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Abstract 

The most important function of the skin is to form a barrier between the body and the external 

environment. The epidermal barrier prevents transepidermal water loss from the skin, but also 

serves as a barrier to the entry of harmful environmental allergic, toxic or infectious 

substances. Inherited defects in the genes encoding the components of the epidermal barrier 

result in the development of rare genetic disorders, whereas polymorphisms in these genes 

together with environmental factors cause frequent inflammatory skin diseases, such as atopic 

dermatitis. In this review, components of the skin-barrier function will be reviewed with 

special emphasis on how the altered epidermal barrier might be repaired. The different 

strategies to increase the transdermal penetration of drugs is also discussed. 
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INTRODUCTION 

The human skin forms a complex barrier between our bodies and the external environment 

[1,2]. It has been known for a long time that epidermal keratinocytes, making up the 

outermost anatomical structure the epidermis, form an important physical barrier. These cells 

are the bricks in the outer wall of our bodies; they are very strongly attached to one another by 

specialized organelles called tight junctions, and the extracellular space between them is very 

small [3]. This is an important feature of this tissue, as it prevents the loss of water and other 

important chemicals. In addition, when this layer is intact, it makes it very difficult for 

environmental molecules and other harmful invaders (e.g., different microbes) to enter our 

bodies through this strong mechanical boundary.  

The epidermis is also a stratified squamous epithelium in which continuously proliferating 

basal cells in the stratum basale give rise to new keratinocytes that gradually move to the 

upper epidermal layers (stratum granulosum, spinosum and lucidum). During these events the 

cells undergo natural differentiation processes. The keratinocytes become flattened, and their 

cytoplasm is gradually filled with keratin filaments, which are deposited into a matrix 

composed of mostly filaggrin and its breakdown products, to the point of the death of cells. In 

the resulting specialized tissue called stratum corneum (SC), dead keratinocytes (corneocytes) 

are held together by a ‘mortar’ composed of a lipid-enriched extracellular matrix containing 

ceramides (50%), cholesterol (30–35%) and free fatty acids (10–15%) [2,4-6]. These lipids 

are synthesized and released from lamellar bodies at the stratum granulosum – SC-interface, 

and their final processing is done by hydrolytic enzymes also released in parallel with the 

lipid precursors [7]. Together with the corneocytes, they form a dry, completely insoluble and 

nearly impermeable physical structure. 

Apart from the formation of the mechanical or physical barrier, another level of protection 

is the special acidic environment (chemical barrier) established in the first few weeks after 

birth and maintained on our skins throughout life [8]. This acidic ‘mantle’ is important for 

permeability barrier formation and also for antimicrobial defense. It is a result of various 

acidic components of eccrine and sebaceous secretions, proton pumps, and breakdown 

products of processed lamellar body lipids [9].  

Finally, our skin cells are in close connection with a specialized microbial flora, called the 

cutaneous microflora or microbiota [10]. Together with the skin cells, they form an 

immunological barrier, provide efficient protection from harmful pathogenic microorganisms 
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and also, when in a balanced state, help to maintain the integrity and the healthy homeostasis 

of our bodies. Even though their role has long been suggested, the exact cellular and 

molecular mechanism contributing to these functions is just being uncovered. In this paper, 

we summarize what is currently known on this topic. 

The cutaneous barrier is very complex, highly organized and strictly regulated. Its structure 

and function is, in part, genetically programmed. This is proven by the existence of inherited 

factors, mutations and polymorphisms that affect the development, as well as the structure and 

thereby also the function of our skins, often leading to the pathogenesis of various cutaneous 

disorders. 

GENETICS OF THE EPIDERMAL BARRIER AND ASSOCIATED DISEASES 

Large-scale transcriptome profiling of granular keratinocytes revealed genes (n=330) that 

are involved in the formation of the epidermal barrier and in the maintenance of its 

physiological functions [11]. Among the identified genes are several that are implicated in the 

transformation of granular keratinocytes into corneocytes, in lipid metabolism and transport 

or in composition and degradation of cell–cell junctions (summarized in Table 1) [11]. 

Corneocytes contain abundant keratin: approximately 60% of their dry weight is keratin 

proteins [12,13]. In epidermal barrier formation, proteins encoded by the keratin (KRT) 1, 2 

and 10 genes are implicated with pivotal roles [13]. The cornified envelopes of the 

corneocytes contain a large amount of filaggrins, which are associated with keratin 

intermediate filaments and packed into bundles [14,15]. The keratin-filaggrin bundles 

contribute to the insolubility of the epidermal barrier significantly [14,15]. The precursor 

protein of filaggrin, profilaggrin, is encoded by the filaggrin (FLG) gene, which contains 

several tandem filaggrin repeats [16,17]. The segregation of these repeats results in 

polymorphic variation in the size of the FLG gene due to simple allelic differences between 

individuals [16,17]. Another major component of the cornified cell envelope is the protein 

encoded by the loricrin (LOR) gene [18]. The cornified envelope proteins are crosslinked with 

disulfide and gamma-glutamyl-lysine isodipeptide bonds by transglutaminase enzymes such 

as the one encoded by the transglutaminase 1 (TGM1) gene [17]. Other clinically relevant 

genes contributing to the proper functioning of corneocytes are the following: the proteasome 

maturation protein (POMP) gene, encoding a protein pivotal in proteasome assembly [19], 

the excision repair complementing defective in Chinese hamster (ERCC) 2 and 3 genes and 
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the chromosome 7 open reading frame 11 (C7ORF11) gene, encoding proteins important in 

DNA transcription and excision repair [20,21].  

Other genes contribute to epidermal barrier formation either through the metabolism of 

fatty acids, triglycerides and cholesterol or through lipid transport and secretion. Long-chain 

fatty aldehydes are oxidized to fatty acids by the enzyme encoded by the fatty aldehyde 

dehydrogenase (FALDH) gene [22]. Branched fatty acids are broken down by another 

enzyme encoded by the phytanoyl-CoA hydroxylase (PHYH) gene [23,24]. The 12R-

lipoxygenase (ALOX12B) and the epidermis-type lipoxygenase (ALOXE3) genes encode 

enzymes catalyzing the conversion of arachidonic acid to 12R-hydroxyeicosatetraenoic acid 

[25]. The proteins encoded by the cytochrome P450 family 4 subfamily f polypeptide 22 

(CYP4F22), the NIPA-like domain-containing 4 (NIPAL4) and the lipase family member N 

(LIPN) genes also participate in the signaling pathways associated with fatty acids and 

triglycerides [26,27]. The enzymes encoded by the steroid sulfatase (STS), the emopamil-

binding protein (EBP) and the membrane-bound transcription factor protease site 2 

(MBTPS2) genes are implicated in epidermal barrier dysfunction through the metabolism of 

cholesterol [28-30]. The solute carrier family 27 member 4 (SLC27A4) and the ATP-binding 

cassette subfamily A member 12 (ABCA12) genes encode transporter proteins [31,32]. 

Proteins encoded by the adaptor-related protein complex 1 sigma-1 subunit (AP1S1), the 

synaptosomal-associated protein 29-kd (SNAP29) and the vacuolar protein sorting 33 B 

(VPS33B) genes are involved in trafficking [33-35].  

In the development of the epidermal barrier, other genes are also implicated through 

coding either structural components of the cell–cell junctions or proteolytic enzymes 

regulating the digestion of these junctions. The protein encoded by the corneodesmosin 

(CDSN) gene participates in the formation of corneodesmosomes [36], while the proteins 

encoded by the serine protease inhibitor Kazal-type 5 (SPINK5) and the membrane-type 

serine protease 1 (ST14) genes are involved in the degradation of these structures [37,38]. 

These proteolytic enzymes are regulated by inhibitors, such as the cysteine proteinase 

inhibitor encoded by the cystatin A (CTSA) gene [39]. Some of the genes involved in the 

development of other cell–cell junctions, such as the gap junction protein beta (GJB) 2, 3 and 

4 genes and the claudin 1 (CLDN1) gene, also contribute to the proper function of the 

epidermal barrier [40-43].  
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The above reviewed genes have clinical significance, since their mutations result in the 

development of rare, monogenic diseases. Many mutations result in genodermatoses, 

characterized by epidermal barrier dysfunction due to abnormalities in corneocytes, epidermal 

lipids or cell–cell junctions. Disease-causing genetic variations of the genes implicated in the 

development of corneocytes are associated with high clinical heterogeneity. TGM1 mutations 

have been linked to several clinical variants of autosomal recessive congenital ichthyosis, 

such as the well known lamellar ichthyosis phenotype and the self-healing collodion baby 

phenotype, in which the condition is present at birth, but spontaneously improves [44,45]. A 

very rare form of this latter clinical variant is the acral self-healing collodion baby, in which 

the membrane is located on the extremities only [46]. TGM1 mutations can also lead to 

development of bathing suit ichthyosis, another clinical form of autosomal recessive 

congenital ichthyosis, in which scaling is pronounced in the bathing suit area and is less 

pronounced on extremities [47]. FLG mutations have been associated with the development of 

the most common and mildest form of hereditary non-syndromic ichthyosis, ichthyosis 

vulgaris [17,48]. Of note, among common diseases, FLG variations are major predisposing 

factors for atopic dermatitis [49]. KRT1 mutations impairing the interaction and network 

formation of intermediate filaments are frequently associated with epidermolytic 

hyperkeratosis [50]. KRT1 mutations are also involved in the development of palmoplantar 

keratodermas [51]. KRT2 and KRT10 disease-causing genetic variations can also be 

associated with epidermolytic hyperkeratosis [52]. KRT10 mutations can also contribute to 

ichthyosis with confetti, a rare form of ichthyosis with a reticulated pattern [53]. LOR 

mutations result in loricrin keratoderma [18]. POMP causative variants are associated with 

keratosis linearis with ichthyosis congenita and sclerosing keratoderma [19]. ERCC2, ERCC3 

and C7ORF11 mutations are pivotal in trichothiodystrophy; additionally, ERCC2 and ERCC3 

causative variants are implicated in xeroderma pigmentosum [20,21].  

Causative variations of the genes linked with abnormal lipid metabolism and transport and, 

thus consequently epidermal barrier dysfunction, can contribute to the development of clinical 

variants of the same disease with overlapping symptoms, since ALOX12B, ALOXE3, 

CYP4F22, NIPAL4, ABCA12 and LIPN mutations are frequently associated with the different 

clinical forms of autosomal recessive congenital ichthyosis [23,25-27,32]. FALDH mutations 

result in Sjögren-Larsson syndrome [22]. PHYH causative variants are associated with 

Refsum syndrome [24]. STS disease-causing variants contribute to the development of X-

linked ichthyosis [28]. EBP mutations are linked with Conradi-Hünermann-Happle or MEND 
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syndromes [29,54]. MBTPS2 mutations can lead to the development of ichthyosis follicularis-

alopecia-photophobia syndrome, keratosis follicularis spinulosa decalvans and Olmsted 

syndrome, characterized by mutilating palmoplantar keratoderma with periorificial keratotic 

plaques [30]. SLC27A4 mutations lead to ichthyosis prematurity syndrome [31].  

Disease-causing variants of genes implicated in trafficking can lead to severe multisystem 

disorders with overlapping clinical features: AP1S1 mutations cause the mental retardation, 

enteropathy, deafness, neuropathy, ichthyosis, and palmoplantar keratoderma (MEDNIK) 

disorder, whereas SNAP29 mutations are associated with cerebral dysgenesis, neuropathy, 

ichthyosis, and palmoplantar keratoderma (CEDNIK) [34,35]. VPS33B mutations contribute 

to development of arthrogryposis-renal dysfunction-cholestasis syndrome [33]. 

Mutations of genes implicated in the formation and degradation of cell–cell junctions and, 

thus consequently epidermal barrier dysfunction, are associated with high clinical 

heterogeneity. CDSN mutations can lead to the development of epidermolysis bullosa 

simplex, hypotrichosis simplex and peeling skin syndrome [36]. CTSA mutations are also 

implicated in peeling skin syndrome [55]. SPINK5 causative variants are associated with 

Netherton syndrome and atopy [38]. ST14 disease-causing variants result in autosomal 

recessive congenital ichthyosis [37]. Since GJB2, 3 and 4 genes are expressed in a wide range 

of organs and tissues, their mutations are implicated in numerous diseases, such as 

erythrokeratodermia variabilis, keratitis-ichthyosis-deafness syndrome, palmoplantar 

keratodermas, ectodermal dysplasia and deafness syndromes [40,42,43]. CLDN1 mutations 

contribute to the development of neonatal sclerosing cholangitis associated with ichthyosis 

syndrome [39]. The functional classification of the diseases featuring epidermal barrier 

dysfunction gives insight into the functional relationships among these entities and also 

highlights the significant clinical heterogeneity of these diseases.  

 

DEVELOPMENT OF THE EPIDERMAL BARRIER 

 

All of the anatomic elements of the skin are fully developed by weeks 22 to 24 of 

gestation, whereas functional and biochemical maturity requires a much longer time. At 

gestational week 24, the epidermis is immature, with the SC consisting of only one to two cell 

layers [56,57]. In preterm infants, the full thickness of the skin (0.9 mm) is much less than in 

term infants (1.2 mm), and this is also the case for the thickness of the epidermis and SC 

[56,57]. The uppermost layer of the epidermis, the SC, which consists of corneocytes, plays a 
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considerable role in the barrier function of the skin [58-60]. The physical barrier of the skin 

represented by the SC is mainly determined by its thickness and integrity. By weeks 33 to 34 

of gestation, the SC has attained structural and functional maturity, although the active 

adaptation and maturation processes continue after birth [56,57,59,60]. Changes in skin pH, 

development of the protecting acid envelope and continuous colonization by cutaneous 

microbiota play a crucial role in the adaptation process. [56-59] 

The basic structural differences between the skin of a preterm neonate, a term neonate and 

an adult are of considerable importance in clinical practice. The structure of the skin of a full-

term neonate is similar to that of an adult, but it is much thinner and more vulnerable [60,61]. 

The skin of a term neonate is structurally and functionally more ready to adapt to an air 

environment than the skin of a premature infant, which is in homeostasis with a fluid 

environment. After delivery, premature skin matures rapidly over 2 to 8 weeks, but this 

process takes significantly longer for extremely premature neonates [56,57,60]. 

In premature infants, the structural and functional maturation of the epidermis accelerates 

significantly, taking approximately 2 weeks after birth. As a consequence of this accelerated 

maturation period, the epidermis of an extremely premature infant undergoes a dramatic 

development during these 2 weeks, resulting in markedly decreased transepidermal water loss 

(TEWL) and a reduced possibility to absorb various toxic agents [58,60]. Preterm neonates 

are obviously highly vulnerable during this 2-week period. Septic complications occur mainly 

in the first few days or the first 2 weeks of life and are the most common cause of mortality in 

this special population. The compromised epidermal barrier function results in an enhanced 

susceptibility to severe invasive infections, high rates of TEWL, thermal instability, 

electrolyte imbalance, increased percutaneous absorption of chemicals and drugs, and easily 

induced skin traumas; these clinical complications are relevant determinants of the high 

morbidity and mortality rates for preterm infants [56-58,61]. In extremely premature infants, 

the TEWL can be as much as 10–15 times higher than in full-term infants; a neonate born at 

24 weeks of gestation can lose 13% body weight on the first day of life as a consequence of 

the high fluid loss due to the virtual absence of the epidermal barrier [57,58,60]. TEWL is 

influenced by the gestational age of the infant, body region, and humidity of the environment. 

TEWL and percutaneous absorption are inversely proportional to gestational age, and SC 

hydration increases with age [56,57,60]. 
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Another anatomical-structural difference between premature and mature infants is that the 

dermoepidermal junction is flat and anchoring fibrils, anchoring filaments and 

hemidesmosomes are fewer and smaller in preterm neonates, which results in a decreased 

resistance to shear forces. Due to the immaturity of the dermoepidermal junction, the 

epidermis and dermis can easily separate from each other; moreover, bullae can develop much 

more easily after thermal or mechanical impact. The skin is therefore fragile and prone to 

inadvertent cutaneous injury [56,57,61]. The dermis is also thinner, less collagenized and 

more gelatinous, and this gives rise to an increased risk of oedema, resulting in the risk of 

ischaemic injury. Moreover, in consequence of the thin layer of subcutaneous fat and 

immature eccrine glands, premature infants have a compromised thermoregulatory capability 

[56,57]. 

 

IMPAIRED EPIDERMAL BARRIER IN INFLAMMATORY SKIN DISEASES 

 

Defective epidermal barrier function is the main feature of the most common inflammatory 

skin disorders, such as atopic dermatitis and, to a lesser extent, psoriasis [62,63]. Atopic 

dermatitis is a chronic skin disease affecting up to 20% of the pediatric population in 

developed countries. The main pathogenetic factor of atopic dermatitis is skin barrier damage, 

where the crucial predisposing factors are mutations and intragenic variations in the copy 

number of FLG monomers [49,64]. However, recent data suggest that the inflammatory 

cytokines and chemokine milieu in atopic skin can also down-regulate FLG gene expression, 

resulting in filaggrin deficiency and impaired epidermal barrier. These data suggest that 

severe skin inflammation and filaggrin mutations similarly alter the skin barrier [65,66]. As 

inherited or acquired barrier defect is the major pathogenic factor of the disease, restoration of 

the impaired barrier is the key therapeutic approach in the treatment of atopic dermatitis 

(Figure 1).  

Psoriasis is also a multifactorial inflammatory skin disease, affecting approximately 2–3% 

of the population. Genetic and environmental factors result in impaired skin barrier in 

psoriatic lesions, and this danger signal might contribute to the hyperproliferation and 

inflammatory cytokine production of keratinocytes [63]. As damage to the skin barrier results 

in further inflammatory cytokine production, barrier restoring therapy is an important strategy 

in the management of chronic inflammatory skin diseases. 

 

BARRIER RESTORING THERAPIES 
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Moisturizers 

Xerosis, or dry skin, is frequently the most apparent sign indicating impairment of the 

skin’s barrier function. Dry skin can be caused by altered environmental factors (e.g., seasons, 

climate, excessive bathing, etc.) or endogenous factors (e.g., aging, deficiencies in the skin’s 

natural moisturizing factor (NMF), barrier lipid content, etc.) [67-69]. Moisturizers are widely 

applied to treat dry skin caused by different factors and are based on several formulations 

which contribute to barrier repair, reduction of TEWL or aesthetic improvement of irritated 

skin [67]. Moisturizers, which can be prescription but are more often over-the-counter 

formulations, belong to the standard therapy of atopic dermatitis [70] and may also be useful 

in the treatment of irritant contact dermatitis. Three main classes of moisturizers can be 

distinguished: emollients, occlusives and humectants (Table 2).  

Emollients are oily substances which are designed to bring small lipid droplets into the 

cracks between desquamating corneocytes in dry skin, thereby increasing the softness, 

flexibility and smoothness of the skin [71]. Containing oils and lipids (e.g., different fatty 

acids from palm oil, coconut oil and wool fat) [72], emollients are designed to maintain 

healthy skin conditions rather than to repair damaged skin or have long-term effects [67]. 

Occlusives are also lipophilic preparations which provide a hydrophobic barrier on the skin 

surface to reduce TEWL. Moreover, this film protects from external irritants. Thus, these 

preparations are applied to dry or damaged skin because they promote barrier repair due to the 

mentioned mechanisms. Petrolatum is one of the most effective occlusives. Lanolin, mineral 

oil, beeswax, soybean oil, paraffin and propylene glycol are also used as occlusives. Silicones 

(e.g., dimethicone, cyclomethicone) are relatively new hypoallergenic occlusives. A 

disadvantage of occlusive preparations is that they can be aesthetically less pleasing than oil-

in-water emulsions [67,68,71]. 

Humectant-based moisturizers are frequently used to treat dry skin. These preparations, 

which contain inter alia polyols (e.g., glycerol, sorbitol and mannitol), provide hydrating 

effects to the skin by attracting and binding water from the deep epidermis and the 

environment. Compared to other formulations, they are absorbed faster and therefore are 

aesthetically better, promoting patient compliance [67,73]. Polyols may provide protection 

against irritation via different pathways. Certain advantageous effects of polyols originate in 

their chemical structure. It is known that glycerol, which is the most frequent polyol in 



 

11 
 

dermatological topical preparations, diffuses into the SC and retains water in the skin. Further, 

glycerol may interact with SC lipid structures and proteins, altering their water-binding and/or 

hydrophilic properties [74]. The hydrating effect of glycerol has been shown in a number of 

animal experiments and human studies [75]. Furthermore, glycerol promotes skin barrier 

function [76,77]. This effect may be explained by the moisturizing property of glycerol, since 

an inverse relationship between TEWL and SC hydration is known [1]. Moreover, glycerol 

reduces the density and the average radius of aqueous pores in SC, hereby decreasing the 

ability of irritant agents to penetrate the SC [78]. In addition to moisturizing and providing 

barrier restoring potential, glycerol improves mechanical properties of the skin [79]). There is 

a correlation between SC hydration and skin mechanical properties [80]. The skin friction 

coefficient also shows positive correlation with SC hydration [81]. Another study suggests 

that the effects of glycerol on mechanical parameters may be independent of its hydrating 

ability [79]. Effects of glycerol have been extensively studied; however less information is 

available for other polyols. Previously, we found that xylitol also suppresses skin irritation 

[65]. Mannitol alone had no effect on skin irritation [65], but combined application of 

mannitol and hyaluronic acid increased skin hydration and elasticity [82]. In contrast, sorbitol 

was found to improve barrier function and act as a moisturizer [83]. 

In addition to inducing physical or chemical alterations, polyols might also change gene 

expression. In vitro experiments have shown that glycerol decreases the expression of human 

leukocyte antigen DR (HLA-DR), thereby reducing inflammation, whereas xylitol increases 

the expression of filaggrin [84]. Filaggrin, as a source of NMF and in other ways, contributes 

to hydration and homeostasis of the skin [85]. Recent animal experiments have revealed that 

both glycerol and xylitol decrease the expression of tumor necrosis factor alpha (TNF-α) and 

interleukin 1-beta (IL-1ß) in sodium lauryl sulphate (SLS) induced acute irritation [86]. In this 

experimental setup, application of polyols inhibited the SLS-induced elevation of TEWL, 

moderated the irritant-induced increase in dermal blood flow and prevented accumulation of 

lymphocytes and neutrophil granulocytes. Further, it was found that both glycerol and xylitol 

hamper the penetration of irritant agents [86]. Thus, polyols exert anti-irritant effects via 

different pathways.  

Other important factors are the antimicrobial effects of polyols. Barrier damage leads to 

changes in skin flora [87]; therefore, patients with irritant or atopic dermatitis may need 

protection against bacterial colonization. Glycerol in 85% concentration was found to have 

antimicrobial effects [88]. Additionally, glycerol possesses virucidal properties [89]. 
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However, Gram-positive species are less susceptible to glycerol than Gram-negatives. Xylitol, 

combined with farnesol [90] or with glycerol [91] effectively eliminates Gram-positive 

bacteria, and its effective concentration was found to be 5% in both studies. Hence, 

application of polyols may prevent both irritation and bacterial colonization of the skin 

(Figure 2).  

A new generation of moisturizers could contain special ingredients which supply normal 

skin components. Ceramides, with cholesterol and fatty acids, belong to the main lipid groups 

of SC and play a pivotal role in barrier function [92]. NMF, originating from the catabolism 

of filaggrin, maintains adequate SC hydration [85]. NMF is a mixture of free amino acids, 

inorganic salts, sugars, lactic acid and urea. It should be noted that that a combination of 

different types of moisturizers can be advantageous. Humectants can be combined with 

occlusive components when applied to skin with a defective barrier to attract water and to 

prevent its evaporation [93]. Ceramides, pseudoceramides and NMFs have been studied and 

added to commercial moisturizers to hydrate skin and improve barrier function [94]. 

 

Anti-inflammatory therapies 

Inflammation in the skin results in epidermal barrier damage similar to that present in 

patients with filaggrin mutation, suggesting that anti-inflammatory treatment might affect the 

barrier functions of the skin. 

Topical glucocorticosteroids  

Topical corticosteroids (TCS) have been widely used for the treatment of inflammatory 

skin disorders in dermatological practice for decades. Corticosteroids have numerous anti-

inflammatory, antiproliferative and immunosuppressive effects, and topical medications are 

available in different formulations with a wide range of potency. TCS remain the mainstay 

and gold standard for the treatment of acute inflammatory symptoms in AD and can achieve 

excellent results in both short-term and proactive maintenance therapy [57,95-98]. Topical 

steroids result in rapid improvement of skin inflammation and pruritus, but have opposing 

effects on barrier functions [95,99,100]. Positive effects of topical corticosteroids on the skin 

barrier include the increase of SC hydration, decrease of TEWL, and normalization of 

filaggrin and loricrin expression [95,100,101]. However, human studies and animal models 

demonstrated that long-term application of local glucocorticoids resulted in significant 

impairment of epidermal barrier function and homeostasis. Morphological, physicochemical 
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and functional alterations include decreased epidermal proliferation and differentiation, 

inhibition of the synthesis of epidermal barrier lipids and antimicrobial peptide formation, 

decrease of lamellar body formation, delay of barrier recovery, and reduction of the integrity 

and cohesion of SC; additionally, topical steroids also have negative effects on epidermal 

immune cells [95,99,100]. The application of topical steroids in special, advanced vehicle 

formulations and adequate adjunctive barrier repair therapy with emollients and moisturizers 

can significantly reduce these negative effects and promote the maintenance of epidermal 

barrier functions [95,99]. There are also several well known cutaneous side-effects of 

prolonged use of topical glucocorticosteroids, such as atrophy, striae, purpura, telangiectasias, 

hypertrichosis, alopecia, hyperpigmentation and impairment of wound healing; these effects 

are mostly preventable with rational application of the medications [57,95,102].  

Topical calcineurin inhibitors 

The introduction of topical calcineurin inhibitors (tacrolimus and pimecrolimus) resulted in 

a significant breakthrough in the anti-inflammatory treatment of atopic dermatitis. These 

macrolactam derivatives have more specific immunomodulatory and anti-inflammatory 

effects than glucocorticoids, acting by inhibition of proinflammatory cytokine expression in 

T-lymphocytes and other inflammatory cells. In contrast to topical steroids, pimecrolimus and 

tacrolimus do not induce skin atrophy, and thus calcineurin inhibitors are suitable for long-

term maintenance therapy even on the head, neck and intertriginous areas [96-98]. Topical 

calcineurin inhibitors influence the epidermal barrier function in several ways, and a 

beneficial effect is observed by improving SC hydration and reducing TEWL [100,103]. 

However, local calcineurin inhibitors might also have negative impacts on epidermal barrier 

function by decreasing epidermal lipid synthesis, lamellar body secretion and antimicrobial 

peptide expression and production. The calcineurin inhibitor-induced impairment of the 

permeability and antimicrobial barrier could be prevented by emollient treatment [103]. 

 

TRANSDERMAL DRUG DELIVERY 

 

Barrier function provided by the SC is indispensable to avoid the loss of water and to 

provide protection against irritant and causative agents. However, the same barrier often 

hampers transdermal drug delivery. This method is a useful alternative pathway for 

therapeutic agents that are prone to decompose in the gastrointestinal tract and permits the 

achievement of relatively high local drug concentrations without systemic side effects. Due to 
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the epidermal barrier, different techniques are required for the enhancement of skin 

permeability. Methods modifying the barrier properties can be passive or active. Passive 

methods include the influencing of drug and vehicle interactions and optimization of 

formulation to modify SC structure [104]. A widely used passive method is the application of 

chemical penetration enhancers that facilitate drug permeation across the skin. Several 

compounds are able to contribute to a better penetration, e.g., alcohols, amides, esters, ether 

alcohols, fatty acids, glycols, pyrrolidones, sulfoxides, surfactants and terpenes [105]. 

Penetration enhancers have different mechanisms of action, e.g., increasing the fluidity of the 

SC lipid bilayers, interaction with intercellular proteins, disruption or extraction of 

intercellular lipids, increasing the drug’s thermodynamic activity or increasing SC hydration 

[106,107]. Their primary disadvantage is that chemical penetration enhancers often evoke 

skin irritation (local inflammation) and their efficacy is relatively low [108-110].  

Another passive method is the use of special carrier systems to increase drug flux into and 

through the skin. These carrier systems can be nanoparticles and nanofibers which can be 

used to enhance solubility of highly hydrophobic drugs, provide controlled and sustained 

release of drugs, increase the stability of therapeutic agents, and deliver higher drug 

concentrations to target areas. Several types of nanoparticles are available: natural polymeric 

(e.g., chitosan and albumin), synthetic polymeric (e.g., tyrosine-derived polymeric 

nanospheres, poly(lactic-co-glycolic acid)), lipid-based (liposomes, solid-lipid), metallic and 

silica, as well as dendrimers. However, only a few of these techniques have been translated 

into clinically used products so far. Hence, further clinical studies are needed [111]. 

Furthermore, prodrugs can also be used. Prodrugs are synthesized by a chemical modification 

of a drug for more optimal physicochemical and/or pharmacokinetic properties. After 

delivery, the prodrug is cleaved by enzymes leading to the formation of the parent drug [112]. 

Hyaluronic acid is an effective moisturizer, but its penetration ability is poor. However, cross-

linking the molecule results in better penetration through human epidermis and living animal 

skin [113].  

Active, physical methods involve several different techniques (e.g., use of electrical forces, 

lasers, ultrasound and microneedles). Electrical force can be used as iontophoresis or 

electroporation. The latter is a promising method which temporarily creates aqueous pores in 

cell membranes using electric pulses of high voltage and short duration. Electroporation 

successfully enhances skin permeability for molecules with different lipophilicities and sizes, 

including high-molecular-weight biopharmaceuticals. Nevertheless, the relationship between 
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electroporation and skin irritation should be clarified. Since high voltage pulses are used, it is 

important to ensure that there are no harmful effects in the skin [114].  

Lasers can also be used to assist drug delivery. By means of laser, fractional 

photothermolysis can be performed: i.e., multiple vertical columns of tissue in the SC and 

underlying layer are thermally destroyed to create unimpeded channels. On treated skin, the 

channels and the surrounding thermally coagulated tissue enhance penetration while the 

untreated area serves as a reservoir for regeneration [115].  

Ultrasound is able to affect skin permeability. Penetration of cationic, neutral and anionic 

particles and also those of gold nanoparticles and dendrimers are enabled by ultrasound [116].  

Microneedle devices are composed of arrays of micron-size needles. When applied to the skin 

surface, they bypass the SC without stimulating dermal nerves. The holes created by the 

needles can be used to deliver drugs on the skin surface to the dermal microcirculation [117]. 

These techniques may also be combined to increase efficacy and to reduce side effects. 

 

THE EPIDERMAL BARRIER: FUTURE PERSPECTIVES 

 

Understanding the molecular mechanism of epidermal barrier function and the inherited 

factors leading to genetic diseases resulting in skin barrier defects might pave the way for 

better treatments not only for rare hereditary, but also for common multifactorial 

inflammatory skin diseases. Because of the importance of the intact barrier for the healthy 

state of our bodies, maintenance and restoration when it becomes compromised is vital.  

Transdermal drug delivery represents an attractive opportunity for the administration of 

different drugs. Scientific and technological advances by targeted disruption of the epidermal 

barrier resulting in better transdermal penetration of various treatments will have a 

widespread impact in medicine. 
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Tables 

Table 1. Genes involved in the development of the epidermal barrier and their associated diseases.  

 Genes involved in 

the formation of 

the epidermal 

barrier 

Associated diseases References 

E
n
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d
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p

o
n

en
ts

 o
f 

k
er

a
ti

n
o

cy
te

s 
a

n
d

 c
o
rn

eo
cy

te
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KRT 1 Epidermolytic hyperkeratosis, palmoplantar 

keratodermas 

[12, 13, 50] 

 KRT2  Epidermolytic hyperkeratosis [12, 13, 52] 

KRT10 Epidermolytic hyperkeratosis, ichthyosis with 

confetti 

[12, 13, 52,53] 

FLG Ichthyosis vulgaris, atopic dermatitis [14,15, 16, 

17,48,49] 

LOR Loricrin keratoderma [18] 

TGM1 Autosomal recessive congenital ichthyosis [17,44,45,47] 

POMP Keratosis linearis with ichthyosis congenita and 

sclerosing keratoderma 

[19] 

ERCC2 Trichothiodystrophy [20,21] 

ERCC3 Trichothiodystrophy [20,21] 

C7ORF11 Trichothiodystrophy [20,21] 

E
n

co
d

in
g
 c

o
m

p
o
n

en
ts

 o
f 

li
p

id
 m

et
a
b

o
li

sm
 

FALDH Sjögren-Larsson syndrome [22] 

PHYH Refsum syndrome [23,24] 

ALOX12B Autosomal recessive congenital ichthyosis [25] 

ALOXE3 Autosomal recessive congenital ichthyosis [25] 

CYP4F22 Autosomal recessive congenital ichthyosis [26,27] 

NIPAL4 Autosomal recessive congenital ichthyosis [26,27] 

LIPN Autosomal recessive congenital ichthyosis [26,27] 

STS X-linked ichthyosis [28,29,30] 

EBP Conradi-Hünermann-Happle syndrome, MEND 

syndrome 

[28,29,30,54] 

MBTPS2 Ichthyosis follicularis-alopecia-photophobia 

syndrome, keratosis follicularis spinulosa decalvans, 

olmsted syndrome 

[28,29,30] 

SLC27A4 Ichthyosis prematurity syndrome [31,32] 

ABCA12 Autosomal recessive congenital ichthyosis [31,32] 

AP1S1 MEDNIK syndrome [33,34,35] 

SNAP29 CEDNIK syndrome [33,34,35] 

VPS33B Arthrogryposis-renal dysfunction-cholestasis 

syndrome 

[33,34,35] 

E
n
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g
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p

o
n

en
ts

 o
f 

ce
ll

–

ce
ll

 j
u

n
ct

io
n
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CDSN Epidermolysis bullosa simplex, hypotrichosis 

simplex, peeling skin syndrome 

[36] 

SPINK5 Netherton syndrome [37,38] 

ST14 Autosomal recessive congenital ichthyosis [37,38] 

CTSA Peeling skin syndrome [39,55] 

GJB2 Erythrokeratodermia variabilis, keratitis-ichthyosis-

deafness syndrome, palmoplantar keratodermas, 

ectodermal dysplasias, deafness syndromes  

[40,41,42,43] 

GJB3 Erythrokeratodermia variabilis, deafness syndromes [40,41,42,43] 

GJB4 Erythrokeratodermia variabilis [40,41,42,43] 

CLDN1 Neonatal sclerosing cholangitis with ichthyosis 

syndrome 

[40,41,42,43] 
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Table 2. Main classes of moisturizers. 

Type Characteristics Examples 

Emollients Smoothing and softening 

skin 

Oils, lipids (e.g., stearic, 

linoleic, linolenic, oleic, 

lauryl acids) 

Occlusives Providing hydrophobic 

barrier which protects from 

loss of water and external 

irritants 

Petrolatum, lanolin, mineral 

oil, beeswax, propylene 

glycol, silicones, etc. 

Humectants Attracting and binding water 

in SC 

Glycerol, sorbitol, urea, 

lactic acid, amino acids, etc.  
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Figure 1. The pathogenesis of atopic dermatitis. The interaction of genetic, environmental 

and immunologic factors create a permissive environment for the initiation and progression of 

the disease. Through the impared epidermal barrier penetration of external allergens, microbes 

and microbial compounds are enhanced, creating immune activation and subsequent 

inflammation. 
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Figure 2. Effects of polyols on the skin. 
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