaling limit in
the “self-organized critical” regime is a stationary MCLDpλq (see also [19, Remark
6.8]).

(iii) We conjecture that the scaling limit of the coagulation-fragmentation dynamics of
big components of the mean field forest fire model (c.f. Remark 1.6 above) with
lightning rate λn´1{3 is also an MCLDpλq process.

2. Notation and basic results

The aim of this section is to collect some basic results about the multiplicative coalescent
from [3] and [18]. In some cases, we will augment these results to fit our purposes or
present them using different notation.
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6 B. Ráth

We define

ℓ`
2 “

#
x “ px1, x2, . . . q : @i xi ě 0,

ÿ

iě1

x2
i ă `8

+
.

We have ℓ
Ó
2 Ď ℓ`

2 . Define the mapping

ord : ℓ`
2 Ñ ℓ

Ó
2 (2.1)

by letting ordpxq be the decreasing rearrangement of x P ℓ`
2 .

Definition 2.1. If m P ℓ
Ó
2 and G is a graph with vertex set V Ď N`, denote by

ordpm,Gq the ordered sequence of the weights of the connected components of G. More
precisely, if C1, C2, . . . is the sequence of the vertex sets of the connected components of
G, we define

xG “
˜ ÿ

iPC1

mi,
ÿ

iPC2

mi, . . .

¸
and ordpm,Gq (2.1)“ ordpxGq, (2.2)

assuming that xG P ℓ`
2 . We also denote

SG
2 “

8ÿ

k“1

˜ ÿ

jPCk

mj

¸2

“ }xG}22 “ }ordpxGq}22. (2.3)

Let us now state an elementary yet useful result which involves the metric dp¨, ¨q
defined in (1.1).

Lemma 2.2. If m P ℓ
Ó
2 and G,G1 are graphs with vertex sets V, V 1 Ď N` such that

V Ď V 1, G Ď G1 and ordpm,Gq P ℓ
Ó
2 then we have

d
`
ordpm,Gq, ordpm,G1q

˘
ď

b
}ordpm,G1q}22 ´ }ordpm,Gq}22.

Proof. This is a special case of [3, Lemma 17].

Let us recall the graphical construction used in [3, Section 1.5] to define the multi-
plicative coalescent process.

Definition 2.3. Let pξi,jq1ďiăjă8 denote independent random variables with EXPp1q
distribution. Given x P ℓ`

2 let us define the simple graph Gt with vertex set N` and an

edge between i and j if and only if ξi,j ď txixj. For i, j P N` we denote by i
GtÐÑ j the

event that i and j are connected by a simple path in the graph Gt.
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Feller property of the MCLD 7

Given Gt we define the connected components pCkptqq8
k“1 of Gt by

ik “ mintN`z Yk´1
l“1 Clptq u, Ckptq “ t i P N` : i

GtÐÑ ik u, k ě 1. (2.4)

Note that we have

SGt

2

(2.3)“ SG0

2 `
ÿ

i‰j

xixj1ri GtÐÑ js (2.5)

and SG0

2 “ ř8
i“1 x

2
i ă `8 if x P ℓ`

2 .
The statement of the next lemma follows from [3, Proposition 5] and shows that Def-

initions 2.1 and 2.3 give rise to a graphical representation of the ℓ
Ó
2-valued multiplicative

coalescent process with initial state m P ℓ
Ó
2 in the form ordpm,Gtq, t ě 0.

Lemma 2.4. For any t ě 0 and x P ℓ`
2 we have

P
´
SGt

2 ă `8
¯

“ 1. (2.6)

In particular, for any t P R` the weights of the connected components of Gt are almost
surely finite:

P

¨
˝ @ k P N` :

ÿ

iPCkptq

xi ă `8

˛
‚“ 1. (2.7)

The next lemma is an extended version of [18, (2.2)].

Lemma 2.5. For any x P ℓ`
2 and i, j P N` and t ă 1

S
G0

2

we have

P
´
i

GtÐÑ j
¯

ď xi ¨ xj ¨ t
1 ´ t ¨ SG0

2

. (2.8)

Proof.

P
´
i

GtÐÑ j
¯

ď
8ÿ

k“1

P

ˆ
D i0, . . . , ik P N` : i0 “ i, ik “ j and

pi0, i1, . . . , ik´1, ikq is a simple path in Gt

˙
ď

8ÿ

k“1

ÿ

pi1,...,ik´1qPNk´1

`

kź

l“1

p1 ´ expp´xil´1
xil tqq ď

8ÿ

k“1

ÿ

pi1,...,ik´1qPNk´1

`

kź

l“1

xil´1
xil t “ xixjt ¨

8ÿ

k“1

ÿ

pi1,...,ik´1qPNk´1

`

k´1ź

l“1

x2
il
t “

xixjt ¨
8ÿ

k“1

pt ¨ SG0

2 qk´1 “ xi ¨ xj ¨ t
1 ´ t ¨ SG0

2

. (2.9)
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8 B. Ráth

Corollary 2.6. For any x P ℓ`
2 , t ě 0 and i, j P N`, if

SG0

2 ď 1

2t
(2.10)

holds then we have
E

´
SGt

2

¯
ď 2SG0

2 (2.11)

Proof. Using (2.5), (2.8) and (2.10) we obtain

E
´
SGt

2

¯
ď SG0

2 ` 2t
ÿ

i‰j

x2
i x

2
j ď SG0

2 ` 2t ¨ pSG0

2 q2
(2.10)

ď 2SG0

2 . (2.12)

The next lemma is based on [3, Lemma 23] and [18, (2.5)]. It will be used in Section
4 to show that the truncated process is close to the original process if the truncation
threshold is chosen big enough.

Lemma 2.7. Let x, y P ℓ`
2 and t ě 0. Denote the index set of x by I and the index set

of y by J . Denote by

a “ }x}22 ă `8 and b “ }y}22 ă `8.

Consider the bipartite random graph Bt with vertex set I Y J , where i P I and j P J are
connected with probability 1 ´ expp´txiyjq. Then we have

|I| ă `8 ùñ E
´
SBt

2

¯
ă `8. (2.13)

Moreover, if

t2ab ď 1

2
, (2.14)

holds then we have
E

´
SBt

2

¯
´ a ď 2b ¨ p1 ` taq2 . (2.15)

Proof. First note that, similarly to (2.5), we have

E
´
SBt

2

¯
“ a ` b `

ÿ

i1‰i2PI

xi1xi2P
´
i1

BtÐÑ i2

¯
`

ÿ

j1‰j2PJ

yj1yj2P
´
j1

BtÐÑ j2

¯
` 2

ÿ

iPI, jPJ

xiyjP
´
i

BtÐÑ j
¯
. (2.16)
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Feller property of the MCLD 9

Now note that the number of visits to I of a simple path in Bt is at most |I|. Using this
idea and a calculation similar to (2.9), we obtain the inequalities

P
´
i1

BtÐÑ i2

¯
ď pxi1xi2 ¨ b ¨ t2q ¨

|I|ÿ

k“1

pt2abqk´1, i1 ‰ i2, i1, i2 P I

P
´
j1

BtÐÑ j2

¯
ď pyj1yj2 ¨ a ¨ t2q ¨

|I|ÿ

k“1

pt2abqk´1, j1 ‰ j2, j1, j2 P J

P
´
i

BtÐÑ j
¯

ď pxiyjtq ¨
|I|ÿ

k“1

pt2abqk´1, i P I, j P J

Combining these inequalities with (2.16) we obtain (2.13) as well as

E
´
SBt

2

¯
´ a

(2.14)
ď b ` 2

`
a2 ¨ b ¨ t2 ` b2 ¨ a ¨ t2 ` 2a ¨ b ¨ t

˘ (2.14)
ď

b ¨
`
1 ` 2a2t2 ` 1 ` 4at

˘
“ 2b p1 ` atq2 .

This completes the proof of (2.15).

Lemma 2.8. With probability 1, the function t ÞÑ ordpm,Gtq (see (2.2)) is càdlàg with
respect to the dp¨, ¨q-metric (defined in (1.1)).

Proof. Let us fix some T ě 0. Denote by A the event

A “ tSGT

2 ă `8u X
"

for any i, j P N the number of simple
paths connecting i and j in GT is finite

*
(2.17)

By Lemma 2.4 the event A almost surely holds. Assuming that A holds, we will show
that t ÞÑ ordpm,Gtq is càdlàg on r0, T q.

Since Gs Ď Gt if s ď t, we can apply Lemma 2.2 in order to reduce our task to
showing that the function t ÞÑ SGt

2 is càdlàg on r0, T q. If A holds, then for any i, j P N

the function t ÞÑ 1ri GtÐÑ js is càdlàg on r0, T q. Using this fact, (2.5) and the dominated
convergence theorem, we obtain that indeed t ÞÑ SGt

2 is also càdlàg on r0, T q.

3. Graphical construction of MCLD(λ)

Recall the informal definition of the MCLDpλq process mt from (1.2). We now give a

graphical construction of the process mt with initial state m P ℓ
Ó
2 and deletion rate λ.

Let
pξi,jq1ďiăjă8 be random variables with EXPp1q distribution,

pλiq1ďiă8 be random variables with EXPpλq distribution,
(3.1)
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10 B. Ráth

and let us also assume that all of these random variables are independent.
The heuristic description of our graphical construction is as follows: we increase t

continuously and if the event ξi,j “ tmimj occurs for some 1 ď i ă j ă 8, we merge the
components of the vertices i and j, moreover if λi “ tmi for some i P N`, then we say
that a lightning strikes vertex i and delete the connected component of vertex i. Since
the total rate of merger and deletion events is infinite if

ř
imi “ `8, we need to be

careful with the above heuristic definition if we want to make it precise: we will now
provide the graphical construction.

In Definition 2.3 we defined the simple graph Gt with vertex set N`.
We will define for any t P R`

the set of intact vertices Vt Ď N` and
the set of burnt vertices N`zVt.

(3.2)

The graph Ht will denote the subgraph of Gt spanned by Vt and mt will denote the
ordered sequence of component weights of Ht.

Recall that we enumerated the connected components Ckptq, k P N` of Gt in (2.4).
By the properties of exponential random variables, (2.7) and the independence of the
exponential random variables pξi,jq1ďiăjă8 and pλiq8

i“1, we see that for every t ě 0

P

¨
˝ @k P N` :

ÿ

iPCkptq

1rλi ď tmis ă `8

˛
‚“ 1. (3.3)

This implies that for every t ě 0 and k P N`, there exists an almost surely finite
N-valued random variable N (the number of lightnings that hit the component Ckptq
by time t), indices i1, . . . , iN Ď Ckptq (the vertices that are hit by lightning) and times
0 ă t1 ă ¨ ¨ ¨ ă tN ď t (the ordered sequence of the times of the lightnings) such that

t i P Ckptq : λi ď tmi u “ t i1, . . . , iN u and @ 1 ď l ď N : tl “ λil

mil

.

We now define the set of intact vertices Vt Ď N` by constructing Vt X Ckptq for every
k P N`.

Let us fix k P N`. We recursively define Vtl XCkptq for each 1 ď l ď N in the following
way.

(i) At t0 “ 0 we have Vt0 X Ckptq “ Ckptq.
(ii) Assume that we have already constructed Vtl´1

X Ckptq for some 1 ď l ď N . We
define Vtl X Ckptq by deleting the connected component of il in the restriction of
the graph Gtl to the vertex set Vtl´1

X Ckptq.
(iii) With this recursion we define VtN XCkptq. Since there are no lightnings hitting Ckptq

between tN and t, let Vt X Ckptq “ VtN X Ckptq.
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Feller property of the MCLD 11

Since Ckptq, k P N` is a partition of N`, we define

Vt “ Ť
kě1 pVt X Ckptqq and

Ht to be the subgraph of Gt spanned by Vt.
(3.4)

Recalling Definition 2.1 we let

mt “ ordpm,Htq. (3.5)

Lemma 3.1. For any m P ℓ
Ó
2 the graphical construction (3.5) of the process mt gives

an MCLDpλq process with initial condition m, i.e., an ℓ
Ó
2-valued Markov process whose

dynamics satisfy the informal definition given in (1.2).

Proof. mt is a random element of ℓÓ
2, because we have

}mt}22 “ SHt

2 ď SGt

2

(2.6)
ă `8.

The fact that mt is a Markov process with the prescribed transition rates follows from
the memoryless property and independence of the random variables pξi,jq1ďiăjă8 and

pλiq8
i“1. We omit further details.

Proof of Proposition 1.1. We will show that with probability 1, the function t ÞÑ
ordpm,Htq is càdlàg with respect to the dp¨, ¨q-metric, see (1.1).

Let us fix some T ě 0. We know that the event A defined in (2.17) almost surely holds.
Denote by B the event that every connected component of GT is exposed to only finitely
many lightning strikes on r0, T s. By (3.3), the event B occurs almost surely. Assuming
that A X B holds, we will show that t ÞÑ ordpm,Htq is càdlàg on r0, T q. For any t ě 0,
define

• pHt`∆t to be the subgraph of Gt spanned by Vt`∆t,

• qHt`∆t to be the subgraph of Gt`∆t spanned by Vt.

Recalling (3.4) and the inclusions Gt Ď Gt`∆t and Vt`∆t Ď Vt we see that

pHt`∆t Ď Ht Ď qHt`∆t and pHt`∆t Ď Ht`∆t Ď qHt`∆t,

so we can apply Lemma 2.2 and the triangle inequality in order to reduce our task of
proving right-continuity of t ÞÑ ordpm,Htq at t to showing that

paq lim
∆tÑ0`

S
|Ht`∆t

2 ´ SHt

2 “ 0, pbq lim
∆tÑ0`

SHt

2 ´ S
xHt`∆t

2 “ 0.

Now (a) follows from the fact that the graphical representation of the multiplicative
coalescent possesses the càdlàg property (see Lemma 2.8).

In order to show (b) we observe that on the event B, for every connected component
C of GT , we have

lim
∆tÑ0

1r D i P C : tmi ă λi ď pt ` ∆tqmi s “ 0.
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12 B. Ráth

Given this observation, we see that for every connected component C of Ht we have
lim∆tÑ0 1r C Ď Vt`∆t s “ 1. Using this fact, SHt

2 ă 8 and the dominated convergence
theorem, we obtain (b).

The proof of the existence of left limits is similar and we omit it.

4. Feller property of MCLDpλq

Definition 4.1. The graphical construction of Section 3 gives a joint realization of all
of the MCLDpλq processes with different initial conditions by using the same collection
of random variables pξi,jq1ďiăjă8 and pλiq1ďiă8 (see (3.1)). We call this coupling the

pξ, λq-coupling.

Theorem 4.2. Let mpnq, n P N be a convergent sequence of elements of ℓÓ
2 and let mp8q

denote their limit, i.e., limnÑ8 dpmpnq,mp8qq “ 0. For any t P R` and n P N` Y t8u,
denote by m

pnq
t the MCLDpλq process with initial condition mpnq at time t. Under the

pξ, λq-coupling, we have

dpmpnq
t ,m

p8q
t q pÝÑ 0, n Ñ 8. (4.1)

Theorem 4.2 implies that the MCLDpλq Markov process indeed possesses the Feller
property, i.e., Theorem 1.2 holds.

We want to prove Theorem 4.2 using truncation, because (4.1) trivially holds for the
truncated process. However, we cannot directly apply Lemma 2.2 to compare the original
with the truncated process, because we cannot upper bound the state of the truncated
process at time t by the state of the original process at time t (c.f. Remark 1.3).

In Section 4.1 we overcome this problem by introducing two auxiliary objects that
upper/lower bound both the original and the truncated object, but yet these auxiliary
objects can be shown to be close to each other if we only throw away a small part of the
original when we truncate.

In Section 4.2 we prove Theorem 4.2 using the results of Section 4.1 and variant of
the ε{3-argument.

4.1. Bounding the effect of truncation

In this subsection, we will fix t ě 0 as well as an initial state m P ℓ
Ó
2, and omit the

dependence of random variables on t and m. We also fix a truncation threshold m P N.

Definition 4.3. Recall Definition 2.3. Denote by G, GmÓ and GmÒ the graphs with
adjacency matrix 1rξi,j ď tmimjs on the vertex set N`, t1, . . . ,mu, and tm ` 1,m `
2, . . . u, respectively.

Let mpmq denote the vector m truncated at index m:

mpmq “ pm1, . . . ,mm, 0, 0, . . . q, where m “ pm1,m2, . . . q.
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Let m (resp. mpmq) denote the state at time t of the realization under the pξ, λq-
coupling of the MCLDpλq process with initial state m (resp. mpmq).

Denote by V and Vpmq the corresponding sets of intact vertices, see (3.4).
Denote by H and Hpmq the subgraphs of G spanned by V and Vpmq.

In order to compare m with mpmq, we need the following result.

Lemma 4.4. If pGpmq and qGpmq are random graphs with vertex sets

V p pGpmqq, V p qGpmqq Ď N`

and under the pξ, λq-coupling we have

pGpmq Ď Hpmq Ď qGpmq, pGpmq Ď H Ď qGpmq (4.2)

then almost surely we have

dpm,mpmqq ď 3 ¨
b
S

qGpmq

2 ´ S
pGpmq

2 . (4.3)

Proof. First note that it follows from (4.2) that

S
pGpmq

2 ď SHpmq

2 ď S
qGpmq

2 , S
pGpmq

2 ď SH
2 ď S

qGpmq

2 . (4.4)

Thus we have

dpm,mpmqq
(2.2)
ď dpm, ordpm, qGpmqqq`

dpordpm, qGpmqq, ordpmpmq, pGpmqqq ` dpordpmpmq, pGpmqq,mpmqq
p˚q
ď

b
S

qGpmq

2 ´ SH
2 `

b
S

qGpmq

2 ´ S
pGpmq

2 `
b
SHpmq

2 ´ S
pGpmq

2

(4.4)
ď 3 ¨

b
S

qGpmq

2 ´ S
pGpmq

2 ,

where p˚q follows from (3.5), the inclusions (4.2) and Lemma 2.2.

In Definition 4.8 below we will construct auxiliary graphs pGpmq and qGpmq in such a way
that (4.2) holds. Recall Definition 4.3. Note that Hpmq is the subgraph of GmÓ spanned
by the vertex set Vpmq. In particular, every connected component of Hpmq is a subset of
a connected component of GmÓ.

The next definition only involves the random variables pξi,jq1ďiăjă8 (i.e., we don’t

have to look at pλiq8
i“1).

Definition 4.5. Given GmÓ and GmÒ, denote the connected components of GmÓ by
C
mÓ
k , k P K and the connected components of GmÒ by C

mÒ
l , l P L.

Let us define an auxiliary bipartite multigraph B with vertex set K YL. Declare k P K

and l P L connected in B if CmÓ
k is connected to C

mÒ
l in G. We allow parallel edges to

be present in B: if CmÓ
k is connected to C

mÒ
l by more than one edge in G, then we put an

equal number of parallel edges between k P K and l P L in B.
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14 B. Ráth

Now we define a subset K˚ Ď K indexing “bad” components of GmÓ. This definition
involves the random variables pξi,jq1ďiăjă8 as well as pλiq8

i“1. The components indexed

by k P KzK˚ are “good”. The key property of good components will be stated in Lemma
4.7 below.

Definition 4.6. Recall the definition of B from Definition 4.5.

(i) An edge-simple path in B is a path with no repeated edges.

(ii) We say that k P K (resp. l P L) is intact if no lightning hit any vertex of CmÓ
k (resp.

C
mÒ
l ) before time t. If a vertex of B is not intact, then we say that it is damaged.

(iii) We say that k P K˚ if k P K and there is a edge-simple path in B which consists
of at least one edge and connects k to a damaged vertex of B.

For an illustration of Definition 4.6, see Figure 1.

GmÓ

GmÒ

Figure 1. An illustration of Definition 4.6. The blobs marked with a lightning are damaged connected

components of GmÓ and GmÒ. The grey blobs are the “bad” components of GmÓ. The set of indices of

“bad” components is denoted by K˚. Note that intact connected components of GmÓ can be “bad” and

damaged connected components of GmÓ can be “good”.

Lemma 4.7. Recalling Definition 4.3, we have

@ k P KzK˚ : C
mÓ
k X V

pmq “ C
mÓ
k X V . (4.5)

Proof. Let k P KzK˚. Denote by C1 the connected component of k in B. We prove (4.5)
by considering two cases separately.

First case: k is intact.
Denote by K 1 “ C1 X K and L1 “ C1 X L. Then

C “
˜ ď

k1PK1

C
mÓ
k1

¸
Y

˜ ď

l1PL1

C
mÒ
l1

¸
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is a connected component of G which contains C
mÓ
k (c.f. Definition 4.5), moreover our

assumption that k is intact together with k P KzK˚ imply that C is intact (c.f. Definition

4.6), thus we have C
mÓ
k X Vpmq “ C

mÓ
k and C

mÓ
k X V “ C

mÓ
k , therefore (4.5) holds.

Second case: k is damaged.
C1ztku is the disjoint union of some connected components C1

N , N P N of Bztku. Our
assumption that k is damaged, Definition 4.6 and the fact that k P KzK˚ together imply
that there are no parallel edges connected to k in B and no edge-simple circle of the
graph B contains k as a vertex. Therefore for each N P N, the cluster C1

N is connected
to k by one single edge eN of B. Note that k P KzK˚ implies that C1

N is intact for all
N P N. Therefore, the fires caused by lightnings can only spread “away” from k on the
edges eN , N P N, so by the graphical construction given in Section 3 and Definition 4.3
we obtain (4.5).

Now we define auxiliary random graphs pGpmq and qGpmq (c.f. Lemma 4.4).

Definition 4.8. Let qGpmq be the subgraph of G spanned by the vertices

V p qGpmqq “

¨
˝ ď

kPKzK˚

C
mÓ
k X V

pmq

˛
‚Y

˜ ď

kPK˚

C
mÓ
k

¸
Y tm ` 1,m ` 2, . . . u. (4.6)

Define pGpmq to be the subgraph of G spanned by the vertices

V p pGpmqq “
ď

kPKzK˚

C
Óm
k X Vpmq. (4.7)

Lemma 4.9. With the above definitions the inclusions (4.2) hold.

Proof. The inclusions V p pGpmqq Ď Vpmq Ď V p qGpmqq follow from the definitions (4.6),

(4.7). Thus pGpmq Ď Hpmq Ď qGpmq follows from the fact that Hpmq is the subgraph of G
spanned by the vertex set Vpmq.

The inclusions pGpmq Ď H Ď qGpmq follow from Lemma 4.7 and the fact that H is the
subgraph of G spanned by the vertex set V .

The next lemma is similar to Lemma 2.7.

Lemma 4.10. Given the above set-up let us condition on the graphs GmÓ and GmÒ and
denote by

α “ SGmÓ

2 , β “ SGmÒ

2 .

There exists a constant C “ Cpλ, tq such that if

t2αβ ď 1

2
(4.8)
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16 B. Ráth

holds then we have

E
´
S

qGpmq

2 ´ S
pGpmq

2

ˇ̌
ˇGmÓ, GmÒ

¯
ď C ¨ β ¨

´
p1 ` tαq2 ` p1 ` tαq ¨ α3{2

¯
. (4.9)

4.1.1. Proof of Lemma 4.10

For any subset C of N, denote by

wpCq “
ÿ

iPC

mi

the weight of the subset, where m “ pm1,m2, . . . q.

Definition 4.11. Define a bipartite weighted graph rB whose ”left” vertices correspond
to the connected components of the restriction of G to the vertex set

rV pmq :“ V p qGpmqq X t1, . . . ,mu (4.6)“

¨
˝ ď

kPKzK˚

C
mÓ
k X Vpmq

˛
‚Y

˜ ď

kPK˚

C
mÓ
k

¸
,

and the ”right” vertices correspond to the components of GmÒ. Define the weights of
the vertices of rB to be the wp¨q-weight of the corresponding connected components. We

declare two vertices in rB to be connected if the corresponding subsets are connected in
qGpmq. Denote by rGpmq the subgraph of G spanned by rV pmq.

With the above notation we have

S
qGpmq

2

(4.6)“ S
rB
2 , S

rGpmq

2

(4.7)“ S
pGpmq

2 `
ÿ

kPK˚

wpCmÓ
k q2.

Thus we can start to rewrite the left-hand side of (4.9):

E
´
S

qGpmq

2 ´ S
pGpmq

2

ˇ̌
ˇGmÓ, GmÒ

¯
“

E
´
S

rB
2 ´ S

rGpmq

2

ˇ̌
ˇGmÓ, GmÒ

¯
` E

˜ ÿ

kPK˚

wpCmÓ
k q2

ˇ̌
ˇ̌
ˇG

mÓ, GmÒ

¸
.

In order to show (4.9), it is enough to prove that (4.8) implies

E
´
S

rB
2 ´ S

rGpmq

2

ˇ̌
ˇGmÓ, GmÒ

¯
ď 2β ¨ p1 ` tαq2, (4.10)

E

˜ ÿ

kPK˚

wpCmÓ
k q2

ˇ̌
ˇ̌
ˇG

mÓ, GmÒ

¸
ď 2t2λβ ¨ p1 ` tαq ¨ α3{2. (4.11)
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First we deduce (4.10) from Lemma 2.7, with the underlying bipartite graph being rB.
Note that the condition (2.14) holds, because a “ S

rGpmq

2 ď SGmÓ

2 “ α and b “ SGmÒ

2 “ β.
Thus we have

E
´
S

rB
2 ´ S

rGpmq

2

ˇ̌
ˇGmÓ, GmÒ, pλiqmi“1

¯ (2.15)
ď

2SGmÒ

2 ¨ p1 ` tS
rGpmq

2 q2 ď 2β ¨ p1 ` tαq2.

Now (4.10) follows by averaging over the values of pλiqmi“1.

In order to prove (4.11), we first give an upper bound on the probability of the event
tk P K˚u.

For k P K, denote by x1
k “ wpCmÓ

k q and for l P L, denote y1
l “ wpCmÒ

l q. Note that we
have

α “
ÿ

kPK

px1
kq2, β “

ÿ

lPL

py1
lq2.

Recall the definition of K˚ from Definition 4.6. The next calculation is similar to (2.9),
so we omit the first few steps.

P
`
k P K˚

ˇ̌
GmÓ, GmÒ

˘
ď

ÿ

l1PL

`
x1
ky

1
l1
t
˘ `

λy1
l1
t
˘

`
ÿ

l1PL

ÿ

k1PK

`
x1
ky

1
l1
t
˘ `

y1
l1
x1
k1
t
˘ `

λx1
k1
t
˘

`
ÿ

l1PL

ÿ

k1PK

ÿ

l2PL

`
x1
ky

1
l1
t
˘ `

y1
l1
x1
k1
t
˘ `

x1
k1
y1
l2
t
˘ `

λy1
l2
t
˘

` ¨ ¨ ¨ “

x1
kt

2λβ ` x1
kt

3λαβ ` x1
kt

4λαβ2 ` ¨ ¨ ¨ “

x1
kt

2λβ ¨ p1 ` tαq ¨
8ÿ

n“0

`
t2αβ

˘n (4.8)
ď 2x1

kt
2λβ ¨ p1 ` tαq .

Now we are ready to prove (4.11):

E

˜ ÿ

kPK˚

px1
kq2

ˇ̌
ˇ̌
ˇG

mÓ, GmÒ

¸
ď

ÿ

kPK

2px1
kq3t2λβ ¨ p1 ` tαq

p˚q
ď

2t2λβ ¨ p1 ` tαq ¨ α3{2,

where in p˚q we used the fact that x1
k ď ?

α for any k P K. This completes the proof of
(4.9) and Lemma 4.10.

4.2. Proof of Theorem 4.2

Let us fix t, λ P R`, the sequence m
pnq, n P N and the limit mp8q. For any n P N` Y t8u,

let m
pn,mq
t denote the realization under the pξ, λq-coupling of the MCLDpλq with initial
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18 B. Ráth

state

mpn,mq “ pmpnq
1 , . . . ,mpnq

m , 0, 0, . . . q, where mpnq “ pmpnq
1 ,m

pnq
2 , . . . q. (4.12)

We also define V
pn,mq
t to be the set of intact vertices of the graph H

pn,mq
t of the MCLDpλq

with initial state mpn,mq under the pξ, λq-coupling.
In order to prove (4.1) we only need to show that for every ε ą 0 there exists m,n0 P N

such that for all n ě n0 we have

P
´
dpmpnq

t ,m
pn,mq
t q ě ε

¯
ď 4ε, (4.13)

P
´
dpmpn,mq

t ,m
p8,mq
t q ě ε

¯
ď ε, (4.14)

P
´
dpmp8,mq

t ,m
p8q
t q ě ε

¯
ď 4ε. (4.15)

Let us fix ε ą 0. We know from Lemma 2.4 that

P

ˆ
S
G

p8q
t

2 ă `8
˙

“ 1,

whereG
p8q
t denotes the random graph constructed from the exponential random variables

pξi,jq1ďiăjă8 and the initial state mp8q P ℓ
Ó
2 according to the rules described in Definition

2.3. Given ε ą 0, we can find M P R` such that

P

ˆ
S
G

p8q
t

2 ě M ´ 1

˙
ď ε. (4.16)

Recall the notion of the constant C “ Cpt, λq from Lemma 4.10. Let us choose δ ą 0
such that

t2Mδ ď 1

2
and 9C ¨ δ ¨

´
p1 ` tMq2 ` p1 ` tMq ¨ M3{2

¯
ď ε3. (4.17)

Now we choose the truncation threshold m. Since mpnq Ñ mp8q in l2, we can make

sup
nPNYt8u

}mpnq ´ mpn,mq}2

(where mpn,mq is defined in (4.12)) as small as we wish by making m large. Thus by
(2.11) and the Markov inequality we can choose m such that

sup
nPNYt8u

P

ˆ
S
G

pn,mqÒ
t

2 ě δ

˙
ď ε. (4.18)

Having fixed m, we note that under the pξ, λq-coupling we have

dpmpn,mq
t ,m

p8,mq
t q pÝÑ 0, n Ñ 8.
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We also have

S
G

pn,mqÓ
t

2
pÝÑ S

G
p8,mqÓ
t

2 ď S
G

p8q
t

2 , (4.19)

thus we can choose n0 such that for all n ě n0 we have (4.14) and

@ n P tn0, n0 ` 1, . . . u Y t8u : P

ˆ
S
G

pn,mqÓ
t

2 ě M

˙
(4.16),(4.19)

ď 2ε. (4.20)

We are ready to show (4.13) and (4.15) for the above choice of m and n0.
For any n P tn0, n0 ` 1, . . . u Y t8u we have

P
´
dpmpnq

t ,m
pn,mq
t q ě ε

¯
ď P

ˆ
S
G

pn,mqÒ
t

2 ě δ

˙
` P

ˆ
S
G

pn,mqÓ
t

2 ě M

˙
`

P

ˆ
dpmpnq

t ,m
pn,mq
t q ě ε, S

G
pn,mqÒ
t

2 ď δ, S
G

pn,mqÓ
t

2 ď M

˙
(4.18),(4.20)

ď

ε ` 2ε ` P
´
dpmpnq

t ,m
pn,mq
t q ě ε, A

¯
,

where A “ tSG
pn,mqÒ
t

2 ď δ, S
G

pn,mqÓ
t

2 ď Mu. We bound

P
´
dpmpnq

t ,m
pn,mq
t q ě ε, A

¯ (4.3)
ď P

´
9 ¨

´
S

qGpn,mq

2 ´ S
pGpn,mq

2

¯
ě ε2, A

¯
“

E
´
P

´
9 ¨

´
S

qGpn,mq

2 ´ S
pGpn,mq

2

¯
ě ε2

ˇ̌
Gpn,mqÓ, Gpn,mqÒ

¯
; A

¯

p˚q
ď 9C ¨ δ ¨

`
p1 ` tMq2 ` p1 ` tMq ¨ M3{2

˘

ε2

(4.17)
ď ε,

where in the equation marked by p˚q we used Lemma 4.10 and the Markov inequality.
This concludes the proof of (4.13),(4.14),(4.15) and Theorem 4.2.
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[9] J. van den Berg, B. Tóth. A signal-recovery system: asymptotic properties, and
construction of an infinite-volume process. Stoch. Proc. and Appl. 96.2, 177-190,
2001.

[10] S. Bhamidi, R. van der Hofstad, and J. van Leeuwaarden. Scaling limits for criti-
cal inhomogeneous random graphs with finite third moments. Electron. J. Probab.
15(54), 1682-1702, 2010.

[11] S. Bhamidi, R. van der Hofstad, and J. van Leeuwaarden. Novel scaling limits for
critical inhomogeneous random graphs. Ann. of Probab. 40.6, 2299-2361, 2012.

[12] S. Bhamidi, N. Broutin, S. Sen, and X. Wang. Scaling limits of random graph models
at criticality: Universality and the basin of attraction of the Erdős-Rényi random
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[22] B. Ráth. Mean field frozen percolation. J. of Stat. Phys. 137(3): 459-499, 2009.
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