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Abstract. We introduce the multiplicative coalescent with linear deletion, a continuous-
time Markov process describing the evolution of a collection of blocks. Any two blocks
of sizes x and y merge at rate xy, and any block of size x is deleted with rate λx
(where λ ≥ 0 is a fixed parameter). This process arises for example in connection with
a variety of random-graph models which exhibit self-organised criticality. We focus on
results describing states of the process in terms of collections of excursion lengths of
random functions. For the case λ = 0 (the coalescent without deletion) we revisit and
generalise previous works by authors including Aldous, Limic, Armendariz, Uribe Bravo,
and Broutin and Marckert, in which the coalescence is related to a “tilt” of a random
function, which increases with time; for λ > 0 we find a novel representation in which this
tilt is complemented by a “shift” mechanism which produces the deletion of blocks. We
describe and illustrate other representations which, like the tilt-and-shift representation,
are “rigid”, in the sense that the coalescent process is constructed as a projection of some
process which has all of its randomness in its initial state. We explain some applications
of these constructions to models including mean-field forest-fire and frozen-percolation
processes.
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1. Introduction

1.1. The multiplicative coalescent and MCLD(λ). The multiplicative coalescent (or
briefly MC) is a continuous-time Markov process describing the evolution of a collection
of blocks (components). The dynamics are as follows: for each pair of components with
masses mi and mj , the pair coalesces at rate mimj to form a single component of mass
mi +mj .

The process is simple to construct from any initial state with finitely many components.
In [2, Section 1.5], Aldous uses a graphical construction to show that the process is well-
defined starting from any initial state in which the sum of the squares of the masses is
finite. Writing the masses in decreasing order, define the space

`↓2 = {m = (m1,m2, . . . ) : m1 ≥ m2 ≥ · · · ≥ 0,
∞∑
i=1

m2
i <∞}, (1.1)

with the distance

d(m,m′) = ‖m−m′‖2 =

∑
i≥1

(mi −m′i)2

1/2

. (1.2)

Then Proposition 5 of [2] says that the MC is a Feller process in (`↓2,d).
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We generalise the multiplicative coalescent to include deletion as well as coalescence.
Let λ ≥ 0. Now we want the dynamics of the process to satisfy:

(i) any two components of mass mi and mj merge with rate mimj ,
(ii) any component of mass mi is deleted with rate λmi.

(1.3)

We call such a process a multiplicative coalescent with linear deletion, with deletion rate
λ, and denote it by MCLD(λ).

Again, if the initial state has finitely many components, the process is easily seen to be

well-defined. For initial states in `↓2, a graphical construction is given in [30], which gives

rise to a well-behaved continuous-time Markov process taking values in `↓2. This process
has the Feller property with respect to the distance d(·, ·) – see Theorem 1.2 of [30].

The motivation of our study of the MCLD process is twofold.
Firstly, ideas involving the representation of the state of a MC process in terms of the

set of excursion lengths of some random function began with Aldous [2], and have been
developed in a series of works including those of Aldous and Limic [5], Armendáriz [8],
Uribe Bravo [35], Broutin and Marckert [18] and Limic [23]. We find that this theory has
a surprising and elegant extension to processes involving deletion, which we build in this
paper.

Secondly, the MCLD arises as a scaling limit of certain discrete processes of coalescence
and fragmentation or deletion, such as the mean-field forest-fire model introduced by Ráth
and Tóth in [32] and studied by Crane, Freeman and Tóth in [19], and the mean-field frozen
percolation process introduced by Ráth in [31]. These processes are of particular interest
because of their self-organised criticality properties. These scaling limits are the subject
of a future paper [24], but we discuss related properties here in Section 6.

We further discuss related literature in Section 1.4.

1.2. Tilt representations of MC. We start by revisiting previous results giving repre-
sentations of the MC in terms of excursions of random functions.

We first define Brownian motion with parabolic drift.

Definition 1.1 (Brownian motion with parabolic drift, BMPD(u)). Let B(x), x ≥ 0
denote standard Brownian motion. Given u ∈ R, define

h(x) = B(x)− 1

2
x2 + ux, x ≥ 0. (1.4)

Let us denote by BMPD(u) the law of the random function h(x), x ≥ 0.

For a function h(x), x ≥ 0, let E↓(h) denote the lengths of the excursions of h above
its running minimum, written in non-increasing order (see Section 2 below for a formal
definition). Aldous [2] showed that there is an eternal multiplicative coalescent process,
whose marginal distributions can be written in terms of excursions of a Brownian motion
with parabolic drift.

Proposition 1.2 (Aldous). There exists a MC process (mt, t ∈ R) such that for each t,
the marginal distribution mt is the same as that of E↓(ht) where ht ∼ BMPD(t).

This process is known as the standard multiplicative coalescent. In her PhD thesis,
Armendáriz [7, 8] showed that in fact the whole process can be constructed as a function
of a single realisation of Brownian motion.

Proposition 1.3 (Armendáriz). Let h0 ∼ BMPD(0), and define ht(x) = h0(x) + tx for
all t ∈ R (so that ht ∼ BMPD(t) for all t). Then the process E↓(ht), t ∈ R is the standard
MC.
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We call this representation a tilt representation; for each t, the function ht is obtained
from h0 by adding the linear function tx. It is easy to see that the tilt representation indeed
produces a coalescent process as t increases. Also note that only adjacent excursions can
coalesce under the tilt representation.

Part of the approach of Armendáriz (described in [8, Section 4]) is further elaborated
in Chapter 4 of the PhD thesis [35] of Uribe Bravo.

In [18, Corollary 4], Broutin and Marckert give an alternative proof of Proposition
1.3. Their proof involves considering the connected components of an Erdős-Rényi graph
process on n vertices, and then taking the weak limit as n→∞. The key idea is to define
an ordering of the vertices (the Prim ordering, related to invasion percolation and to the
minimal spanning tree) which is consistent with the coalescent process in the sense that at
all times, the components are intervals of the Prim order (and thus only adjacent intervals
can coalesce); nonetheless, for each fixed time, exploring the graph in the Prim ordering
yields a random walk with the same distribution as is obtained from a standard traversal
in, say, depth-first or breadth-first order.

Aldous and Limic [5] characterized the set of all eternal multiplicative coalescents, i.e.
those defined for all times t ∈ (−∞,∞). They defined a three-parameter set of random
processes W κ,τ,c(x), x ≥ 0, such that if (mt, t ∈ R) is a non-constant eternal MC which is
extremal (that is, its law is not the mixture of the laws of other eternal MC processes) then
for each t ∈ R, the marginal distribution of mt is the same as that of the sequence E↓(ht)
of excursion lengths of ht(x) := W κ,τ,c(x) + tx for some (κ, τ, c). The processes W κ,τ,c

have been called Lévy processes without replacement ; see Section 6.1 for their definition
and the precise statement of the cited result of [5].

We will further discuss the links between our approach and those of Armendáriz [8],
Uribe Bravo [35], Broutin and Marckert [18] and Limic [23] in Section 1.4.

1.3. Contributions of this paper. In this section we summarize the main results of our
paper. The central results are the following:

• MC admits a tilt representation from any initial state: In Theorem 2.8

we show that for any possible initial state m ∈ `↓2, there exists a random function
f0 : [0,∞)→ [−∞, 0] such that if we define

ft(x) = f0(x) + tx (1.5)

then E↓(ft), t ∈ R is a multiplicative coalescent process with initial state m.

• MCLD admits a “tilt-and-shift” representation: Let m ∈ `↓2, and define ft
for all t ≥ 0 as in (1.5). Let λ > 0. In Theorem 2.13 we show that there exists
a σ(f0)-measurable non-decreasing function Φ : [0,∞) → [0,∞) such that if we
define

gt(x) = ft(x+ Φ(t)) + λt−
∫ t

0
Φ(s) ds, t ≥ 0 (1.6)

then E↓(gt), t ≥ 0 is a MCLD(λ) process with initial state m.

Here Φ is a non-decreasing pure jump process; Φ(t) is the total weight of components
deleted by time t. In addition to the “tilt” given by (1.5), we now have a “shift” since
in (1.6), the function ft is applied at x + Φ(t). If a component of size a is deleted, then
Φ(t) − Φ(t−) = a, and we see a shift to the left of size a at time t; that is, the graph of
gt− on [a,∞] becomes the graph of gt on [0,∞].

Note that the tilt representation of the MC is the λ = 0 case of the tilt-and-shift repre-
sentation of the MCLD. Under the tilt-and-shift representation, only adjacent excursions
coalesce and only the “leftmost” excursion gets deleted. We call the above representations
“rigid” because all of the randomness is contained in the initial state f0, and the rest of
the evolution of ft (resp. gt) is deterministic.
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The function f0 above is constructed so that it has the exponential excursion levels
property: conditional on the sequence of excursion lengths, the levels of the excursions are
independent, and an excursion of length m occurs at level −E where E ∼ Exp(m). One
of the central observations behind the rigid representation results outlined above is that
ft and gt for any t ≥ 0 inherit the exponential excursion levels property.

We prove these main results in two stages: we first consider the case of finitely many

blocks in Section 3, then we extend the tilt-and-shift representation to `↓2 using truncation
and approximation arguments in Section 5.

The proof of the finite tilt-and-shift representation result in Section 3 involves various
other representations which are also of independent interest. Their constructions rely
heavily on the notion of size-biased orderings, and on the realisation of such orderings
using independent exponential random variables, c.f. Section 3.1.

Now we outline these representations and how they relate to each other.

• Interval coalescent representation: Given an initial state m with finitely many
blocks, we consider a process whose states are finite sequences of lengths (depicted
as intervals arranged in some order). In the initial state, the interval lengths are
the masses of blocks of m, and they are arranged in a size-biased random order.
An interval I merges with the interval on its right at a rate equal to the product
of the length of I with the combined length of all of the intervals to the right
of I. The leftmost interval is deleted at a rate equal to λ times the total length
of intervals. For an illustration, see Figure 1.1. In Section 3.2 we show that the
decreasing rearrangement of interval lengths evolves like MCLD(λ). (If λ = 0, this
gives the MC.)

Rigid representations of multiplicative

coalescents with and without deletion

James Martin and Balázs Ráth

Contents

f0(x) =

{

−Eσk
if

∑

k−1

l=1
mσl

≤ x <
∑

k

l=1
mσl

, 1 ≤ k ≤ n,

−∞ if x ≥
∑

n

i=1
mσl

.
(0.1)

λ · (b1 + b2 + b3) b1 · (b2 + b3) b2 · b3

b1 b2 b3

Figure 1: An illustration of the rates of the interval coalescent process: the
lengths of the three intervals (from left to right) are b1, b2 and b3. The
leftmost block marked with an arrow represents the “cemetery”. The rate at
which the first interval gets deleted is λ · (b1+ b2+ b3). The rate at which the
first interval merges with the second one is b1 · (b2 + b3). The rate at which
the second and third intervals merge is b2 · b3.

1

Figure 1.1. An illustration of the rates of the interval coalescent process:
the lengths of the three intervals (from left to right) are b1, b2 and b3. The
leftmost block marked with a lightning represents the “cemetery”. The
rate at which the first interval gets deleted is λ · (b1 + b2 + b3). The rate
at which the first interval merges with the second one is b1 · (b2 + b3). The
rate at which the second and third intervals merge is b2 · b3.

• Particle representation: Given an initial state m = (m1, . . . ,mn) as above, we
initially put a particle of mass mi at initial height −Ei, where Ei ∼ Exp(mi), 1 ≤
i ≤ n are independent. Now the particles start to move up until they reach height
0 and die. The speed of a particle is equal to λ plus the total weight of particles
strictly above it and strictly below 0. Note that once a particle reaches the one
above it, they stick together until they die. Accordingly, we group the particles
that share the same height into time-t blocks. In Section 3.3 we show that the the
vector of sizes of the time-t blocks of the particle system, in decreasing order of
their height, evolves like the above described interval coalescent process. See Figure
1.2 and Figure 1.3 for simulations; in the first, λ is positive and the system realises
an MCLD, while in the second, λ is zero and the system realises a multiplicative
coalescent without deletion.



RIGID REPRESENTATIONS OF THE MULTIPLICATIVE COALESCENT WITH DELETION 5

Figure 1.2. A simulation of the particle system which realises the MCLD.
Each particle moves upwards at rate equal to λ plus the mass of particles
strictly above it. When a particle reaches 0 it dies and is removed from the
system. Particles at the same height at time t form a time-t block. The fig-
ure shows a system with n = 20 particles and λ = 1.3, evolving on the time
interval [0, 0.5]. We see 5 deletion events, and the deleted blocks have sizes
1, 1, 14, 1, 3 respectively. Compare to Figure 1.3, where λ = 0 (realising
the multiplicative coalescent without deletion), and to Figure 6.1, where
deleted particles reenter at independent exponential heights (realising the
forest fire model).

Note that the particle representation outlined above is also “rigid”.
In Section 3.4 we explain how particles in the particle representation correspond to

excursions of gt in the tilt-and-shift representation, completing the proof of the validity of
the tilt-and-shift representation of MCLD(λ) with finitely many blocks.

In Section 6 we give some applications of our rigid representation results:

• In Section 6.1 we give a sketch proof of the fact that the Lévy processes without
replacement W κ,τ,c have the exponential excursion levels property, and conclude
that all eternal multiplicative coalescents have a tilt representation. This gives an
alternative way to approach the main result of Limic [23] (see Section 1.4).
• In Section 6.2 we apply the tilt-and-shift representation to Brownian motion with

parabolic drift. What we find can be non-rigorously summarized as follows: if we
start from BMPD(u) then at time t ≥ 0 we see BMPD(u + t − Φ(t)). We show
that the resulting MCLD(λ) process is the scaling limit of the list of component
sizes in the mean field frozen percolation model of [31] started from a near-critical
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Figure 1.3. This shows a similar system to the one in Figure 1.2, but
now with λ = 0 so that the system realises the multiplicative coalescent,
with no deletion. In this case n = 12 and the figure shows the time interval
[0, 0.25]. By the end, all particles have coalesced into a single block.

Erdős-Rényi graph, thus extending the result [2, Corollary 24], which is the λ = 0
case.
• In Section 6.3 we give a particle representation of the mean field forest fire model

of [32]. We demonstrate how this representation allows us to give a new probabilis-
tic interpretation of the non-linear controlled PDE problem (and the associated
characteristic curves) which played a central role in the theory developed in [32]
and [19].

1.4. Related work.

1.4.1. Rigid representations of coalescent processes. In this subsection we discuss links to
previous work on rigid representations for the multiplicative coalescent, which is some-
what scattered (and in some cases unpublished). The various approaches and methods of
Armendáriz [8], Uribe Bravo [35], Broutin and Marckert [18] and Limic [23] resulting in
versions of the “tilt” representation are all related to ours, although these similarities are
often implicit. Let us now try to sketch some of these connections.

In [8] Armendáriz draws attention to the fact that Brownian motion with parabolic drift
has the exponential excursion levels property which we informally described in Section
1.3. This observation had been made by Aldous in [2, equation (72)] (see also Bertoin
[9]). Based on this, Armendáriz constructs a representation of the MC with finitely many
blocks in [8, Section 4] – this representation appears to be equivalent to the λ = 0 case of
our particle representation (see Section 3.3), although the methods are different.

In Chapter 4.2 of his PhD thesis [35], Uribe Bravo recalls and further elaborates the
representation of [8, Section 4] (without proofs). In particular, he points out that (what
we call) the initial heights of particles are in size-biased order and formulates the crucial
property corresponding to our (3.16) about the height gaps of particles. Again, the rep-
resentation outlined in [35, Chapter 4.2] is equivalent to the λ = 0 case of our particle
representation; moreover the representation stated (without proof) in [35, Chapter 4.3] is
equivalent to our tilt representation of MC (c.f. Section 2.1) in the case of finitely many
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blocks. In [35, Chapter 4.4] Uribe Bravo gives a sketch proof of Proposition 1.2 which is
quite similar to our short sketch proof of Proposition 1.3 given in Section 6.1.1.

At first, the approach of Broutin and Marckert in [18] seems quite different from ours.
Their construction relies on exploration processes for random graphs, defined using the
Prim ordering for a graph with edge-weights; our methods make no explicit reference to
the graph structure underlying the MC (or MCLD). However, one can observe that the
components of the dynamic Erdős-Rényi graph process, arranged in Prim order, give the
interval coalescent process (see Section 3.2) without deletion, started from an initial state
with equal-sized blocks. Broutin and Marckert also extend the representation to obtain
a construction of the standard augmented multiplicative coalescent of Bhamidi, Budhiraja
and Wang [11].

In a paper available in interim form at [23], Limic obtains tilt representations of all
eternal multiplicative coalescents. The main result can be written as follows. Let ft(x) =
W τ,κ,c(x) + tx, where W τ,κ,c is a Lévy processes without replacement. Then the process
E↓(ft), t ∈ R is an eternal multiplicative coalescent. Limic’s approach involves the gen-
eralisation of the breadth-first walks used in [2] and [5], to give a system of simultaneous
breadth-first walks relating to the state of the multiplicative coalescent at different times.
Limic recalls from [8, Section 4] and [35, Chapter 4.2] the definition of Uribe’s diagram
(which is equivalent to the λ = 0 case of our particle representation) and proves (via a
calculation involving iterated integration) that this representation is indeed a valid repre-
sentation of MC. In [23, Section 4] Limic explores the connection between Uribe’s diagram
and simultaneous breadth-first walks. We describe an alternative approach to the tilt
representation of the set of eternal coalescents in Section 6.1. Note that the connection
between Prim’s algorithm [18] and simultaneous breadth-first walks [23] is the topic of
ongoing research [34], c.f. Open question 3 of [23, Section 7].

Finally we mention that also in the case of the standard additive coalescent [6], a tilt
representation can be given. Let e(x) be a standard Brownian excursion on [0, 1], and for
λ > 0 define the function hλ on [0, 1] by hλ(x) = e(x)− λx. A consequence of the results
of Bertoin [9] is that the process E↓(he−t), t ∈ R is a version of the standard additive
coalescent. An alternative proof of this result is given by Broutin and Marckert [18].

1.4.2. Mean-field graph models of self-organized criticality (SOC). The mean-field frozen
percolation model [31] is a dynamic random graph model where the initial number of
vertices is n, two connected components of size k and l merge at rate kl

n and a connected
component of size k disappears at rate λ(n)k. Note that up to scaling, this is MCLD(λ). If
1/n� λ(n)� 1 then the evolution of the densities of small components is asymptotically
described by Smoluchowski’s coagulation differential equations with multiplicative kernel
[31, Theorem 1.2], the solutions of which exhibit SOC [31, Theorem 1.5].

The definition of the mean-field forest fire model [32] is the same as that of the above
described frozen percolation model, with one difference: instead of removing a component,
we only remove its edges, with the vertices remaining as singletons. A variant of Smolu-
chowski’s system of equations describes the asymptotic densities of small components [32,
Section 1.3], leading to SOC. The proof of the well-posedness of this infinite system of dif-
ferential equations involves a non-linear PDE which is a controlled variant of the Burgers
equation.

In [19] Crane, Freeman and Tóth describe the time evolution of the size of the compo-
nent of a fixed vertex in the above forest fire model in the n → ∞ limit. They also give
a probabilistic meaning to the characteristic curves of the controlled Burgers equation in
[19, Remark 3.11]. In Section 6.3.2 we give a different probabilistic meaning to these char-
acteristic curves by comparing them to particle trajectories in the particle representation.
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The model proposed by Aldous in [4, Section 5.5] is studied by Merle and Normand in
[26]: two connected components of size k and l merge at rate kl

n and connected components
disappear if their size exceeds a threshold ω(n). In order to achieve SOC, one chooses
1� ω(n)� n. Theorem 1.1 of [26] states that the densities of small components converge
to the solution of Smoluchowski’s coagulation equations with multiplicative kernel. Note
that this is a special case of the main result of Fournier and Laurencot in [21], who study
discrete models of Smoluchowski’s coagulation equation with more general coagulation
kernels. Theorem 1.3 of [26] identifies the Benjamini-Schramm limit of the “threshold
deletion” graph model as n→∞.

Note that by comparing [31, Theorem 1.2] and [26, Theorem 1.1] one sees that (in the
SOC regime) the densities of small components converge to the same hydrodynamic limit
in the model with linear deletion and the model with threshold deletion. However, if one
is interested in the scaling limit of big component dynamics, the exact deletion mechanism
does crucially enter the picture. We discuss scaling limits of the model with linear deletion
in Section 6.2. The scaling limit of the threshold deletion model is not yet known, but in
Remark 6.16 we give a particle representation of it.

In [27] Merle and Normand identify the Benjamini-Schramm limit of a different self-
organized critical model of aggregation, where vertices can only connect to a fixed number
of other vertices.

1.4.3. Scaling limits of critical random graph models. In [2, Corollary 2] Aldous identifies
the scaling limit of component sizes in a near-critical Erdős-Rényi graph in terms of the
excursion lengths of BMPD and in [2, Corollary 24] he shows that the standard MC is the
scaling limit of the evolution of component sizes of the dynamic Erdős-Rényi graph in the
critical window. Let us now list some related results.

The papers [10, 15, 20, 22, 29, 33] explore the universality class of graph models whose
scaling limits are described by BMPD and the standard MC.

The family of eternal multiplicative coalescent processes are characterized in [5]. The
scaling limits of some classes of inhomogeneous random graph models are given by Lévy
processes without replacement and non-standard eternal MC processes, see [5, 16, 22].

The continuum scaling limit of the metric structure of critical random graphs is stud-
ied in the “BMPD” universality class in [1, 12, 13] and in the “Lévy processes without
replacement” universality class in [14].

Martin and Yeo [25] study the Erdős-Rényi random graph within the critical window,
conditioned to be acyclic; alternatively expressed, this is the uniform distribution over
forests with a given number of vertices and edges. Analogously to Proposition 1.2, they
obtain a scaling limit for the collection of component sizes which is described by the
sequence of excursions of an appropriate reflected diffusion; here the drift of the diffusion
depends on space as well as on time.

In the future paper [24] we describe the possible scaling limits that can arise from a

frozen percolation process with lightning rate λn1/3, started from an empty graph. The
possible limit objects are eternal MCLD(λ) processes. The “arrival” of the process at the
critical window gives rise to a non-stationary eternal MCLD(λ) scaling limit, while the
scaling limit in the “self-organized critical” regime is a stationary MCLD(λ).

1.5. Plan of the paper. In Section 2 we give the main results about tilt representations
for MC and tilt-and-shift representations for MCLD, and discuss their interpretation.

In Section 3 we prove the tilt-and-shift representation result of MCLD in the case of
finitely many blocks. Along the way, we introduce the interval coalescent representation
and the particle representation and show how all these representations relate to each other.
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In Section 4 we collect some preparatory results about random point measures and
excursions that we will use in Section 5.

In Section 5 we extend our rigid representation results to any initial state m ∈ `↓2 by
approximating m with a sequence of truncated initial states. Since the particle representa-
tion is essentially the same as the tilt-and-shift representation, our proof involves a careful
analysis of the effect of the insertion of a new particle on the death times of other particles.

In Section 6 we present the applications of the theory of rigid representations that we
mentioned in Section 1.3.

2. Main results

We begin by introducing some notation. Let

`↓∞ = { m = (m1,m2, . . . ) : m1 ≥ m2 ≥ · · · ≥ 0 }

`↓p = { m ∈ `↓∞ :
∞∑
i=1

mp
i <∞} for 0 < p <∞}

`↓0 = { m ∈ `↓∞ : ∃ i0 ∈ N : mi = 0 for all i ≥ i0 }

We will use the topology of coordinate-wise convergence on `↓∞.

For m ∈ `↓0 with n non-zero entries, we will sometimes ignore the infinite trailing string
of zeros and regard m as an element of Rn>0.

For m,m′ ∈ `↓2 we define the distance d(m,m′) by (1.2). The metric space
(
`↓2, d(·, ·)

)
is complete and separable.

Next, we introduce some definitions relating to excursions.

Definition 2.1. Let g : [0,∞) → R ∪ {−∞} be a function which is càdlàg and lower
semi-continuous (i.e. all jumps are downards). For 0 ≤ l < r <∞, the interval [l, r) is an
excursion above the minimum of g if:

(i) g(x) > g(l) for all x < l.
(ii) r = inf{x : g(x) < g(l) }.

We say that r − l is the length of the excursion and g(l) is the level of the excursion. We
say that the excursion is strict if g(x) > g(l) for any x ∈ (l, r).

From now on, we say simply “excursion” to mean excursion above the minimum, and
we say that l is a “minimum” if l is the left endpoint of an excursion of g.

Definition 2.2. Suppose that for any ε > 0, g has only finitely many excursions with

length greater than ε. Then let E↓(g) ∈ `↓∞ be the sequence of the lengths of the excursions
of g, arranged in non-increasing order.

We write ḡ for the function defined by

ḡ(x) = inf
0≤u≤x

g(u). (2.1)

Note that if g is a lower semi-continuous càdlàg function, then the excursions of g and ḡ
have the same lengths and levels; in particular,

E↓(g) = E↓(ḡ). (2.2)

2.1. Tilt representation of multiplicative coalescent. The aim of this section is
to formulate the “rigid” representation of the MC process from any initial condition in
Theorem 2.8.
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Definition 2.3. Given a locally finite measure µ on (−∞, 0], we define the inverse cumu-
lative distribution function fµ : [0,+∞)→ [−∞, 0] of µ by

fµ(x) = sup{ y ≤ 0 : µ[y, 0) > x }, x ≥ 0. (2.3)

In particular, fµ(x) = −∞ for any x ≥ µ(−∞, 0).

Note that fµ is non-increasing, lower semi-continuous and càdlàg.

Definition 2.4. Given m = (m1,m2, . . . ) ∈ `↓2, we define the independent exponential
random variables

Ei ∼ Exp(mi), i = 1, 2, . . . . (2.4)

(If mi = 0, we formally define Ei = +∞.) We say that the random measure µ has Exp(m)
distribution if µ is a point measure with point masses of weight mi at locations −Ei, i ∈ N:

µ =

∞∑
i=1

mi · δYi , Yi = −Ei. (2.5)

If µ ∼ Exp(m), then the total mass µ(−∞, 0] =
∑

imi is infinite if m /∈ `↓1. However,

as long as m ∈ `↓2, the mass distribution is locally finite: in Lemma 4.1 we will show that
almost surely µ(A) <∞ for every bounded set A ⊆ (−∞, 0].

Definition 2.5. Let m ∈ `↓2 and µ0 ∼ Exp(m). Let f0 : [0,+∞)→ [−∞, 0] be the inverse
cdf of µ0, i.e.,

f0(x)
(2.3)
= fµ0(x). (2.6)

Remark 2.6. Let f0 be defined by Definition 2.5.

(i) An alternative characterization of the function f0 is as follows: f0 is the non-
increasing càdlàg function such that the interval Ij on which it takes the value −Ej
has length mj , moreover the Lebesgue measure of the complement of ∪∞j=1Ij is zero.

(ii) If m = (m1, . . . ,mn) ∈ `↓0 and Eσ1 < · · · < Eσn is the increasing rearrangement of
Ei, 1 ≤ i ≤ n, then an equivalent way to write the function f0 is

f0(x) =

{
−Eσk if

∑k−1
l=1 mσl ≤ x <

∑k
l=1mσl , 1 ≤ k ≤ n,

−∞ if x ≥
∑n

i=1mσl .
(2.7)

For an illustration of (2.7), see Figure 2.1.
(iii) Recalling Definitions 2.1 and 2.2 we see that the excursion lengths of f0 are given by

the entries of m ∈ `↓2; that is, E↓(f0) = m.

Definition 2.7. Let f0 be defined by Definition 2.5. Let us define

ft(x) = f0(x) + tx, x ≥ 0. (2.8)

We say that the function ft is a “tilt” of f0.

In Lemma 4.4 we will show that, with probability 1, for all t the function ft satisfies
the criteria of Definition 2.2.

Theorem 2.8. Let m ∈ `↓2. The process E↓(ft), t ≥ 0 has the law of the multiplicative
coalescent started from m.

We will prove Theorem 2.8 for m ∈ `↓0 in Section 3, and extend this result to m ∈ `↓2 in
Section 5.

We say that Theorem 2.8 gives a “rigid” representation of the MC process, because all
of the randomness is contained in the initial state of the representation and the rest of the
dynamics is rigid, i.e., deterministic.
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Figure 1: An illustration of the function f0 defined in (??) when n = 3.
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Figure 2.1. An illustration of the function f0 defined in (2.7) when n = 3.

2.2. Tilt-and-shift representation of MCLD(λ). Similarly to the rigid representation
of the MC in terms of the excursion lengths of (ft(·)) in Theorem 2.8, we will give a
rigid representation of the MCLD(λ) in terms of the excursion lengths of another function
(gt(·)) in Theorem 2.13 below. We begin with the case of finitely many components.

Definition 2.9. Given m ∈ `↓0, we define g0(x) ≡ f0(x), were f0(x) is defined by (2.6)
(or, equivalently, (2.7)). We will now define gt(x) for t, x ≥ 0 such that for all x ≥ 0, the
function t 7→ gt(x) is càdlàg. The time evolution of gt(·) consists of two parts:

(1) Tilt: If gt−(0) < 0 then we let d
dtgt(x) = λ+ x.

(2) Shift: If gt−(0) = 0, then we let gt(x) = gt−(x+ x∗(t)), where

x∗(t) = inf{x > 0 : gt−(x) < 0} (2.9)

is the length of the first excursion of gt−(·) (see Definition 2.1).

Let us define ν to be the measure on [0,∞) given by

ν =
∑

0≤t<∞
x∗(t) · δt (2.10)

where x∗(t) > 0 is the size of the shift to the left at time t (see (2.9)); and if no shift
occurred at time t, then we let x∗(t) = 0. Let us also define

Φ(t) = ν[0, t], (2.11)

the total amount of left shifts up to time t.

For an illustration of Definition 2.9 see Figure 2.2.
Recall the definition of the MCLD(λ) from (1.3) and the notion of E↓ from Definition

2.2.

Proposition 2.10. Let m ∈ `↓0, λ > 0 and let f0 be defined by Definition 2.5. If we define
gt(·) by Definition 2.9, then the process E↓(gt), t ≥ 0 has the law of the MCLD(λ) process
mt, t ≥ 0 started from m0 = m.

We will prove Proposition 2.10 in Section 3.

Remark 2.11. In the MCLD(λ) interpretation, Φ(t) corresponds to the total amount of
mass deleted up to time t.
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Figure 1: An illustration of Definition ??. Dashed lines are used to denote
the running minimum. The second graph gt− is obtained from the first graph
gt′ using the tilt operation. Observe that some excursions of gt′ got merged
with the tilt operation. The third graph gt is obtained from the second graph
by shifting it to the left by x∗(t), i.e., the length of the first excursion of the
second graph. If we denote by y the level of the first excursion of gt′ then
t = t′ + |y|/λ is the time instant when this excursion reaches level zero and
thus gets shifted.

1

Figure 2.2. An illustration of Definition 2.9. Dashed lines are used to
denote the running minimum. The second graph gt− is obtained from the
first graph gt′ using the tilt operation. Observe that some excursions of gt′
got merged with the tilt operation. The third graph gt is obtained from
the second graph by shifting it to the left by x∗(t), i.e., the length of the
first excursion of the second graph. If we denote by y the level of the first
excursion of gt′ then t = t′ + |y|/λ is the time instant when this excursion
reaches level zero and thus gets shifted.

From Definition 2.9 it follows that we have

gt(x) = g0

(
x+ Φ(t)

)
+ λt+

∫ t

0

(
x+ Φ(t)− Φ(s)

)
ds (2.12)

= g0

(
x+ Φ(t)

)
+
(
x+ Φ(t) + λ

)
t−

∫ t

0
Φ(s) ds.

Remark 2.12. Extending the dynamics of gt for initial states in m ∈ `↓2 will amount to
finding Φ(·) corresponding to g0 := f0, c.f. Definition 2.5. We will then define gt using the
formula (2.12): the question is how to define Φ(·) in a way that will appropriately extend

Definition 2.9 from m ∈ `↓0 to m ∈ `↓2. The technical issue that we have to overcome is
that for a typical t ≥ 0 our functions gt−(·) does not have a “first excursion” (c.f. (2.9))

if m ∈ `↓2 \ `
↓
1. For example, a Brownian motion with parabolic drift does not have a first

excursion, yet in Section 6.2 we will apply our tilt-and-shift representation to BMPD(u).

We are ready to state the main result of the paper.

Theorem 2.13. For any m ∈ `↓2 let us define g0(x) ≡ f0(x), where f0 is constructed using
Definition 2.5. There exists a random measure ν such that if we define Φ(t) = ν[0, t] and
gt(x) by (2.12) then

(i) the process E↓(gt), t ≥ 0 has the law of the MCLD(λ) process started from m,

(ii) if m ∈ `↓2 \ `
↓
1, then gt(0) = 0 for any t ≥ 0,

(iii) for any t, x ≥ 0, the event {Φ(t) ≤ x } is measurable with respect to the σ-algebra
F+
x :=

⋂
ε>0 σ (g0(x′), 0 ≤ x′ ≤ x+ ε).

We will prove Theorem 2.13 in Section 5.

Remark 2.14. (i) Put another way, Theorem 2.13(iii) says that for any fixed t, the ran-
dom variable Φ(t) := ν[0, t] is a stopping time with respect to the filtration (F+

x )x≥0.
We will make good use of this together with the strong Markov property of Brownian
motion in Section 6.2.

(ii) By Theorem 2.13(iii), The control function Φ(·) is measurable with respect to the
σ-algebra σ (g0(x), x ≥ 0). Therefore we have a “rigid” representation of MCLD(λ),
since the function gt(·) defined by (2.12) is determined by the initial state g0(·).
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(iii) We construct the measure ν that appears in Theorem 2.13 by extending our earlier

construction given in Definition 2.9 from `↓0 to `↓2 in the sense that we obtain ν as the

weak limit as n → ∞ of the measures ν(n) corresponding to initial conditions m(n)

truncated at index n, see Lemma 5.8 and Corollary 5.9.

(iv) If m ∈ `↓2 \ `
↓
1, then g0 is a continuous function satisfying g0(x)/x→ −∞ as x→∞

(see Lemmas 4.4, 5.3). We conjecture that for any such function g0, there is a unique
measure ν such that the function gt(x) controlled by Φ(t) = ν[0, t] according to (2.12)
satisfies
• gt(0) ≡ 0 for all t ≥ 0,
• gt−(x) ≥ 0 for any 0 ≤ x ≤ ν({t}) for all t ≥ 0.

(v) The function g0 is constant on each of its excursions. Suppose that h0 is another
càdlàg and lower semi-continuous function such that g0 = h̄0, that is, the excursions
of h0 have the same lengths and levels as those of g0. Define, analogously to (2.12),

ht(x) = h0

(
x+ Φ(t)

)
+ λt+

∫ t

0

(
x+ Φ(t)− Φ(s)

)
ds, (2.13)

so that ht is constructed using the same tilt-and-shift procedure as gt (and using the
same control function Φ). Then it is straightforward to see that h̄t = ḡt, and so, as at
(2.2), E↓(gt) and E↓(ht) are the same process. We will make use of this observation in
Section 6.2 when we consider the tilt-and-shift construction started from Brownian
motion with a parabolic drift.

3. Rigid representations: finite state space

In this section we restrict the MCLD(λ) process to the space `↓0 of states with only
finitely many blocks. The ultimate goal of this section is to prove Proposition 2.10.

In Section 3.1 we recall the notion of a size-biased rearrangement of m ∈ `↓0 and how

this notion can be extended to `↓2 using an appropriate family of independent exponential
random variables.

In Section 3.2 we define the interval coalescent with linear deletion (or briefly ICLD(λ))
and show that an ICLD(λ) with a size-biased initial state gives a representation of the
MCLD(λ).

In Section 3.3 we define our particle representation and show that if the initial heights
of particles form an appropriate family of independent exponential random variables, then
we obtain a representation of of the ICLD(λ) with a size-biased initial state.

In Section 3.4 we show that a copy of the particle system is embedded in the tilt-and-
shift representation introduced in Definition 2.9.

3.1. Construction of size-biased sequences using independent exponential ran-
dom variables. Now we recall some useful definitions from [2, Section 3.3].

Definition 3.1. Let m = (m1,m2, . . . ,mn) ∈ `↓0. A random total linear order ≺ on [n] is
a size-biased order (with respect to m) if for each permutation i1, i2, . . . , in of [n],

P(i1 ≺ i2 ≺ · · · ≺ in) =
n∏
r=1

mir

mir +mir+1 + · · ·+min

. (3.1)

We say that b = (b1, . . . , bn) is the size-biased reordering of m if bk = mik , where i1 ≺ i2 ≺
· · · ≺ in.

Definition 3.2. Suppose m ∈ `↓∞. Let Ei ∼ Exp(mi) independently for each i. Define a
random linear order on N by i ≺ j if and only if Ei < Ej .
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The proof of the next claim follows from the memoryless property of exponential random
variables and we omit it.

Claim 3.3. The law of ≺ introduced in Definition 3.2 is size-biased (with respect to the
sizes mi), in the sense that for any n ∈ N the restriction of ≺ to [n] is size-biased with
respect to (m1,m2, . . . ,mn), c.f. Definition 3.1.

Remark 3.4. (i) There is a smallest element with respect to the order ≺ if and only if

m ∈ `↓1. If m ∈ `↓∞ \ `↓1 then the values Ei are dense in R+, see Lemma 4.2.
(ii) The excursions (see Definition 2.1) of the random function f0 defined in Definition

2.5 appear in size-biased order.

3.2. A size-biased interval representation of MCLD(λ). We introduce a related pro-
cess bt, t ≥ 0 in which only neighbouring blocks are allowed to merge, and only the leftmost
block is allowed to be deleted.

Definition 3.5. With some abuse of notation, we denote by `0 =
⋃
n≥0 Rn>0 the space of

finite sequences with positive entries. Given b = (b1, . . . , bn) ∈ `0, let R↓(b) ∈ `↓0 denote
the reordering of b into non-increasing order.

Definition 3.6 (Interval coalescent with linear deletion, ICLD(λ)). The state space of
the continuous-time Markov process (bt) is `0. The dynamics consist of coalescence and
deletion:

(i) If b, b′ ∈ `0 where b′ ∈ Rn−1
>0 arises from b ∈ Rn>0 by merging the blocks bk and bk+1

for some 1 ≤ k < n; that is

b′i =


bi, i = 1, 2, . . . , k − 1

bk + bk+1, i = k

bi+1, i = k, . . . , n− 1

(3.2)

then the rate of the transition from b to b′ is

RIC(b, b′) = bk ·
n∑

i=k+1

bi. (3.3)

(ii) If b, b′ ∈ `0 where b′ ∈ Rn−1
>0 arises from b ∈ Rn>0 by deleting the leftmost block, i.e.,

b′i = bi+1, 1 ≤ i ≤ n− 1

then the rate of this transition is

RIC(b, b′) = λ ·
n∑
i=1

bi. (3.4)

All other rates of the ICLD(λ) are 0.

We are now ready to state the main result of Section 3.2.

Theorem 3.7. Let λ ≥ 0 and m ∈ `↓0. Let b0 be a random size-biased reordering (see
Definition 3.1) of m. Let bt, t ≥ 0 be an ICLD(λ) started from the initial state b0. Then

(i) the law of the process R↓(bt), t ≥ 0 is that of the MCLD(λ) process mt, t ≥ 0 started
from m0 = m, and

(ii) given the σ-algebra σ(R↓(bs), 0 ≤ s ≤ t), the conditional distribution of bt is that of
a random size-biased reordering of R↓(bt).

We will prove Theorem 3.7 in Section 3.2.1.

Remark 3.8. (i) To the best of our knowledge, even the λ = 0 case of Theorem 3.7 is
novel, and it gives an interval coalescent representation of the multiplicative coales-

cent process (on the state space `↓0).
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(ii) Theorem 3.7 generalizes in a natural way to any initial condition m ∈ `↓1. For initial
conditions with infinite total mass, the situation is more complicated since under the
natural extension of the concept of size-biased order (see Definition 3.2) there is no
smallest element of the order, and any two elements are separated by infinitely many
other elements in the order, c.f. Remark 3.4(i).

3.2.1. Proof of Theorem 3.7.

Lemma 3.9. Let b ∈ `0 and m = R↓(b). Then the total jump rate of the MCLD(λ) out
of the state m is the same as the total jump rate of the ICLD(λ) out of the state b.

Proof. The total jump rate in the MCLD(λ) is λ
∑
mi +

∑
i<jmimj . Since m is a re-

ordering of b, we obtain the same total rate for the ICLD(λ) by adding the deletion rate
in (3.4) to the sum over 1 ≤ k < n of the coalescence rate in (3.3). �

Lemma 3.10. Let m ∈ `↓0. The following two procedures give the same distribution of b′:

(1) Let b be a size-biased reordering of m, and then, given b, obtain b′ from b by
performing a single step of the jump chain of the ICLD(λ).

(2) Obtain m′ from m by performing a single step of the jump chain of the MCLD(λ),
and then, given m′, let b′ be a size-biased reordering of m′.

In particular, in (2) it is the case that the conditional distribution of b′ given R↓(b′) is that
of a size-biased reordering of R↓(b′), so the same is also true in (1).

Before proving Lemma 3.10, we use it to prove Theorem 3.7.

Proof of Theorem 3.7. Assume that the initial state has n non-zero blocks. Then the
process bt will make n jumps before being absorbed in the all-0 state. Let τ0 = 0 and let
τ1, . . . , τn be the jump times of the process, so that (bτ0 ,bτ1 , . . . ,bτn) is the jump-chain.

Let mt = R↓(bt). We claim that for 0 ≤ k ≤ n, the following properties hold:

P1(k): (mτ0 ,mτ1 , . . . ,mτk) has the distribution of the first k steps of the jump-chain of
the MCLD(λ).

P2(k): Given mτ1 , . . . ,mτk , the distribution of bτk is that of a random size-biased reorder-
ing of mτk .

As soon as we prove these properties, the proof of Theorem 3.7 follows using Lemma
3.9 and the memoryless property.

We now prove P1(k) and P2(k) by induction on k. The case k = 0 is immediate from
the definition of b0 in the statement of Theorem 3.7.

For the induction step, suppose that P1(k) and P2(k) hold for a given k with 0 ≤ k < n.
Now we condition on mτ1 , . . . ,mτk and apply Lemma 3.10 with the choices

m = mτk , b = bτk , m′ = mτk+1
, b′ = bτk+1

.

From P2(k), we know that given mτ1 , . . . ,mτk , the distribution of bτk is a random size-
biased reordering of mτk ; then, as in (1) of Lemma 3.10, we obtain bτk+1

by taking a step
of the ICLD(λ) chain from bτk .

Hence, using the final observation of Lemma 3.10, the distribution of bτk+1
given

mτ1 , . . . ,mτk ,mτk+1
, is a random size-biased reordering of mτk+1

, and P2(k + 1) holds.
But also, comparing with (2) of Lemma 3.10, the distribution we obtain of mτk+1

=

R↓(bτk+1
) is the same as we would have obtained by taking a step of the MCLD(λ) chain

from mτk . So indeed we can extend P1(k) to give P1(k + 1) also.
This completes the induction step. In this way we obtain that P1(n) and P2(n) hold,

and this completes the proof of Theorem 3.7. �
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Proof of Lemma 3.10. To avoid awkward notation, we will write the proof under the extra
assumption that m has all its block sizes distinct, and so does m′ for each m′ that can
be obtained from m′ by a coalescence step. The general statement can then be easily
obtained by continuity.

Under the above stated extra assumption we can write the transition rates of the
MCLD(λ) chain as follows. If m′ is obtained from m by merging the two blocks of size mI

and mJ , then the rate of the transition from m to m′ is

RMC(m,m′) = mImJ . (3.5)

If m′ is obtained from m by deleting the block of size mI , then the rate of the transition
from m to m′ is

RMC(m,m′) = λmI . (3.6)

Let πm denote the probability distribution on `0 which arises from the size-biased re-
ordering of m. Again if m has distinct block sizes, we can write

πm(b) = 1[R↓(b) = m ] ·
n∏
i=1

bi∑n
j=i bj

. (3.7)

Now, to prove Lemma 3.10 it is enough to demonstrate the following claim: if m ∈ `↓0
and b′ ∈ `0, with m′ = R↓(b′), then∑

b:R↓(b)=m

πm(b)RIC(b, b′) = RMC(m,m′)πm′(b
′). (3.8)

(Rescaled by the total jump rate, which by Lemma 3.9 are the same for the ICLD(λ) and
the MCLD(λ), the left side represents the probability of obtaining a given value b′ using
procedure (1) in Lemma 3.10, while the right side represents the same for procedure (2).)

To prove (3.8), there are two cases that we have to handle, corresponding to coalescence
and deletion.

We first treat the case of coalescence, that is we assume that the state R↓(b′) = m′

arises from m by merging some blocks with sizes mI and mJ . Then b′ has an interval of
size mI + mJ , say b′k = mI + mJ . There are exactly two reorderings b of m for which
RIC(b, b′) > 0, namely

b1 = (b′1, . . . , b
′
k−1,mI ,mJ , b

′
k+1, . . . , b

′
n),

b2 = (b′1, . . . , b
′
k−1,mJ ,mI , b

′
k+1, . . . , b

′
n).

Now let us rewrite the two sides of (3.8). The left side is∑
b:R↓(b)=m

πm(b)RIC(b, b′) = πm(b1)RIC(b1, b′) + πm(b2)RIC(b2, b′)
(3.3),(3.7)

=

(
k−1∏
i=1

b′i∑n
j=i b

′
j

)
mI∑n
j=k b

′
j

mJ∑n
j=k b

′
j −mI

·

(
n∏

i=k+1

b′i∑n
j=i b

′
j

)
·mI ·

 n∑
j=k

b′j −mI

+

(
k−1∏
i=1

b′i∑n
j=i b

′
j

)
mJ∑n
j=k b

′
j

mI∑n
j=k b

′
j −mJ

·

(
n∏

i=k+1

b′i∑n
j=i b

′
j

)
·mJ ·

 n∑
j=k

b′j −mJ

 .
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Using (3.5) and (3.7), the right side can be rewritten as

RMC(m,m′)πm′(b
′) = mImJ ·

(
k−1∏
i=1

b′i∑n
j=i b

′
j

)
mI +mJ∑n

j=k b
′
j

(
n∏

i=k+1

b′i∑n
j=i b

′
j

)
.

These are the same, so (3.8) holds in the case of coalescence.

We now turn to the case of deletion; that is, we assume that the state R↓(b′) = m′

arises from m by deleting a block of size mI . There is one rearrangement b of m for which
RIC(b, b′) > 0, namely

b0 = (mI , b
′
1, . . . , b

′
n). (3.9)

Thus ∑
b:m=R↓(b)

πm(b)RIC(b, b′) = πm(b0)RIC(b0, b′)

(3.4),(3.7)
=

mI

mI +
∑n

j=1 b
′
j

πm′(b
′) · λ ·

mI +

n∑
j=1

b′j


= λmI · πm′(b′)
= RMC(m,m′)πm′(b

′)

So (3.8) holds in this case also. This completes the proof of Lemma 3.10. �

3.3. Particle representation. The representation of the MCLD(λ) in Section 3.2 moved
some of the randomness of the process into the choice of an initial condition (using a size-
biased reordering). Thereafter the possible transitions of the process were restricted (only
neighbouring blocks were allowed to merge, and only the first block could be deleted).

In this section we take this to an extreme by giving a natural construction of the
process in which all the randomness is in the initial condition; the evolution of the process
thereafter is entirely deterministic, but nonetheless the process projects to the MCLD(λ).
Such processes might be called “rigid”.

Definition 3.11 (Particle system). Let m = (m1, . . . ,mn) ∈ `↓0. Let E1, . . . , En be
independent with Ei ∼ Exp(mi). For i = 1, . . . , n, let Yi(0) = −Ei be the initial height of
a particle i with mass mi. The heights of particles evolve over time; we describe the joint
evolution of the heights Y1(t), . . . , Yn(t) using a system of ordinary differential equations.

Analogously to the definition (2.5), we define

µt =
n∑
i=1

mi · δYi(t). (3.10)

The system of differential equations governing Y1(t), . . . , Yn(t) is

d

dt
Yi(t) = λ · 1[Yi(t) < 0 ] + µt(Yi(t), 0). (3.11)

We say that the particle i “dies” at time ti, where ti is defined by

ti := min{ t : Yi(t) = 0 }. (3.12)

A “time-t block” consists of the union of all the particles that share the same (strictly
negative) height at time t.

In words, particles start at negative locations and move up. If a particle reaches zero
then it stops there and dies. Before it dies, the speed of a particle is equal to λ plus
the total weight of particles strictly above it and strictly below zero. Observe that if two
particles ever reach the same height, then they stay together forever.
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Recall the definition of the ICLD(λ) process from Definition 3.6.

Proposition 3.12. Let bt ∈ `0 be the vector of sizes of the time-t blocks of the particle
system, in decreasing order of their height. Then the process bt, t ≥ 0 has the law of
ICLD(λ), started from an initial state b0.

Before proving Proposition 3.12, let us state the following corollary.

Corollary 3.13. The process mt = R↓(bt) has the law of MCLD(λ) started from the state
m.

Proof of Corollary 3.13. It follows from Definition 3.11 and Claim 3.3 that b0 is a size-
biased reordering of m. Now the statement of Corollary 3.13 follows from Theorem 3.7
and Proposition 3.12. �

Before we prove Proposition 3.12, let us introduce a useful notation.

Definition 3.14. Given b = (b1, . . . , bn) ∈ `0 we say that the the random vector

(Y (1), . . . , Y (n))

has law Exp≺(b) if 0 > Y (1) > · · · > Y (n),

−Y (1) ∼ Exp(b1 + b2 + · · ·+ bn)

Y (1) − Y (2) ∼ Exp(b2 + · · ·+ bn)

...

Y (k) − Y (k+1) ∼ Exp

(
n∑

i=k+1

bi

)
(3.13)

...

Y (n−1) − Y (n) ∼ Exp(bn),

and all these gaps are independent.

Proof of Proposition 3.12. Suppose there are n(t) time-t blocks. Let(
Y (1)(t), . . . , Y (n(t))(t)

)
(3.14)

be the vector of their heights in decreasing order. Then µt, defined at (3.10), is also given
by

µt =

n(t)∑
i=1

(bt)i δY (i)(t). (3.15)

Observe that in particular,
(
Y (1)(0), . . . , Y (n)(0)

)
is the decreasing rearrangement of the

initial heights of the particles, and Y (i)(0) is the initial height of a particle of mass (b0)i.
From here onwards, let us condition throughout on b0 = b = (b1, . . . , bn).
By repeatedly applying the memoryless property of the exponential distribution, we see

that given b0 = b, we have (
Y (1)(0), . . . , Y (n)(0)

)
∼ Exp≺(b), (3.16)

where Exp≺(·) was introduced in Definition 3.14.
Let us consider the time τ1 at which the first jump of the process (bt) occurs. This

jump may be either a deletion (if a block reaches height 0 and so dies) or it may be a
coalescence (if two blocks reach the same height). Between times 0 and τ1, the kth highest
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particle moves at speed λ+
∑k−1

i=1 bi. Hence the gap Y (k)(t)− Y (k+1)(t) decreases at rate

bk for 1 ≤ k ≤ n− 1, and the gap −Y (1)(0) decreases at rate λ.
Let us therefore define

t(0) :=
Y (1)(0)

λ
∼ Exp

(
λ(b1 + · · ·+ bn)

)
(3.17)

t(k) :=
Y (k)(0)− Y (k+1)(0)

bk
∼ Exp

(
bk

n∑
i=k+1

bi

)
for 1 ≤ k ≤ n− 1. (3.18)

These variables are all independent.
Then τ1 = min0≤k≤n−1 t

(k), and we have

τ1 ∼ Exp

λ n∑
i=1

bi +
∑

1≤i<j≤n
bibj

 .

Further, let κ = argmin0≤k≤n−1 t
(k). This argmin is uniquely defined with probability 1.

If κ = 0, then the event at time τ1 is a deletion of the highest block, while if κ = k ≥ 1
then the event at time τ1 is a coalescence of the kth and (k+ 1)st highest blocks. Then κ
and τ1 are independent; the probability that κ = k is proportional to λ

∑n
i=1 bi for k = 0,

and to bk
∑n

i=k+1 bi for 1 ≤ k ≤ n− 1.
Comparing the previous paragraph with the rates of the ICLD(λ) at (3.3) and (3.4), we

see that the distribution of the new state b′ = bτ1 , together with the time τ1 at which it
occurs, is the same as for the ICLD(λ) process.

From here on, let us condition further on τ1 and bτ1 = b′ as well as on b0 = b. Again
applying the memoryless property, the conditional distribution of the remaining height
gaps just before τ1, excluding the one which reaches 0 at that time, is unchanged from
what it was at time 0.

The heights and masses of blocks at time τ1 are given by

Y (i)(τ1) =

{
Y (i)(τ1−) for i ≤ κ,
Y (i+1)(τ1−) for i > κ,

(3.19)

and

b′i =


bi for i < κ,

bκ + bκ+1 for i = κ,

bi+1 for i > κ.

(3.20)

We therefore obtain that

−Y (1)(τ1) ∼ Exp

(
n−1∑
i=1

b′i

)

Y (k)(τ1)− Y (k+1)(τ1) ∼ Exp

(
n−1∑
i=k+1

b′i

)
for k = 1, . . . , n− 2,

and all these gaps are independent. Thus we have shown that(
Y (1)(τ1), . . . , Y (n−1)(τ1)

)
∼ Exp≺(b′).

So we can repeat the argument above starting from time τ1, until the time τ2 of the next
jump, obtaining that bt continues to evolve as an ICLD(λ) process. Continuing recursively
until the time of the nth jump (when the last death occurs and bt becomes identically
zero), we obtain the desired result. The proof of Proposition 3.12 is complete. �
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We will now prove a corollary of the results and methods developed in Sections 3.2 and
3.3. This corollary will only be used in Section 6.

We consider the particle system introduced in Definition 3.11. Let bt ∈ `0 be the vector
of sizes of the time-t blocks of the particle system, in decreasing order of their height and
let mt = R↓(bt). Let τ0 = 0 and denote by τk, k ≥ 1 the kth jump time of the process
(bt). Recall the notion of the point measure µt from (3.10) (or from (3.15)) and notion of
Exp(m) from Definition 2.4.

Corollary 3.15. (i) For any k ≥ 0, the conditional distribution of µτk given (mτi , 0 ≤ i ≤ k)
is Exp(mτk).

(ii) For any t ≥ 0, the conditional distribution of µt given (ms, 0 ≤ s ≤ t) is Exp(mt).

Before we prove Corollary (3.15), let us state the key claim needed for the proof. The
proof of this claim follows from the memoryless property and we omit it.

Claim 3.16. Let m = (m1, . . . ,mn) ∈ `↓0 and let b be a size-biased reordering of m.

Conditioned on b = b, let (Y (1), . . . , Y (n)) ∼ Exp≺(b) (c.f. Definition 3.14). Then the law
of µ =

∑n
i=1(b)iδY (i) is Exp(m) (c.f. Definition 2.4).

Proof of Corollary 3.15. Given mτ1 , . . . ,mτk , the distribution of bτk is that of a random
size-biased reordering of mτk (c.f. P2(k) in the proof of Theorem 3.7 and the proof of
Corollary 3.13).

In the proof of Proposition 3.12 we have seen that given bτ1 , . . . ,bτk , the conditional
joint distribution of the heights is(

Y (1)(τk), . . . , Y
(n(τk))(τk)

)
∼ Exp≺(bτk), n(τk) = n− k.

Combining the above observations with Claim 3.16 we obtain that the statement of
Corollary 3.15(i) indeed holds.

Now Corollary 3.15(ii) follows from the combination of part (i), the observation that
between the jumps of the process (bt) the height gaps between particles decrease at con-
stant speed and the memoryless property of the height gap distribution (c.f. Definition
3.14). �

3.4. Tilt-and-shift representation. In this section we connect the particle system in-
troduced in Definition 3.11 to the “tilt-and-shift” dynamics presented in Definition 2.9
and prove Proposition 2.10.

Definition 3.17. Assume g : [0,∞) → R ∪ {−∞} has only finitely many excursions.
Denote by

E(g) ∈ `0
the sequence of the lengths of the excursions of g, in order of appearance.

Let m = (m1, . . . ,mn) ∈ `↓0. Let Ei ∼ Exp(mi) independently for i = 1, . . . , n.
Consider the particle system of Section 3.3 in which a particle of size mi starts at height

Yi(0) = −Ei for each i = 1, . . . , n.
Define the function g0 ≡ f0 as at (2.6) or (2.7), and then gt, t > 0 using the tilt-and-shift

procedure of Definition 2.9.

Proposition 3.18. Let bt ∈ `0 be the vector of sizes of the time-t blocks of the particle
system in decreasing order of height. Then

(bt, t ≥ 0) = (E(gt), t ≥ 0) with probability 1. (3.21)

Then from Proposition 3.12, Corollary 3.13 and Theorem 3.7 we can immediately deduce
the following result:
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Corollary 3.19. (E(gt), t ≥ 0) has the law of ICLD(λ) started from an initial state which
is a size-biased reordering of m. Hence

(
E↓(gt), t ≥ 0

)
has the law of MCLD(λ) started

from m and thus Proposition 2.10 holds.

Proof of Proposition 3.18. We will show how to find a copy of the particle system embed-
ded within the tilt-and-shift process. Namely, the excursions of gt correspond to the time-t
blocks in the particle system. Specifically, an excursion [x, x′) of gt corresponds to a time-t
block whose size is the length x′ − x of the excursion, and whose height is the level gt(x)
of the excursion.

The idea is that the “tilt” part of the construction produces an upward drift of the
excursion levels which corresponds to the upward movement of the blocks in the particle
system; this drift causes neighbouring excursions to merge, corresponding to the merging
of blocks in the particle system when they reach the same height. Meanwhile the “shift”
mechanism which removes the leftmost excursion when its level reaches 0 corresponds to
the death of a block when it reaches height 0 in the particle system.

Recall that Y (1)(t), . . . , Y (n(t))(t) are the heights of the time-t blocks of the particle
system in decreasing order, and bt is the vector of the sizes of those blocks (in decreasing
order of height).

Let us denote b0 = (b1, . . . , bn). Write also

x0 = 0, x1 = b1, x2 = b1 + b2, . . . , xn = b1 + · · ·+ bn. (3.22)

Then the excursions of g0 are the intervals

[x0, x1), [x1, x2), . . . , [xn−1, xn) (3.23)

and the levels of these excursions are

g0(x0) = Y (1)(0), . . . , g0(xn−1) = Y (n)(0) (3.24)

(with g0(xn) = −∞).
Recall the time τ1, the time of the first merging or deletion in the particle system,

defined in the proof of Proposition 3.12, which we can also write as

τ1 = inf
{
t : Y (1)(t−) = 0 or Y (k)(t−) = Y (k+1)(t−) for some 1 ≤ k < n

}
. (3.25)

Since each block moves upwards at a rate equal to the sum of the sizes of blocks above it
plus λ, we have that for 1 ≤ k ≤ n and t ∈ [0, τ1),

d

dt
Y (k)(t) = b1 + · · ·+ bk−1 + λ

= xk−1 + λ. (3.26)

But also if we define

τ̃1 = inf
{
t : gt−(0) = 0 or gt−(xk−1) = gt−(xk) for some 1 ≤ k < n

}
, (3.27)

then by the definition of the tilt mechanism in Definition 2.9, we have that for 1 ≤ k ≤ n
and t ∈ [0, τ̃1),

d

dt
gt(xk−1) = xk−1 + λ. (3.28)

Since the derivatives on the right-hand sides of (3.26) and (3.28) are the same, and the
values at t = 0 are also the same by (3.24), we have that τ1 = τ̃1 and that

Y (k)(t) = gt(xk−1), k = 1, . . . , n, t ∈ [0, τ1). (3.29)

By (3.27), also gt(xk−1) > gt(xk) for all such k and t, and so for all t ∈ [0, τ1), the
excursions of gt are again given by (3.23). So indeed we find that throughtout [0, τ1) the
block heights and the excursion levels continue to correspond, and the block sizes and
excursion lengths do not change.
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Now we look at what happens at time τ1, which is the first time that the particle system
has a merge or deletion event. Recall from the proof of Proposition 3.12 the value κ which
describes which kind of event happens at time τ1.

• If 1 ≤ κ ≤ n − 1 then the event is a merge of the blocks with sizes bκ and
bκ+1. In that case we have that Y κ(τ1−) = Y κ+1(τ1−) and so also (by (3.29)) we
have gτ1−(xk−1) = gτ1−(xk). Hence at time τ1 also the excursions [xκ−1, xκ) and
[xκ, xκ+1) merge into a single excursion which is [xκ−1, xκ+1).

• If instead κ = 0 then Y (1)(τ1−) = 0 and gτ1−(0) = 0. Then time τ1 is the death
time of the block of size b1; also, following (2.9), at time τ1 there is a shift of size
x∗(τ1−) = x1 = b1. Then we obtain gτ1(x) = gτ1−(x+ b1).

In both of these cases the heights and masses of the particle system at time τ1 are given
by (3.19) and (3.20). If we now define

x′0 = 0, x′1 = b′1, x′2 = b′1 + b′2, . . . x′n−1 = b′1 + · · ·+ b′n−1, (3.30)

then we obtain that the excursions of gτ1 are the intervals

[x′0, x
′
1), [x′1, x

′
2), . . . , [x′n−2, x

′
n−1) (3.31)

and the levels of these excursions are

gτ1(x′0) = Y (1)(τ1), . . . , gτ1(x′n−2) = Y (n−1)(τ1). (3.32)

From here, proceeding from (3.31) and (3.32) just as we did from (3.23) and (3.24), we
can repeat the argument above from time τ1 until the time τ2 of the next jump of E(gt).
Continuing recursively until the time of the nth jump (when the last death occurs), we
obtain that the excursion lengths and block sizes continue to correspond, as required for
Proposition 3.18. �

Remark 3.20. Observe that written symbolically, we have shown that

ḡt(·) ≡ fµt(·), t ≥ 0, (3.33)

where ḡt is the minimum process of gt as defined at (2.1); from the expression (3.15)
for µt, and the definition of fµ in Definition 2.3, we have that fµt is the non-increasing

piecewise constant càdlàg function taking value Y (i)(t) on an interval of length (bt)i for
i = 1, . . . , n(t), and otherwise takes the value −∞.

In this formulation the statement of Proposition 3.18 can be seen to follow immediately,
since bt = E(fµt) and E(ḡt) = E(gt).

Corollary 3.21. Recalling the definition of ν from (2.10) and ti from (3.12), we have

ν =
n∑
i=1

mi · δti . (3.34)

Remark 3.22. We observed in Remark 3.8 that the ICLD(λ) process naturally generalizes

to any initial condition m ∈ `↓1. Similarly, the definitions and results of Sections 3.3 and 3.4

also extend to m ∈ `↓1. As a corollary, Proposition 2.10 generalizes to m ∈ `↓1. For initial
conditions with infinite total mass we cannot naively extend Definition 2.9, as explained

in Remark 2.12. The extension of the tilt-and-shift representation to m ∈ `↓2 \ `
↓
1 will be

carried out in Section 5.

4. Preparatory results about µ0 and excursions

In this section we collect preliminary results that we will later use in Section 5 when we

extend the rigid representation result of Section 3 from `↓0 to `↓2.
In Section 4.1 we state and prove some of the analytic properties of the random point

measure µ ∼ Exp(m) (c.f. Definition 2.4) given some m ∈ `↓2.
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In Section 4.2 we state and prove results related to excursions and the E↓ functional
(c.f. Definitions 2.1, 2.2).

4.1. Some facts about random point measures.

Lemma 4.1. Let m ∈ `↓2 and µ ∼ Exp(m). With probability 1,

(i) µ(A) <∞ for every bounded set A ⊆ (−∞, 0].
(ii) µ[y, y + 1]→ 0, as y → −∞.

Proof. For any 0 ≤ a < b,

E (µ[−b,−a])
(2.5)
=
∑
i

miP(Ei ∈ [a, b])
(2.4)
=

∑
i

mie
−ami

(
1− e−(b−a)mi

)
<
∑
i

m2
i (b− a) <∞

since m ∈ `↓2, and this is already enough to give (i).
For (ii), we have

E (µ[−k − 1,−k]) =
∑
i

mie
−kmi

(
1− e−mi

)
≤ ∑

i

m2
i e
−kmi → 0 as k →∞,

and also

Var (µ[−k − 1,−k]) =
∑
i

m2
i Var (1[k ≤ Ei ≤ k + 1]) ≤ ∑

i

m2
iP (k ≤ Ei ≤ k + 1) .

Thus
∑

k Var (µ[−k,−k − 1]) ≤
∑

im
2
i <∞.

Then let k be large enough such that E (µ[−k − 1,−k]) ≤ δ/2. Then by Chebyshev’s
inequality,

P(µ[−k,−k − 1] > δ) ≤ Var (µ[−k,−k − 1])(
δ − δ/2

)2 .

Hence
∑

k P(µ[−k,−k−1] > δ) <∞ and the result in (ii) follows from Borel-Cantelli. �

Lemma 4.2. If m ∈ `↓2\`
↓
1 and µ ∼ Exp(m), then with probability 1 we have µ[−b,−a] > 0

for any 0 < a < b.

Proof. It is enough to prove that for all pairs of rational numbers 0 < a < b we have
µ[−b,−a] > 0 with probability 1. This follows from the second Borel-Cantelli lemma and
the fact that

∞∑
i=1

P( a ≤ Ei ≤ b )
(2.4)
=

∞∑
i=1

e−ami

(
1− e−(b−a)mi

)
(∗)
= +∞ if m ∈ `↓2 \ `

↓
1,

where (∗) follows from e−am
(
1− e−(b−a)m

)
≈ (b− a)m as m→ 0. �

4.2. Good functions. We define a set G of “good” functions. Recall the notion of ex-
cursions from Definition 2.1.

Definition 4.3. If g is a function from [0,∞) to R ∪ {−∞}, we say g ∈ G if:

(i) g is lower semi-continuous and càdlàg.
(ii) If g(x) = −∞ then g(x′) = −∞ for all x′ > x.
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(iii) For any ε > 0, g has only finitely many excursions above its minimum with length
greater than or equal to ε.

(iv) Let xmax = sup{x : x > −∞} ≤ ∞. The Lebesgue measure of the set of points in
(0, xmax) which are not contained in some excursion above the minimum is 0.

If g ∈ G, then E↓(g) (see Definition 2.2) is well-defined.

Lemma 4.4. Suppose f0 is defined from m ∈ `↓2 by Definition 2.5. Define ft by (2.8).
Then with probability 1, we have ft ∈ G for all t ≥ 0.

Proof. Properties (i), (ii) in Definition 4.3 can be deduced for ft directly from the defini-
tions (2.6) and (2.8). Property (iv) for ft follows from the fact that (iv) holds for f0 (see
Remark 2.6(i)) and the observation that every excursion of f0 is contained in an excursion
of ft.

It remains to justify property (iii). The function f0 is non-increasing, and Lemma 4.1(ii)
tells us that the length of the interval on which f0 takes values in [y, y + 1] tends to 0 as
y → −∞. Hence for every ε there exists a Kε such that f0(x) − f0(x − ε) < −1 for all
x ≥ Kε. As a result, ft(x)− ft(x− ε) < −1 + tε. If ε < 1/t, we find that ft(x) < ft(x− ε),
so all excursions intersecting (Kε,∞) must have length less than ε, as desired.

�

Lemma 4.5. Given some f0 ∈ G define ft by (2.8) and assume that ft ∈ G for all t ≥ 0.

The function E↓(ft) from [0,∞) to `↓∞ is càdlàg.

Proof. Let us write m(t) = (m1(t),m2(t), . . . ) = E↓(ft). Since we use the topology of

coordinatewise convergence on `↓∞, it is enough to show that the function t 7→ mi(t) is
càdlàg for all i.

Consider 0 ≤ t′ < t. Since ft is obtained from ft′ by adding on an increasing function,
any minimum of ft is also a minimum of ft′ , and any excursion of ft′ is a sub-interval of
an excursion of ft.

Fix t and suppose [l, r) is an excursion of ft. Take ε with 0 < ε < 2l. Recalling the
notion of f̄ from (2.1), we have f̄t(l − ε/2) > ft(l); hence if δ is sufficiently small, then

f̄t+δ(l − ε/2) > ft(l) + δl = ft+δ(l),

and so ft+δ has a minimum in [l − ε/2, l].
Also, there is some x ∈ (r, r + ε/2) with ft(x) < ft(l). Hence if δ is sufficiently small,

then ft+δ has a minimum in [r, r + ε/2].
So for any ε, we can find δ such that the length of the excursion of ft+δ which includes

(l, r) is at most r − l + ε.

Now we will argue that for any ε > 0 there exists small enough δ such that the length
m1(t+ δ) is at most m1(t) + ε.

Fix any T > t and consider δ ∈ (0, T − t). Since the excursions of ft+δ are contained
in the excursions of fT , any excursion of ft+δ of length more than m1(t) + ε must be
contained in an excursion of fT whose length also exceeds that. There are only finitely
many such excursions of fT since fT ∈ G. Let U be the union of those excursions, which
has finite total length, say L.

Now let us look at all the excursions of ft contained in U . There are at most countably
many. We can take a finite number of them whose total length is at least L − ε. Each
of them has length no more than m1(t). From the property above, if we choose δ small
enough, then at time t+ δ, none of them is contained in an excursion of length more than
m1(t) + ε. But also, since the remaining length of U outside this set is only ε, then also
no other point in U is contained in an excursion of length more than m1(t) + ε.

It follows that m1(t+ δ) ≤ ε+m1(t) as desired.
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In similar fashion we can also obtain that
∑k

i=1mi(t+δ) ≤ ε+
∑k

i=1mi(t) for sufficiently

small δ, for any k. But note that
∑k

i=1mi(t) is non-decreasing in t. So for each k,∑k
i=1mi(t) is right-continuous with left limits, and hence the same is true for mi(t) for

each i. �

Corollary 4.6. Given some f0 ∈ G define ft by (2.8) and assume that ft ∈ G for all
t ≥ 0. Then the set of times t such that ft has a non-strict excursion (c.f. Definition 2.1)
is countable.

Proof. By Lemma 4.5 the function t 7→ E↓(ft) is càdlàg, therefore it has countably many
jumps, c.f. [17, Section 12, Lemma 1]. Thus we only need to show that if ft0 has a non-strict
excursion for some t0 > 0 then t 7→ E↓(ft) jumps at t0. If [l, r) is a non-strict excursion
of ft0 , then f(l) = f(x) for some x ∈ (l, r). Now if t < t0 and [l′, r′) is an excursion of
ft, then x is not in the interior of [l′, r′). This implies that for any t < t0 the function ft
has at least two disjoint excursions contained in [l, r) that are separated by x, and these
excursions merge at time t0, thus if k0 is the smallest index k for which mk(t0) < r − l
then the non-decreasing function t 7→

∑k0−1
i=1 mi(t) jumps at time t0. �

Definition 4.7. A family of good functions f (i) ∈ G, i ∈ I is said to be uniformly good if
for any ε there exists Kε ∈ R such that for any i ∈ I the excursions of f (i) intersecting
[Kε,∞) are all shorter than ε.

Lemma 4.8. Let f ∈ G be continuous and assume that all of the excursions of f are strict
(c.f. Definition 2.1). Let f (n) ∈ G, n ∈ N be a sequence of (not necessarily continuous)
functions that converge to f uniformly on bounded intervals. Let us also assume that the
family consisting of f and f (n), n ∈ N is uniformly good. Then E↓(f (n)) → E↓(f) as

n→∞ in the product topology on `↓∞.

Proof. Suppose (l, r) is an excursion of f . For any given γ > 0 (with γ < l), there is a
δ > 0 such that the following properties hold:

(i) f(x) ≥ f(l) + δ for all x ∈ [0, l − γ];
(ii) f(x) ≥ f(l) + δ for all x ∈ [l + γ, r − γ];
(iii) f(x) ≤ f(l)− δ for some x ∈ [r, r + γ].

Here (i) holds since f has a minimum at l and, being continuous, must achieve its bounds
on [0, l−γ]; (ii) holds since the excursion is strict, and (iii) holds since by the definition of
excursions, there must be points arbitrarily close to the right of r which take value lower
than f(l).

Now suppose n is large enough that |f (n)(x) − f(x)| < δ/2 for all x ∈ [0, r + γ]. Then
we obtain the following properties:

(i) f (n)(x) ≥ f(l) + δ/2 for all x ∈ [0, l − γ];

(ii) f (n)(x) ≥ f(l) + δ/2 for all x ∈ [l + γ, r − γ];

(iii) g(n)(x) ≤ f(l)− δ/2 for some x ∈ [r, r + γ];

(iv) g(n)(l) ∈ (f(l)− δ/2, f(l) + δ/2).

Then f (n) must have an excursion which starts somewhere in [l − γ, l + γ] and ends
somewhere in [r − γ, r + γ].

Now let ε > 0 and choose Kε such that the excursions of f and f (n), n ∈ N intersecting
[Kε,∞) are all shorter than ε.

Now by Definition 4.3(iv) there exists a finite collection of excursions (lj , rj) of f , whose
union covers all of [0,Kε + ε] except for a set of total length less than ε/2. Let k be the
total number of these excursions. Apply the above argument to all of these excursions
with γ = ε/4k. Then if n is sufficiently large, we have that for each of these excursions of

f , there is a corresponding excursion of f (n) whose length is within ε/2k; the remaining
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length in [0,Kε + ε] amounts to no more than ε; and we know that outside [0,Kε + ε], all

excursions (either of f (n) or f) have length less than or equal to ε.

It follows that for any i > 0, the ith largest excursion of f (n) and the ith largest
excursion of f differ by at most ε. Hence indeed E↓(f (n)) converges componentwise to
E↓(f), as desired.

�

5. Extension of rigid representation to `↓2

In this section we will extend the rigid representation results of Section 3 to any initial

condition m ∈ `↓2. As we have discussed in Remark 3.22, extension from `↓0 to `↓1 is

automatic, so in this section we will assume that m ∈ `↓2 \ `
↓
1.

In Section 5.1 we prove that the MC admits a tilt representation, i.e., Theorem 2.8.
In Section 5.2 we prove that the MCLD admits a tilt-and-shift representation, i.e.,

Theorem 2.13.

5.1. Extension of MC tilt representation to `↓2. The aim of this section is to prove
Theorem 2.8.

f0 is defined from m ∈ `↓2 by Definition 2.5. ft is defined by (2.8).

Definition 5.1. By Lemma 4.4 and Corollary 4.6 the (random) set of times t such that
ft has a non-strict excursion (c.f. Definition 2.1) is countable. Hence for all but countably
many t, the probability that all excursions of ft are strict is equal to 1. Let T denote this
(deterministic) set of “good” times t.

From Lemma 4.4 and Lemma 4.5 it follows that t 7→ E↓(ft) is a càdlàg process with

respect to the product topology on `↓∞. The graphical representation of the multiplicative
coalescent mt constructed in [2, Section 1.5] is also a càdlàg process with respect to the
topology of the d(·, ·)-metric defined in (1.2) (see [30, Lemma 2.8]), thus it is càdlàg with

respect to the weaker product topology on `↓∞.
Hence, since T is dense, if we can show that for any finite collection t1, . . . , tr ∈ T , we

have

(E↓(fti), 1 ≤ i ≤ r)
d
= (mti , 1 ≤ i ≤ r), (5.1)

then indeed the law of E↓(ft) is that of the MC.

For each n, let m(n) be given by

m
(n)
i =

{
mi, i ≤ n
0, i > n

. (5.2)

For each n, m(n) ∈ `↓0, and m(n) → m in `↓2 as n→∞.

We couple the processes starting from m(n), n ≥ 1, by using the same height variables
Yi = −Ei throughout. If we define

f
(n)
t (x) = f

(n)
0 (x) + tx,

then by the λ = 0 case of Proposition 2.10 we have

(E↓(f (n)
ti

), 1 ≤ i ≤ r) d
= (m

(n)
ti
, 1 ≤ i ≤ r), (5.3)

where m
(n)
t , t ≥ 0 is the MC started from m(n).

By the Feller property of the MC (see [2, Proposition 5]) we have

(m
(n)
ti
, 1 ≤ i ≤ r) d→ (mti , 1 ≤ i ≤ r), n→∞ (5.4)

(with respect to the topology of `↓2 and hence also coordinatewise).
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We will let n→∞, and show that

E↓(f (n)
t )→ E↓(ft) for all t ∈ T

coordinate-wise with probability 1.
(5.5)

Putting together (5.3),(5.5) and (5.4) we obtain (5.1) as required.

It remains to show (5.5). We will achieve this by checking that the conditions of Lemma

4.8 almost surely hold if t ∈ T . We may assume that m ∈ `↓2 \ `
↓
1, as discussed in the first

paragraph of Section 5.

Lemma 5.2. Fix t > 0. With probability 1, the family of functions that consists of f
(n)
t ,

n ≥ 1 and ft is uniformly good (c.f. Definition 4.7).

Proof. Recalling Definitions 2.3 and 2.5 we see that

f
(n)
0 = f

µ
(n)
0

, where µ
(n)
0 =

n∑
i=1

mi · δYi .

Now µ0−µ(n)
0 =

∑
n<imi ·δYi is a non-negative measure for each n ∈ N, thus µ0 dominates

µ
(n)
0 for each n and we obtain the proof of Lemma 5.2 by repeating the argument of proof

Lemma 4.4, uniformly in n. �

Lemma 5.3. If m ∈ `↓2 \ `
↓
1 then for any t ≥ 0 the function ft(·) is continuous and

f
(n)
t → ft uniformly on bounded intervals.

Proof. Since f
(n)
t (x) = f

(n)
0 (x) + tx, and ft(x) = f0(x) + tx, it is enough to show the

statements of the lemma for t = 0.
The function f0 is non-increasing, moreover by Lemma 4.2 the values Ei, i ≥ 0 are dense

in [0,∞), thus by Remark 2.6(i) the values f0 takes are dense in (−∞, 0). Hence f0 is
continuous.

Since f0 is a continuous function on [0,∞), it is uniformly continuous on any bounded
sub-interval.

Fix any U < ∞. Let us define n0 = min{n :
∑n

i=1mi > U }. For all n ≥ n0 we have

f
(n)
0 (U) ≥ f (n0)

0 (U) =: −S.

Consider x ≤ U , n ≥ n0. By (2.7) have f
(n)
0 (x) = Yk, where k is such that

x ∈

 ∑
j≤n :Ej<Ek

mj , mk +
∑

j≤n :Ej<Ek

mj

 .

By considering the interval on which the function f0 takes the same value Yk, we have

f
(n)
0 (x) = f0(x+ δ) where δ =

∑
j>n :Ej<Ek

mj .

For all n ≥ n0 we have δ ≤
∑

j>n :Ej<S
mj . This goes to 0 as n→∞ by Lemma 4.1 and

dominated convergence.

Then by the uniform continuity of f0 on bounded intervals, we have that f
(n)
0 → f0

uniformly on [0, U ], as desired. �

Finally, we can insert the properties derived in Definition 5.1 and Lemmas 5.2, 5.3 into
Lemma 4.8 to obtain (5.5). This completes the proof of Theorem 2.8.
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5.2. Extension of MCLD tilt-and-shift representation to `↓2. The aim of this section
is to prove Theorem 2.13.

In Section 5.2.1 we give quantitative bounds on the effect of the insertion of a new
particle in a finite particle system on the death times of other particles.

In Section 5.2.2 we construct the death times of each particle in the infinite particle

system associated to the initial state m ∈ `↓2 by inserting particles one by one and showing
that death times converge.

In Section 5.2.3 we collect some technical lemmas that allow us to deduce the con-
vergence of the ordered sequence of excursion lengths from the approximation results of
Section 5.2.2.

In Section 5.2.4 we extend the MCLD tilt-and-shift representation from `↓1 to `↓2, i.e.,
we prove Theorem 2.13.

5.2.1. Perturbation of the particle system. Recall the particle system introduced in Section
3.3. The main result of Section 5.2.1 is Lemma 5.4, which quantifies the effect of the
insertion of a new particle on the death times of other particles. This perturbation result
will play an important role when we extend our rigid representation of MCLD(λ) from

`↓0 to `↓2 in Section 5.2.2 using truncation and approximation. Note that Lemma 5.4 is a
deterministic result, i.e., it holds for any initial configuration of particles.

Lemma 5.4. For any m = (m1, . . . ,mn) ∈ `↓0 and Y1(0), . . . , Yn(0), let us define Y1(t), . . . , Yn(t),
µt and t1, . . . , tn as in Definition 3.11.

Let us initialize a new particle system Ỹ0(t), . . . , Ỹn(t) by letting Ỹi(0) = Yi(0) for any

i = 1, . . . , n and by adding a new particle with initial height Ỹ0(0) and mass m̃.

Let us then define Ỹ0(t), . . . , Ỹn(t), µ̃t and t̃0, . . . , t̃n analogously to Definition 3.11. Then
we have

|t̃i − ti| ≤ 1[Ỹ0(0) > Yi(0)]
m̃|Yi(0)|
λ2

exp

(
µ0(Yi(0), 0)

λ

)
, i = 1, . . . , n. (5.6)

The rest of Section 5.2.1 is devoted to the proof of Lemma 5.4.

Without loss of generality we may assume Y1(0), Y2(0), . . .Yn(0) are all distinct, because
if Yi(0) = Yj(0) for some i 6= j then we can replace our particle system by another one
with fewer particles in which these two particles are merged.

With a slight abuse of notation, for the rest of Section 5.2.1 we will relabel our particles
so that we have Y1(0) > Y2(0) > · · · > Yn(0) and denote by mi the weight and ti the death
time of the particle with initial location Yi(0). Thus we have

t1 ≤ t2 ≤ · · · ≤ tn.
The next lemma gives a recursive formula for t1, . . . , tn.

Lemma 5.5. Let us formally define t0 = 0. We have

ti = ti−1 ∨
|Yi(0)| −

∑i−1
j=1mjtj

λ
, 1 ≤ i ≤ n. (5.7)

Proof. First observe that we have

|Yi(0)| (3.12)
= Yi(ti)− Yi(0) =

∫ ti

0
Ẏi(t) dt

(3.11)
=

∫ ti

0
(λ+ µt(Yi(t), 0)) dt

(3.10)
=

∫ ti

0

λ+

i−1∑
j=1

mj1[Yi(t) < Yj(t) < 0 ]

 dt. (5.8)

We will prove (5.7) by considering two cases separately.
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First case: If ti > ti−1 then

|Yi(0)| (∗)
=

∫ ti

0

λ+
i−1∑
j=1

mj1[t < tj ]

 dt = λti +
i−1∑
j=1

mjtj , (5.9)

where in (∗) we used (5.8) and the fact that ti > ti−1 implies Yj(t) > Yi(t) for any t < ti
and j ≤ i− 1. Rearranging (5.9) we obtain that if ti > ti−1 then we have ti = t∗i , where

t∗i :=
|Yi(0)| −

∑i−1
j=1mjtj

λ
,

therefore (5.7) holds.

Second case: Now we assume ti = ti−1. First note that

|Yi(0)|
(5.8)

≤
∫ ti

0

λ+

i−1∑
j=1

mj1[t < ti]

 dt = λti +

i−1∑
j=1

mjtj . (5.10)

Rearranging (5.10) we obtain t∗i ≤ ti. Now if ti = ti−1, then t∗i ≤ ti−1, and therefore (5.7)
holds. �

Recall the notion introduced in the statement of Lemma 5.4. Denote by

i∗ = inf{ i : Yi(0) < Ỹ0(0) }. (5.11)

In particular, we define i∗ =∞ if Yi(0) ≥ Ỹ0(0) for all i ∈ [1, n].
By (3.11) the speed of Yi(t) only depends on the locations of particles strictly above it,

so we have Ỹi(t) ≡ Yi(t) for any 1 ≤ i < i∗, thus we have ti = t̃i for any 1 ≤ i < i∗, and
(5.6) trivially follows for these particles.

For any i∗ ≤ i ≤ n we will think about t̃i = t̃i(m̃) as a function of the variable m̃ ≥ 0,
which represents the weight of the inserted particle. With this definition we have t̃i(0) = ti.
Let us define the Lipschitz constant Li by

Li = sup
0≤m̃<m̃′

|t̃i(m̃′)− t̃i(m̃)|
m̃′ − m̃

.

In order to prove (5.6), we only need to show

Li ≤
|Yi(0)|
λ2

exp

(
µ0(Yi(0), 0)

λ

)
, i = i∗, . . . , n. (5.12)

We begin with the following claim. The proof is trivial and we omit it.

Claim 5.6. If F and G are both Lipschitz-continuous functions of the variable m̃ with
Lipschitz-constants LF and and LG, and H(m̃) := F (m̃) ∨ G(m̃), then the Lipschitz-
constant LH satisfies LH ≤ LG ∨ LH .

Denote by t̃0(m̃) the death time of particle Ỹ0(t) in the particle system Ỹ0(t), Ỹ1(t), . . . , Ỹn(t).
Note that we have t̃0(m̃) = t̃0(0), i.e., the death time of the inserted particle does not de-
pend on its weight, so we will omit dependence of t̃0 on m̃.

Lemma 5.7. For any i∗ ≤ i ≤ n we have

Li ≤
1

λ

t̃0 +
i−1∑
j=i∗

mj · Lj

 . (5.13)
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Proof. For i∗ ≤ i ≤ n, the recursion (5.7) for the new particle system reads

t̃i(m̃) = t̃i−1(m̃) ∨
|Yi(0)| −

∑i∗−1
j=1 mjtj − m̃t̃0 −

∑i−1
j=i∗mj t̃j(m̃)

λ
. (5.14)

We will prove (5.13) by induction on i. We begin with i = i∗. Since t̃i∗−1(m̃) = ti∗−1

and thus Li∗−1 = 0, we obtain from Claim 5.6 and (5.14) that Li∗ ≤ t̃0/λ, thus (5.13)
holds if i = i∗.

As for the induction step, we obtain from Claim 5.6 and (5.14) that

Li ≤ Li−1 ∨
1

λ

t̃0 +

i−1∑
j=i∗

mj · Lj

 . (5.15)

Now (5.13) holds for i by (5.15) and the induction hypothesis (i.e., the assumption that
(5.13) holds for i− 1).

�

From the recursive inequalities (5.13) one readily deduces by induction on i the following
explicit bound:

Li ≤
t̃0
λ
·
i−1∏
j=i∗

(
1 +

mj

λ

)
, i∗ ≤ i ≤ n. (5.16)

Now we are ready to prove (5.12) for any i∗ ≤ i ≤ n:

Li
(5.16)

≤ ti
λ
·
i−1∏
j=1

(
1 +

mj

λ

)
≤ ti
λ
· exp

 i−1∑
j=1

mj

λ

 (3.11),(3.12)

≤

|Yi(0)|
λ2

exp

 i−1∑
j=1

mj

λ

 =
|Yi(0)|
λ2

exp

(
µ0(Yi(0), 0)

λ

)
.

The proof of (5.12) and Lemma 5.4 is complete.

5.2.2. Truncation and approximation. The main result of Section 5.2.2 is Lemma 5.8 which

extends the “shift” operator from `↓0 to `↓2 using truncations and approximation, c.f. Re-
marks 2.12 and 2.14(iii).

Given some m ∈ `↓2, let us generate E1, E2, . . . as in (2.4). Define the truncation m(n)

by (5.2). We define g
(n)
0 (·) ≡ f

(n)
0 (·) using E1, E2, . . . , En by (2.6). Note that we still

denote by ft(·) the function constructed from the un-truncated m by (2.6) and (2.8), and
also that we use the same sequence of random variables E1, E2, . . . to obtain a coupling

of g
(n)
0 (·), n ∈ N. We define g

(n)
t (·) from g

(n)
0 (·) using Definition 2.9. This gives rise to the

measure ν(n) by (2.10) and the function Φ(n) by (2.11). By (2.12) we have

g
(n)
t (x) = g

(n)
0 (x+ Φ(n)(t)) + λt+

∫ t

0

(
x+ Φ(n)(t)− Φ(n)(s)

)
ds. (5.17)

Our next result states that P-almost surely ν(n) vaguely converges to some ν as n→∞.

Lemma 5.8. If ν(n), n ∈ N is defined as above then P-almost surely there exists a locally
finite measure ν on [0,∞) such that for any compactly supported continuous function
h : [0,∞)→ R we have

lim
n→∞

∫ ∞
0

h(t) dν(n)(t) =

∫ ∞
0

h(t) dν(t), P− a.s. (5.18)
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Corollary 5.9. By the portemanteau theorem (5.18) implies

lim
n→∞

Φ(n)(t) = Φ(t) if ν({t}) = 0, where Φ(t) := ν([0, t]) (5.19)

Proof of Lemma 5.8. We will use the particle representation (see Section 3.3)

Y
(n)

1 (t), . . . , Y (n)
n (t)

of g
(n)
t (·). We can then write ν(n) =

∑n
i=1mi · δt(n)

i

, see (3.34). Note that

Y
(n)
i (0) = Yi(0) for any 1 ≤ i ≤ n.

Let us assume that the function h : [0,∞) → R for which we want to show (5.18) is
supported on [0, T ].

Recalling the definition µ0 =
∑∞

i=1mi · δYi(0), we analogously define µ
(n)
0 =

∑n
i=1mi ·

δYi(0). Then by Lemma 4.1 there exists a P-almost surely finite random variable K0 such
that

sup
n≥0

µ
(n)
0 [−K, 0]

K
=
µ0[−K, 0]

K
≤ 1

2T
, for any K ≥ K0. (5.20)

If |Yi(0)| = Ei > K0 then for any t ≥ 0 we have

d

dt
Y

(n)
i (t)

(3.11)

≤ λ+ µ
(n)
t (Y

(n)
i (t), 0) ≤ λ+ µ

(n)
0 (Yi(0), 0)

(5.20)

≤ λ+
|Yi(0)|

2T
. (5.21)

This implies that if Yi(0) < Y := −(K0 ∨ 2λT ), then

Y
(n)
i (T )

(5.21)

≤ Yi(0) +

(
λ+
|Yi(0)|

2T

)
· T < 0,

which implies that the time of death t
(n)
i of particle i (see (3.34)) satisfies

h(t
(n)
i ) = 0 if Yi(0) < Y. (5.22)

Our aim is to show that the sequence
∫∞

0 h(t) dν(n)(t), n ∈ N is Cauchy. In order to
show this we let n ≤ m and bound∣∣∣∣∫ ∞

0
h(t) dν(m)(t)−

∫ ∞
0

h(t) dν(n)(t)

∣∣∣∣ (3.34),(5.22)

≤

n∑
i=1

mi ·
∣∣∣h(t

(m)
i )− h(t

(n)
i )
∣∣∣ · 1[Yi(0) ≥ Y ] + ‖h‖∞ ·

m∑
i=n+1

mi · 1[Yi(0) ≥ Y ]. (5.23)

In order to bound the first term on the right-hand side of (5.23) we observe that if 1 ≤ i ≤ n
and Yi(0) ≥ Y then∣∣∣t(m)

i − t(n)
i

∣∣∣ ≤ m−1∑
k=n

∣∣∣t(k+1)
i − t(k)

i

∣∣∣ (5.6)

≤

m−1∑
k=n

1[Yk+1(0) ≥ Y ]
mk+1|Yi(0)|

λ2
exp

(
µ

(k)
0 (Yi(0), 0)

λ

)
≤

|Y |
λ2

exp

(
µ0(Y, 0)

λ

) ∞∑
k=n

mk+1 · 1[Yk+1(0) ≥ Y ]. (5.24)

Note that Lemma 4.1 implies that with probability 1 we have
∞∑
i=n

mi · 1[Yi(0) ≥ Y ]→ 0 as n→∞.
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If we combine this with (5.23), (5.24) and the fact that h(·) is uniformly continuous, we

can conclude that
∫∞

0 h(t) dν(n)(t), n ∈ N is a Cauchy sequence for any h ∈ C0(R), from
which it follows that the exists ν for which (5.18) holds. �

Lemma 5.10. If ν is the random measure obtained in Lemma 5.8, then for every t ≥ 0
there exists y ∈ (−∞, 0] such that

ν[0, t] = µ0[y, 0]. (5.25)

Proof. Note that ν(n) =
∑n

i=1mi · δt(n)
i

for every n ∈ N, where Yi ≥ Yj implies t
(n)
i ≤ t

(n)
j

for every 1 ≤ i, j ≤ n. Since ν(n) is an atomic measure with masses (mi)
n
i=1 located at(

t
(n)
i

)n
i=1

and ν(n) → ν vaguely, we can conclude that ν is also an atomic measure with

masses (mi)
∞
i=1 located at (ti)

∞
i=1 where limn→∞ t

(n)
i = ti, thus Yi ≥ Yj implies ti ≤ tj for

every i, j ∈ N. From this (5.25) readily follows. �

5.2.3. Tilt-and-shift continuity lemmas. We will prove Theorem 2.13(i) in Section 5.2.4 by
replicating the argument given in Section 5.1. In Section 5.2.3 we collect some ingredients
of this proof.

Given some m ∈ `↓2 \`
↓
1 we defined g0(·) = f0(·) by (2.6), ν by Lemma 5.8, Φ(·) by (5.19)

and gt(·) by (2.12). The next lemma is the tilt-and-shift version of Lemma 4.5.

Lemma 5.11. If m ∈ `↓2 \ `
↓
1 then the function t 7→ E↓(gt) is càdlàg with respect to the

product topology on `↓∞.

Proof. Let us fix t ≥ 0 and define the auxiliary functions

g∗t+∆t(x) = gt(x+ Φ(t+ ∆t)− Φ(t)), g∗∗t+∆t(x) = gt(x) + ∆t · x.
From (2.12) we obtain

gt+∆t(x) = g∗t+∆t(x) + λ∆t+

∫ t+∆t

t
(x+ Φ(t+ ∆t)− Φ(s)) ds, (5.26)

gt+∆t(x) = g∗∗t+∆t(x+ Φ(t+ ∆t)− Φ(t)) + λ∆t−
∫ t+∆t

t
Φ(s) ds. (5.27)

If m,m′ ∈ `↓∞, we say that m � m′ if
∑i

j=1mj ≤
∑i

j=1m
′
j for any i ∈ N.

We are going to show

E↓(g∗t+∆t) � E↓(gt+∆t), (5.28)

E↓(gt+∆t) � E↓(g∗∗t+∆t), (5.29)

E↓(g∗t+∆t)→ E↓(gt) in `↓∞ as ∆t↘ 0, (5.30)

E↓(g∗∗t+∆t)→ E↓(gt) in `↓∞ as ∆t↘ 0. (5.31)

As soon as we show (5.28)–(5.31), we immediately obtain

E↓(gt+∆t)→ E↓(gt) in `↓∞ as ∆t↘ 0,

i.e., the right-continuity of t 7→ E↓(gt) with respect to the `↓∞ topology. The proof of the
existence of left limits is similar and we omit it.

(5.28) follows from the fact that gt+∆t is obtained from g∗t+∆t by adding an increasing
function (see (5.26)), thus the collection of excursions of gt+∆t are obtained by merging
some excursions of g∗t+∆t.

(5.29) follows from the fact that gt+∆t is obtained from g∗∗t+∆t by a shift to the left
plus an addition of a constant (see (5.27)), thus the excursions of gt+∆t are obtained by
deleting/splitting some excursions of g∗t+∆t.
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If we apply Lemma 5.10 with µt in place of µ0 then it follows that for every ∆t ≥ 0
there exists some y ∈ (−∞, 0] such that Φ(t+ ∆t)− Φ(t) = µt[y, 0] (see (3.10)), thus the
collection of excursions of g∗t+∆t is obtained by removing some excursions of gt whose total
length is Φ(t+∆t)−Φ(t). From this (5.30) follows, since Φ(t+∆t)−Φ(t) = ν(t, t+∆t]→ 0
as ∆t↘ 0.

From (2.12) and Lemma 4.4 it follows that g∗∗t+∆t(x) ∈ G for any ∆t ≥ 0, thus Lemma
4.5 implies (5.31). The proof of Lemma 5.11 is complete. �

Corollary 5.12. If m ∈ `↓2 \ `
↓
1 then the set of times t such that gt has a non-strict

excursion (c.f. Definition 2.1) is countable.

Proof. By Lemma 5.11 the function t 7→ E↓(gt) is càdlàg, therefore it has countably many
jumps, c.f. [17, Section 12, Lemma 1]. Also, the measure ν has countably many atoms.

Thus we only need to show that if gt0 has a non-strict excursion for some t0 > 0 and if
ν({t0}) = 0 then t 7→ E↓(gt) jumps at t0.

The rest of the proof is identical to that of Corollary 4.6, with the additional observation
that the jump at time t0 created by the merger of excursions coming from the “tilt” oper-
ation cannot be cancelled by the deletion of excursions coming from the “shift” operation,
since t 7→ Φ(t) is continuous from the left at time t0.

�

Claim 5.13. Let m ∈ `↓2 \ `
↓
1 and define gt(·) using (2.12) and g

(n)
t (·) using (5.17). Then

gt(·) is continuous and if t ∈ [0,∞) satisfies ν({t}) = 0 then

g
(n)
t (·)→ gt(·) uniformly on compacts. (5.32)

Proof. (5.32) follows from Corollary 5.9, Lemma 5.3 and (2.12), (5.17). �

Definition 5.14. By Corollary 5.12 the (random) set of times t such that either gt has a
non-strict excursion or ν({t}) > 0 is countable. Hence for all but countably many t, the
probability that ν({t}) = 0 and all excursions of gt are strict is equal to 1. Let T ∗ denote
this (deterministic) set of “good” times t.

Lemma 5.15. If m ∈ `↓2 \ `
↓
1, t ∈ T ∗ then almost surely E↓(g(n)

t )→ E↓(gt) in the product

topology on `↓∞.

Proof. First note that the functions gt(·) and g
(n)
t (·), n ∈ N are uniformly good (c.f. Def-

inition 4.7): this follows from Lemma 5.2 and the fact that gt is a “shifted” version of
ft:

gt(x)
(2.8),(2.12)

= ft(x+ Φ(t)) + λt−
∫ t

0
Φ(s) ds, (5.33)

and similarly, g
(n)
t is a shifted version of f

(n)
t . Now Lemma 5.15 follows from Definition

5.14, Claim 5.13 and Lemma 4.8. �

5.2.4. Proof of Theorem 2.13.

Proof of Theorem 2.13(i). Given m ∈ `↓2 \ `
↓
1, we constructed two stochastic processes:

• the graphical construction in [30, Section 3] of the MCLD(λ) process mt, t ≥ 0,
• the process E↓(gt), t ≥ 0, defined by (2.12), where the initial state g0(·) := f0(·) is

defined by (2.6) and the control function Φ(·) is defined by (5.19).

We now want to show that these two `↓∞-valued processes have the same law. Both

processes are càdlàg with respect to the product topology on `↓∞ by [30, Proposition 1.1]
and Lemma 5.11.
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Hence, since the set T ∗ introduced in Definition 5.14 is dense, if we can show that for
any finite collection t1, . . . , tr ∈ T ∗, we have

(E↓(gti), 1 ≤ i ≤ r)
d
= (mti , 1 ≤ i ≤ r), (5.34)

then indeed Theorem 2.13(i) will follow.
By Proposition 2.10 we have

(E↓(g(n)
ti
, 1 ≤ i ≤ r) d

= (m
(n)
ti
, 1 ≤ i ≤ r), (5.35)

where m
(n)
t , t ≥ 0 is the MCLD(λ) process started from m(n). By the Feller property of

MCLD(λ) (see [30, Theorem 1.2]) we have

(m
(n)
ti
, 1 ≤ i ≤ r) d→ (mti , 1 ≤ i ≤ r), n→∞ (5.36)

(with respect to the topology of `↓2 and hence also coordinatewise). Putting together (5.35),
Lemma 5.15 and (5.36) we obtain (5.34). The proof of Theorem 2.13(i) is complete. �

Proof of Theorem 2.13(ii). It is enough to show that for any K > 0 and ε > 0 we almost
surely have −ε ≤ gt(0) ≤ 0 for any 0 ≤ t ≤ K. Let us fix K, ε > 0. Recall from (5.20)-

(5.22) that there exists Y < 0 such that if Yi(0) < Y then t
(n)
i > K for any i ≤ n. By

Lemma 4.2 there exists an almost surely finite n0 such that µ
(n0)
0 [y − ε, y] > 0 for any

Y ≤ y ≤ 0, thus for any n ≥ n0 and any x ≥ 0 such that Y ≤ g
(n)
0 (x) ≤ 0 we have

g
(n)
0 (x−)− g(n)

0 (x) ≤ ε. In words: the gaps between consecutive particles initially located
in [Y, 0] are smaller than or equal to ε. By Definition 3.11, these gaps can only decrease
with time, thus for any n ≥ n0 and t ≤ K there is a particle in [−ε, 0], i.e., we have

−ε ≤ g
(n)
t (0) ≤ 0. Now g

(n)
t (0) → gt(0) as n → ∞ for all except countably many values

of t ∈ [0,K] by Claim 5.13, moreover gt(0) is a càdlàg function of t by (2.12), therefore
−ε ≤ gt(0) ≤ 0 holds for every 0 ≤ t ≤ K. �

Remark 5.16. Note that Theorem 2.13(ii) also implies that the function Φ(·) is strictly
increasing. Indeed, if we indirectly assume that Φ(s) = Φ(t) for all s ∈ [t, t + ∆t], where
∆t > 0, then by (2.12) we obtain gt+∆t(0) = gt(0) + λ∆t, which contradicts Theorem
2.13(ii).

Proof of Theorem 2.13(iii). Let us assume that m = (m1,m2, . . . ) ∈ `↓2\`
↓
1. We recursively

define

n1 = 1, nk = min{ i : mi < mnk−1
}, k ≥ 2, m̃k = mnk

.

Thus we have {m1,m2, . . . } = {m̃1, m̃2, . . . } and m̃1 > m̃2 > . . . .
Let us fix x ≥ 0 and let y = g0(x). Definition 2.5 and Lemma 4.2 imply

µ0[y, 0) ≥ x, µ0[y + ε, 0) < x for any ε > 0. (5.37)

The restriction of the measure µ0 to (y, 0) can be determined by looking at Fx :=

σ (g0(x′), 0 ≤ x′ ≤ x), moreover for any k ≥ 1 the restriction of µ
(nk−1)
0 =

∑nk−1
i=1 mi · δYi(0)

to (y, 0) is also determined by Fx, simply by removing all atoms with a weight strictly
smaller than m̃k−1.

As we have already discussed in the proof of Lemma 5.10, ν is an atomic measure with

masses (mi)
∞
i=1 located at (ti)

∞
i=1 where limn→∞ t

(n)
i = ti. Now if Yi(0) ∈ [y, 0) for some

i ≥ 1 and nk ≥ i then t
(nk−1)
i is Fx-measurable, because the value of the death time

t
(nk−1)
i can be determined by (3.11) if we know the initial particle configuration strictly

above Yi(0) and the value of Yi(0) (we do not need to know the mass mi of particle i).
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Therefore limk→∞ t
(nk)
i = ti is also Gx-measurable. If we define ty′ = sup{ ti : Yi ∈ [y′, 0) },

then y′ 7→ ty′ is continuous, ty is Fx-measurable; moreover by (5.37) we have

{Φ(t) ≥ x} = {t ≥ ty} ∈ Fx. (5.38)

Hence {Φ(t) ≤ x} ∈
⋂
ε>0Fx+ε = F+

x . This completes the proof of Theorem 2.13(iii). �

6. Applications

6.1. Eternal multiplicative coalescents. In Section 6.1 we restrict to the case λ = 0,
i.e. the multiplicative coalescent (with no deletion).

We showed in Theorem 2.8 that a multiplicative coalescent mt, t ≥ 0 started from any

initial condition m0 in `↓2 has a “tilt” representation, as mt = E↓(ft), where f0 is a random
function and ft(x) = f0(x) + xt.

This leaves the question of eternal coalescents, i.e. those defined for all times t ∈
(−∞,∞).

Recall from Definition 1.1 the notion of Brownian motion with parabolic drift, or briefly
BMPD(u), where u ∈ R is the “tilt parameter”.

If h ∼ BMPD(u), denote by M(u) the law of E↓(h). (6.1)

In [2, Corollary 24] Aldous showed that there exists an eternal version of the MC, the
standard multiplicative coalescent, such that the marginal distribution of the coalescent at
any given time t ∈ R is given by M(t). Armendáriz [8], and then also Broutin-Marckert
[18], showed that if h0 ∼ BMPD(u), and ht(x) = h0(x) + tx for all t ∈ R, then the process
E↓(ht), t ∈ R is in fact the standard MC. We will provide an alternative proof of this result
in Corollary 6.6 below.

Aldous and Limic [5] described the set of all eternal multiplicative coalescents. They
showed that the marginal distributions of any of these coalescents can be given by the
set of excursion lengths of a suitable stochastic process. To state their results we need to
recall some more notation from [5].

Definition 6.1. Given κ ≥ 0, τ ∈ R and c ∈ `↓3, define

W κ,τ,c(x) = κ1/2W (x)− 1

2
κx2 +

∞∑
i=1

(
ci1[Ei ≤ x]− c2

ix
)

+ τx (6.2)

for x ≥ 0, where W is a standard Brownian motion, and where, for each i, Ei ∼ Exp(ci),
independently of each other and of W .

If c = 0 and κ = 1, then W κ,τ,c ∼ BMPD(τ). For general c, the processes defined in
(6.2) have been called Lévy processes without replacement ; each jump of size ci occurs at
rate ci, but once such a jump has occurred it does not happen again. Define also the
parameter space

I =
[
(0,∞)× (−∞,∞)× `↓3

]
∪
[
{0} × (−∞,∞)×

(
`↓3 \ `

↓
2

)]
. (6.3)

We can phrase the results of [5, Theorems 2 and 3] as follows:

Theorem 6.2. (i) For each (κ, τ, c) ∈ I, there exists an eternal multiplicative coales-

cent mt, t ∈ R such that for each t, mt
d
= E↓(W κ,τ+t,c).

(ii) Let µ(κ, τ, c) be the distribution of the MC in (i). Then the extreme points of the
set of eternal MC distributions are µ(κ, τ, c) for (κ, τ, c) ∈ I, together with the
distributions of “constant” processes (such that mt = (y, 0, 0, 0, . . . ) for all t, for
some y ≥ 0).

Our results can be applied to show that all these eternal coalescents also have a “tilt”
representation. First, we make a definition:
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Definition 6.3. Let W (x), x ≥ 0 be a random function. We say that W has the expo-
nential excursion levels property if the following holds: conditional on the sequence of
excursion lengths E↓(W ) = (m1,m2, . . . ), the levels of the excursions of W are indepen-
dent, with the excursion of length mi occurring at level −Ei where Ei ∼ Exp(mi).

Now we can state the key property that we need:

Claim 6.4. Let (κ, τ, c) ∈ I. Then W κ,τ,c has the exponential excursion levels property.

Remark 6.5. Equation (72) of [2] states that BMPD(t) has the exponential excursion
levels property for any t ∈ R. From this fact the statement of Claim 6.4 follows for W κ,τ,0

for any κ > 0 and τ ∈ R by scaling. For a short sketch proof of this fact, see the c = 0
case of Section 6.1.1 below.

Among other things, Claim 6.4 implies that the excursions of W κ,τ,c occur in size-biased
order, c.f. Claim 3.3. From Claim 6.4, we can deduce the following result:

Corollary 6.6. Let (κ, τ, c) ∈ I. Then the process E↓(W κ,τ+t,c), t ∈ R is an eternal
multiplicative coalescent.

We describe below the straightforward way in which Corollary 6.6 follows from Claim
6.4. We then give a sketch of the proof of Claim 6.4 in Section 6.1.1. The proof is not
difficult but a detailed account would occupy many more pages, and require some more
technical extensions of earlier results (in particular the material in Section 4.2) to the
setting of functions with positive jumps.

Corollary 6.6 is also the subject of current work by Vlada Limic which is available as
an interim version at [23]. Limic gives a proof of this result based on the breadth-first
walk construction used by Aldous [2] and by Aldous and Limic [5], and also using new
ideas from the thesis by Uribe Bravo [35]. Even without giving the full proof, we feel that
abstracting the property in Claim 6.4 gives valuable insight in complement to the different
approach of [23].

Proof of Corollary 6.6 (using Claim 6.4). Fix any τ ∈ R. Let ht = W κ,τ+t,c for t ≥ 0.
Note that

ht(x) = h0(x) + tx

for x ≥ 0, t ≥ 0.
Condition on E↓(W κ,τc) = m. Define f0 = h̄0. Then Claim 6.4 tells us precisely that

the distribution of f0 is the same as the one defined at (2.6).
Define ft by ft(x) = f0(x) + tx as at (2.8). Then by the λ = 0 case of Remark 2.14(v)

we have E↓(ht) = E↓(ft) for all t ≥ 0.
But Theorem 2.8 says that E↓(ft), t ≥ 0 is a MC. Hence the same is true of E↓(ht), t ≥ 0.

That is, E↓(W κ,τ+t,c), t ≥ 0 is a MC for all τ . But by considering values of τ tending to
−∞, and applying Kolmogorov extension, the statement of Corollary 6.6 follows. �

6.1.1. Sketch of proof of Claim 6.4. One necessary tool is an extension of Lemma 4.8, in
two directions. First, we need not just that the collection of excursion lengths converges,
but also that their levels converge; this is straightforward. Second, we need to cover the
case where the limit f is allowed to have positive jumps (since this is true of the functions
W κ,τ,c whenever c is not identically zero); this introduces a few technicalities (but doesn’t
require new ideas).

Now the idea is to take an appropriate sequence of initial conditions m(n) ∈ `↓0, and

times tn. Define f
(n)
0 based on m(n) according to (2.7), and define f

(n)
tn as in (2.8). Then

we want to show convergence, in an appropriate sense, of f
(n)
tn to Wκ,τ,c; then, to use the

extension of Lemma 4.8 to deduce that the lengths and levels of the excurions of f
(n)
tn
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converge in distribution to those of Wκ,τ,c. Finally, observe that for any n, the function

f
(n)
tn satisfies the exponential excursion lengths property (this is a translation of Corollary

3.15(ii) from the particle system context into the tilt representation context using the

identity (3.33)). This property is then inherited by the limit Wκ,τ,c of the sequence f
(n)
tn

and Claim 6.4 follows.
The main part of the work here is showing the convergence of f

(n)
tn to Wκ,τ,c in such a

way that we can deduce the convergence of the lengths and levels of the excursions.
For convenience, take τ = 0, and κ = 0 or κ = 1; other cases are almost identical.

Case 1: c = 0 and κ = 1. The distribution of W 1,0,0 is simply BMPD(0). The fact
that BMPD(u) satisfies the exponential excursion heights property was already discussed

in Remark 6.5. Alternatively, let the initial condition m(n) consist of n blocks each of size

n−2/3, and let tn = n1/3. The function f
(n)
0 has n excursions each of length n−2/3. The

gaps between the levels of these excursions are given by independent exponential random
variables; for 0 ≤ k < n, let Fk be the (k + 1)st such gap, with rate n1/3 n−k

n .

Then the increments of f
(n)

n1/3 on the intervals [(kn−2/3, (k + 1)n−2/3] are independent

over 1 ≤ k < n; the kth such increment is given by n−1/3 − Fk. Let us denote

x = n−2/3k, dx = n−2/3, df
(n)

n1/3(x) = f
(n)

n1/3(x+ dx)− f (n)

n1/3(x).

We have

E(df
(n)

n1/3(x)) = −kn−4/3(1 +O(k/n)) ≈ −xdx,

Var(df
(n)

n1/3(x)) = n−2/3(1 +O(k/n)) ≈ dx.

In this way we obtain a functional limit theorem; the distribution of f
(n)

n1/3 converges (in

the sense of uniform convergence on finite intervals) to BMPD(0).
(By this method we get an alternative, self-contained proof of the results of [8, 18]

claiming that the tilt procedure applied to the BMPD family gives the (eternal) standard
MC.)

Case 2: κ = 0. Now the process in (6.2) is given just by the compensated jumps

according to the vector c. In keeping with (6.3), we now need c ∈ `↓3 \ `
↓
2.

Here, for an appropriate initial condition take tn = c2
1+· · ·+c2

n andm(n) = t−1
n (c1, c2, . . . , cn, 0, 0, . . . ).

We can couple the sequence of initial functions f
(n)
0 , n ∈ N with W 0,0,c in the following

way. For k ≤ n, let f
(n)
0 have an excursion on an interval of length t−1

n ck at level −tnEk
where Ek ∼ Exp(ck) independently for each k.

Consider what happens on this interval in f
(n)
tn . Because of the tilt, the function increases

by tnt
−1
n ck = ck over the course of the interval. The length t−1

n ck goes to 0 as n→∞.
By Remark 2.6, the horizontal location of the start of the interval is

n∑
j=1

t−1
n cj1(Ej < Ek); (6.4)

conditional on Ek, this has mean converging to Ek and variance converging to 0, and
(using simple martingale calculations) can be shown to converge almost surely as n→∞
to Ek. Hence in the limit process this interval produces a jump of size ck occurring at
time Ek, matching the term on the right of (6.2).
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The vertical location of the start of the interval is −tnEk in the function f
(n)
0 ; applying

the tilt corresponding to the horizontal distance in (6.4), its vertical location in f
(n)
tn is

−tnEk + tn

n∑
j=1

t−1
n cj1(Ej < Ek),

which, after simplification, is
∑n

j=1

(
cj1(Ej < Ek) − c2

jEk
)
. Comparing with (6.2), this

converges to W 0,0,c(Ek−) as n → ∞, so in the limit process the jump indeed appears at
the correct height.

In the limit process, these jumps are dense. In this case we do not have uniform

convergence of f
(n)
tn to W 0,0,c, but by considering suitable time-changes one obtains that

f
(n)
tn has the same excursions as a function h(tn) which converges to W 0,0,c in the Skorohod

topology, and this is enough to give convergence of the lengths and levels of excursions as
required.

Case 3: c 6= 0 and κ = 1. Now the process W 1,0,c has both a Brownian part and
positive jumps. Here a suitable sequence of initial conditions is given by taking m(n) to
consist of blocks of sizes n−1/3(c1, c2, . . . , ck(n)) along with n blocks of size n−2/3, where

k(n) is chosen such that
∑k(n)

i=1 c
2
i � n1/3 as n→∞. (This is the same regime used in the

proof of Lemma 8 of [5]). Similarly to the two previous cases, choose tn = ‖m(n)‖−1
2 . The

ideas of the two previous cases can be combined to give the desired result for W 1,0,c also.

6.2. Tilt-and-shift of BMPD. Recall the definition of BMPD(u) from Definition 1.1.
We show that applying the tilt-and-shift procedure starting from an initial state h0 which
is a BMPD results in a MCLD process. Furthermore, the function ht remains in the class
of BMPD processes (with a random parameter).

Proposition 6.7. Let u ∈ R, and let h0 ∼ BMPD(u). Let g0 = h̄0. Let Φ(t), t ≥ 0 and
gt, t ≥ 0 be given by the tilt-and-shift procedure in Theorem 2.13, and let ht be given by
(2.13).

(i) The process E↓(ht), t ≥ 0 is a MCLD(λ) process.
(ii) Given Φ(t) and (h0(x), x ≤ Φ(t)), the conditional law of ht is

BMPD(u+ t− Φ(t)). (6.5)

Proof. We first note that by Remark 6.5 the function h0 (and thus g0) has the exponential
excursion levels property (c.f. Definition 6.3). Together with Definition 2.5 this implies
that g0 is a suitable initial state of the tilt-and-shift representation. Then by Theorem
2.13, E↓(gt) is a MCLD(λ) process, and, as observed in Remark 2.14(v), so is E↓(ht). This
completes the proof of part (i).

For part (ii), since h0 ∼ BMPD(u), we have

ht(x)
(2.13),(1.4)

= B(x+ Φ(t))− 1

2
(x+ Φ(t))2 + u · (x+ Φ(t))+

λt+

∫ t

0
(x+ Φ(t)− Φ(s)) ds. (6.6)

Since E↓(g0) = E↓(h0) is in `↓2\`
↓
1 with probability 1, we have ht(0) = gt(0) = 0 by Theorem

2.13(ii), and if we combine this with (6.6), we obtain

0 = B(Φ(t))− 1

2
(Φ(t))2 + uΦ(t) + λt+

∫ t

0
(Φ(t)− Φ(s)) ds. (6.7)
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Subtracting (6.7) from (6.6) we get

ht(x) = (B(x+ Φ(t))−B(Φ(t)))− 1

2
x2 + (u+ t− Φ(t))x, x ≥ 0. (6.8)

Now Theorem 2.13(iii) states that Φ(t) is a stopping time w.r.t. the filtration (F+
x ).

Then by the strong Markov property for Brownian motion w.r.t. (F+
x ) (see [28, Theorem

2.14]), we have that B
(
x + Φ(t)

)
− B

(
Φ(t)

)
is a standard Brownian motion independent

of Φ(t) and
(
B(x), 0 ≤ x ≤ Φ(t)

)
. Using (6.8) then gives that the conditional distribution

of ht is (6.5). �

Remark 6.8. Proposition 6.7(ii) gives a MCLD process whose marginal distributions are
all given by mixtures of distributions M(u) (c.f. Definition (6.1)). In [24] we find eternal
processes with this property, which may be stationary or non-stationary. We show that
such processes arise naturally as scaling limits of discrete models such as frozen percolation
processes (see Definition 6.9 below) or forest fire processes (see Section 6.3).

In Section 6.2.1 below we observe a simple case of such a scaling limit.

6.2.1. Scaling limit of frozen percolation started from a critical Erdős-Rényi graph. First
we recall the notion of mean-field frozen percolation process from [31] (using slightly dif-
ferent notation).

Definition 6.9 (FP(n, λ(n))). We start with a graph F
(n)
0 on n vertices. Between each pair

of unconnected vertices an edge appears with rate 1/n; also, every connected component
of size k is deleted with rate λ(n) · k. (When a component is deleted, its vertices as well

as its edges are removed from the graph.) Let F
(n)
t be the graph at time t. Denote by

M(n)(t) =
(
M

(n)
1 (t),M

(n)
2 (t), . . .

)
∈ `↓0

the sequence of component sizes of F
(n)
t , arranged in decreasing order.

Then M(n)(t), t ≥ 0 is a Markov process – let us call it here the frozen percolation
component process on n vertices with lightning rate λ(n), or briefly FP(n, λ(n)).

In order to achieve self-organized criticality, one chooses n−1 � λ(n) � 1, c.f. [31,

Theorem 1.2]. The case λ(n) � n−1/3 holds special significance, c.f. [31, Conjecture 1.1].

The next result gives a scaling limit for FP(n, λ(n)), in a setting where λ(n) � n−1/3

and the initial state has the distribution of an Erdős-Rényi random graph at some point
within the “critical window”.

Proposition 6.10. Fix u ∈ R and let F
(n)
0 be an Erdős-Rényi graph G(n, p) with edge

probability p = 1+un−1/3

n . Let λ > 0 and let M(n)(t), t ≥ 0 be the FP(n, λn−1/3) process

with initial state F
(n)
0 .

Define m(n)(t), t ≥ 0 by

m(n)(t) :=
(
n−2/3M

(n)
1 (n−1/3t), n−2/3M

(n)
2 (n−1/3t), . . .

)
. (6.9)

Then as n→∞ the sequence of processes m(n)(t), t ≥ 0 converge in law to the MCLD(λ)
process E↓(ht), t ≥ 0 given by Proposition 6.7.

Proof. Corollary 2 of Aldous [2] (or, alternatively, the method sketched in the c = 0 case

of Section 6.1.1) implies that the sequence m(n)(0) converges in distribution as n→∞ in

the (`↓2,d(·, ·)) space to E↓(h0), where h0 ∼ BMPD(u).

Further, the process m(n)(t) defined by (6.9) is a MCLD(λ) process (as can be readily
seen by comparing the definition (1.3) of the MCLD(λ) process with Definition 6.9).

Then the statement of Proposition 6.10 follows by applying Proposition 6.7 together
with the Feller property of MCLD(λ) (see [30, Theorem 1.2]).
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6.3. Forest fire model. This section contains a particle representation of the mean-field
forest fire model of [32]; see Section 6.3.1. The representation is an adaptation of the one
in Section 3.3, and we will briefly explain in Section 6.3.2 how it sheds some new light
on a certain controlled non-linear PDE problem (see (6.17) below) which played a central
role in the theory developed in [32] and [19].

In [32] Ráth and Tóth modify the dynamical Erdős-Rényi model to obtain the mean-field
forest fire model:

Definition 6.11 (FF(n, λ(n))). We start with a graph on n vertices. Between each pair of
unconnected vertices an edge appears with rate 1/n; moreover each connected component
of size k “burns” with rate λ(n) ·k, i.e., the edges of the component are deleted. The total
number of vertices remains n.

Denote by Cn(i, t) the connected component of vertex i at time t.
We define the empirical component size densities by

vnk (t) =
1

n

n∑
i=1

1[|Cn(i, t)| = k], vn(t) = (vnk (t))nk=1 . (6.10)

With the above definitions vn(t), t ≥ 0 is a Markov process, let us call it here the forest fire
component size density Markov process on n vertices with lightning rate λ(n), or briefly
FF(n, λ(n)).

6.3.1. Particle representation of the forest fire model. In Definition 6.14 and Proposition
6.15 below we are going to give a novel particle representation of FF(n, λ(n)) by slightly
modifying Definition 3.11.

Definition 6.12. If n ∈ N+ we let

Vn =

{
vn = (vnk )nk=1 :

n∑
k=1

vnk = 1 and
n

k
vnk ∈ N for all k

}
,

Mn =

 mn =
(
mn
j

)N
j=1
∈ `↓0 :

N∑
j=1

mn
j = n and mn

j ∈ N+ for all j

 .

We say that the component size density vector vn ∈ Vn and the ordered list of component
sizes mn ∈Mn correspond to each other if

vnk =

N∑
j=1

k

n
1[mn

j = k ] for all k. (6.11)

Note that this correspondence is one-to-one.

In plain words, vn and mn correspond to each other if there is a graph G on n vertices
such that vn and mn both arise from G.

Definition 6.13. If µ̃n is a finite point measure on R− such that µ̃n(R−) = 1 and the
masses of the atoms of nµ̃n are integers then we define v(µ̃n) to be the element of Vn
corresponding to the element of Mn which consists of the ordered list of masses of the
atoms of nµ̃n.

Now we define the particle representation of the FF(n, λ(n)) model.

Definition 6.14. Given vn(0) = (vnk (0))nk=1 ∈ V
n and the correspondingmn =

(
mn
j

)N
j=1
∈

Mn, we define the initial heights of the particles Ỹi(t), 1 ≤ i ≤ n by letting Ỹi(0) = −Ej ,
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Figure 6.1. A simulation of the particle system realising the forest fire
model. The system has n = 8 particles and λ = 0.4, and is shown on the
time interval [0, 2]. Compare to the systems realising the MCLD and the
multiplicative coalescent in Figures 1.2 and 1.3. The burning events (which
occur when a block reaches 0) here involve blocks of sizes 4, 7, 1, 3, 8, 2,
8 respectively. Note that in this case the process of burnings is a Poisson
process of rate nλ.

where Ej ∼ Exp(mn
j ), 1 ≤ j ≤ N are independent and vertex i initially belongs to

component j in the forest fire model. We define

µ̃nt =
n∑
i=1

1

n
δ
Ỹi(t)

( Note: v(µ̃n0 ) = vn(0) ). (6.12)

If Ỹi(t−) < 0 then we let
d

dt
Ỹi(t) = λ(n) + µ̃nt (Ỹi(t), 0), (6.13)

and if Ỹi(t−) = 0 then we say that vertex i burns and we let −Ỹi(t) have Exp(1) distribu-
tion, independently from everything else.

In words, a clustered family of particles with mass 1/n start at negative locations, move
up and merge with other particle clusters, but if a time-t block of particles with total mass
k/n reaches 0, then this block burns and gets replaced by k particles of mass 1/n with
i.i.d. locations with negative Exp(1) distribution.

Proposition 6.15. (i) For any n ∈ N+ and any initial state vn(0) ∈ Vn, the process
v(µ̃nt ), t ≥ 0 is a FF(n, λ(n)) process with initial state vn(0) (see Definitions 6.11,
6.14 and 6.13 for the definitions of FF(n, λ(n)), µ̃nt and v(µ̃n), respectively).
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(ii) For any t ≥ 0, the conditional distribution of nµ̃nt given the σ-algebra σ(mn
s , 0 ≤

s ≤ t) is Exp(mn
t ) (c.f. Definition 2.4), where mn

t is the Mn-valued random variable
corresponding to the Vn-valued random variable v(µ̃nt ) (c.f. Definition 6.12).

See Figure 6.1 for a simulation of the particle system realising the forest fire model.

Proof of Proposition 6.15. Recalling Definition 2.4 we observe that by Definition 6.14 we
have nµ̃n0 ∼ Exp(mn), where mn ∈Mn corresponds to vn(0) ∈ Vn.

Denote by τ the first burning time of the particle system Ỹi(t), 1 ≤ i ≤ n.

Denote by Yi(t) := Ỹi(nt) and µt := nµ̃nnt =
∑n

i=1 δYi(t) so that

d

dt
Yi(t)

(6.13)
= nλ(n) + µt(Yi(t), 0), 0 ≤ t < τ

n
,

thus the evolution of the particle system Yi(t), 1 ≤ i ≤ n satisfies Definition 3.11 (with
λ = nλ(n)) up to time τ/n, including the time-τ/n block that burns.

Likewise, if vn(t), t ≥ 0 is a FF(n, λ(n)) process, then the Mn-valued process cor-
responding to the Vn-valued process vn(nt), 0 ≤ t ≤ τ/n satisfies the definition of a
MCLD(nλ(n)) process, including the time of the first deletion event and the component
that gets deleted.

Therefore by Corollary 3.13 the statement of Proposition 6.15(i) holds for v(µ̃nt ), 0 ≤
t ≤ τ (including time τ , since in both Definitions 6.11 and 6.14 we add k singletons of
mass 1/n if a block of size k is deleted).

Next we observe that the conditional distribution of nµ̃nτ given the σ-algebra σ(mn
s , 0 ≤

s ≤ τ) is Exp(mn
τ ). Indeed, this follows from Corollary 3.15(i) and the fact that we insert k

particles of mass 1/n with i.i.d. −Exp(1) distribution if a block of k particles burn at time
τ , which is exactly what we have to do to maintain the property required by Definition
2.4.

Therefore we can inductively repeat this argument using Corollary 3.15(i) again and
again to show that Proposition 6.15(i) holds for v(µ̃nt ), 0 ≤ t ≤ τi, where τi is the i’th
burning time. The proof of Proposition 6.15(ii) similarly follows from Corollary 3.15(ii).

�

Remark 6.16. Let us recall a closely related dynamic random graph model of self-
organized criticality, studied by Fournier and Laurencot in [21] and by Merle and Normand
in [26]. One starts with a graph on n vertices, the coagulation mechanism is the same as
in Definition 6.9 and Definition 6.11 (between each pair of unconnected vertices an edge
appears with rate 1/n), but the deletion mechanism is different: connected components are
deleted forever when their size exceeds a threshold ω(n). In order to achieve self-organized
criticality, one chooses 1� ω(n)� n.

Let us remark that this model also admits a particle representation: the initial weights
and heights of particles should be the same as in Definition 6.14, and the particle dynamics
between deletion times should be given by (6.13). The deletion mechanism is obvious: if
the weight of a time-t block exceeds the threshold ω(n), we remove that time-t block. The
proof of the validity of this particle representation can be carried out analogously to the
proof of Proposition 6.15.

This is a “rigid” representation, i.e., all of the randomness is encoded in the initial state.
However, in contrast to the case of the frozen percolation model (i.e., MCLD), the above
described threshold-deletion model does not admit a clean tilt-and-shift representation,
since particles from the middle can be deleted (as opposed to the case of linear deletion,
where only the top particle can be deleted).

6.3.2. The controlled Burgers equation. In this section we use the particle representation
of the FF(n, λ(n)) process to give a new interpretation of a certain controlled non-linear
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PDE problem (see (6.17) below) which played a central role in the theory developed in
[32] and [19]. This new interpretation will be presented in Remark 6.17.

One investigates the FF(n, λ(n)) when 1
n � λ(n) � 1 as n → ∞. This is called the

self-organized critical regime of the lightning rate λ(n). We assume that vnk (0) → vk(0)
for all k ∈ N as n→∞, where

∑
k k

3vk(0) < +∞.
Under these assumptions [32, Theorem 2] states that

vnk (t)→ vk(t) in probability as n→∞, (6.14)

where (vk(t))
∞
k=1 is the unique solution of the following system of ODE’s:

∀ k ≥ 2
∂

∂t
vk(t) =

k

2

k∑
l=1

vl(t)vk−l(t)− kvk(t),
∞∑
k=1

vk(t) ≡ 1. (6.15)

This system of equations is a modification of Smoluchowski’s coagulation equations with
multiplicative kernel (c.f. [3, Section 2.1]).

In order to prove that (6.15) is well-posed (c.f. [32, Theorem 1]), one looks at the Laplace
transform

V (t, x) =

∞∑
k=1

vk(t)e
−kx − 1 (6.16)

which satisfies the following controlled PDE (c.f. [32, (43)]):

∂

∂t
V (t, x) = −V (t, x)

∂

∂x
V (t, x) + ϕ(t)e−x, V (t, 0) ≡ 0, (6.17)

where the control function ϕ(t) measures the intensity of fires at time t:

ϕ(t) =
∂

∂t
r(t), r(t) = lim

n→∞
rn(t), rn(t) =

1

n

n∑
i=1

Bn(i, t), (6.18)

and Bn(i, t) denotes the number of times vertex i has burnt before time t. Note that (6.17)
is a controlled variant of the Burgers equation.

Given a solution V (·, ·) of (6.17) one defines the corresponding characteristic curves (c.f.
[32, (66)]) as the solutions of the ODE

d

ds
ξ(s) = V (s, ξ(s)). (6.19)

These curves are useful because by (6.17) they satisfy d2

ds2
ξ(s) = ϕ(s)e−ξ(s), hence given

ϕ(·) they can be constructed (c.f. [32, (65)]) without solving (6.17).

Remark 6.17. Let us assume that µ̃nt converges weakly in probability to some measure
µ̃t as n→∞. Denote by

Ṽ (t, y) = µ̃t(y, 0), y ≤ 0.

We will non-rigorously derive a PDE for Ṽ (t, y), see (6.20) below.

We have µ̃t[y − dy, y] = − ∂
∂y Ṽ (t, y)dy, moreover by (6.13), each “particle” near the

location y moves with speed Ṽ (t, y) (since λ(n)� 1), thus Ṽ (t, y) increases by µ̃t[y−dy, y]

on the time interval [t, t + dt], where dy = Ṽ (t, y)dt. The mass Ṽ (t, y) also decreases by
ϕ(t)dt because of burning (see (6.18)) and increases by (1 − ey)ϕ(t)dt because of the
re-insertion of burnt mass with distribution −Exp(1). Putting these effects together we
obtain

∂

∂t
Ṽ (t, y) = −Ṽ (t, y)

∂

∂y
Ṽ (t, y)− eyϕ(t). (6.20)

By comparing (6.17) and (6.20), we observe that V (t, x) solves the same PDE as−Ṽ (t,−x).

Indeed, by (6.14) and Proposition 6.15(ii) we have Ṽ (t, y) =
∑

k vk(t)(1 − eky), which is
equal to −V (t,−y) by (6.16).
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Moreover, if 1� n then µ̃nt (y, 0) ≈ Ṽ (t, y), thus by comparing (6.19) and (6.13) we see

that the trajectories −Ỹi(s), s ≥ 0 of particles can be viewed as discrete approximations
of characteristic curves.
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