The impact of periventricular white matter lesions in patients with bipolar disorder type I

Gianluca Serafini,* Maurizio Pompili, Marco Innamorati, Nicoletta Girardi, Leonardo Strusi, Mario Amore, Leo Sher, Xenia Gonda, Zoltan Rihmer, and Paolo Girardi

1 Department of Neurosciences, Mental Health and Sensory Organs—Suicide Prevention Center, Sant’Andrea Hospital, Rome, Italy
2 Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
3 Casa di Cura “Samadi”, Rome, Italy
4 Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genova, Genova, Italy
5 Department of Psychiatry, Columbia University College of Physicians and Surgeons, and New York State Psychiatric Institute, New York, New York, USA
6 Department of Clinical and Theoretical Mental Health, Semmelweis University, Budapest, Hungary
7 Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
8 Neuropsychopharmacology and Neurochemistry Research Group, National Academy of Sciences and Semmelweis University, Budapest, Hungary
9 National Institute of Psychiatry and Addictions, Laboratory for Suicide Research and Prevention, Budapest, Hungary

Introduction. White matter hyperintensities (WMHs) are one of the most common neuroimaging findings in patients with bipolar disorder (BD). It has been suggested that WMHs are associated with impaired insight in schizophrenia and schizoaffective patients; however, the relationship between insight and WMHs in BD type I has not been directly investigated.

Methods. Patients with BD-I (148) were recruited and underwent brain magnetic resonance imaging (MRI). Affective symptoms were assessed using Young Mania Rating Scale (YMRS) and Hamilton Depression Rating Scale (HDRS17); the presence of impaired insight was based on the corresponding items of YMRS and HDRS17.

Results. A total of 49.3% reported multiple punctate periventricular WMHs (PWMHs) and 39.9% had deep WMHs (DWMHs). Subjects with lower insight for mania had significantly more PWMHs (54.6% vs 22.2%; \(p < 0.05 \)) when compared to BD-I patients with higher insight for mania. The presence of PWMHs was independently associated with lower insight for mania: patients who denied illness according to the YMRS were 4 times more likely to have PWMHs (95% CI: 1.21–13.42) than other patients.

Conclusions. Impaired insight in BD-I is associated with periventricular WMHs. The early identification of BD-I subjects with PWMHs and impaired insight may be crucial for clinicians.

Received 8 July 2013; Accepted 25 September 2013

Key words: Affective symptoms, BD-I, insight, MRI, periventricular WMHs.

Introduction

White matter hyperintensities (WMH) are hyperintense signals on T2-weighted magnetic resonance images (MRI) that suggest ependymal loss and altered brain myelination.1,2 According to their localization, WMHs are divided into periventricular white matter hyperintensities (PWMHs) and deep white matter hyperintensities (DWMHs) of a predominant vascular aetiology.1 WMHs are known to be commonly associated with older age and risk factors such as arterial hypertension and diabetes.3–5 Several studies have suggested that WMHs are associated with mood disorders and suicidal behavior in different populations (eg, children, young adults, etc).6–8 Patients with WMHs, particularly with abnormalities in
the prefrontal cortex, amygdala-hippocampus complex, thalamus, and basal ganglia, the integrity of which is necessary for adequate mood regulation,9 may be at a higher risk for developing mood disorders because of possible disruption of neuroanatomic pathways.10

Among mood disorders, bipolar disorder (BD), particularly BD type I (BD-I) is a serious mental illness that affects approximately 1% of the adult population.13 Several structural changes may be found in the brains of patients with BD, but establishing correlations between neuroimaging findings and measures of illness exposure or age in cross-sectional studies requires caution.12

Studies investigating the eventual volumetric abnormalities in some brain structures have indicated possible involvement of the frontal cortex, temporal lobes, basal ganglia, and cerebellum in BD13 and, recently, the subgenual cingulate cortex in both adult14 and pediatric populations.15 Table 1 summarizes the most relevant MRI studies of WMHs in adult patients with major psychiatric disorders.

WMHs are, no doubt, the most common neuroimaging finding that have been found in patients with BD, regardless of age.52 Furthermore, there are differences between BD-I and bipolar II (BD-II) patients, as PWMHs are more common in BD-I patients compared to BD-II and healthy controls,53,54 indicating that these neuroimaging findings may be a sensitive and even subtype-selective diagnostic tool.

Interestingly, WMH location may be critical in the expression of certain bipolar symptoms. For example, the presence of DWMHs has been associated with poorer response to treatment in bipolar patients, less favorable outcome, and more frequent relapse55; also, a relevant association between increased rates of PWMHs and previous suicide attempts has also been suggested.8

Among all clinical manifestations, insight into illness may be widely considered as a relevant factor in coping with and treating patients with BD.56,57 Understanding the neural mechanisms underlying insight and illness awareness may have important implications for the development of targeted treatments. Some previous findings have reported an association between WMHs and insight in schizophrenic and/or schizoaffective populations.58-61

Our previous studies concerning WMHs found an association between PWMHs and lower depression severity as assessed by the Center for Epidemiologic Studies Depression Scale62; an association between WMHs and older age with late-onset BD63; an association between affective temperamental profiles, WMHs, and suicidal risk in patients with mood disorders64; an association between WMHs and suicide attempts in patients with bipolar disorders and unipolar depression8,25,65; and an association between deep WMHs and poor prognosis in a sample of patients with late-onset bipolar II disorder.20

Here we hypothesized that those with WMHs compared to those without may be at a higher risk of impaired insight as assessed using the item 17 of the HDRS17 and item 11 of the YMRS, respectively. The present study aimed to evaluate whether the presence of WMHs is associated with impaired insight in patients with BD-I. To our current knowledge, there are no data that link white matter abnormalities and insight in BD-I.

Methods

Subjects and study design

A total of 193 white Caucasian patients consecutively admitted to the psychiatric inpatient units of Sant'Andrea Hospital and the “Samadi Clinic” in Rome from September 2007 to September 2009 participated in the study. Inclusion criterion was a *Diagnostic and Statistical Manual of Mental Disorders, 4th edition, text revision (DSM-IV-TR)* diagnosis of BD-I.66 Exclusion criteria were as follows: other DSM-IV-TR major psychiatric disorders; the presence of any neurological disorders (eg, epilepsy, multiple sclerosis, Alzheimer’s disease, dementia); history of brain concussion; family history of dementia; presence of structural MRI findings compatible with stroke, including lacunar infarcts or other gross brain lesions or malformations; history of electroconvulsive therapy in the past 6 months; and conditions affecting the ability to participate in the assessment, including mental retardation. Based on inclusion criteria, 45 (23.3%) patients were not included because they had a diagnosis of BD-II. BD-II patients who were excluded from the study had similar socio-demographic characteristics and did not differ significantly from the patients included in the final sample with respect to clinical variables (eg, diagnosis or history of suicide attempts). The final sample consisted of 148 patients (77 men and 71 women). The mean age was 47.9 years (SD = 16.1; range: 19–83 years). Around 13% of the patients reported alcohol abuse; 6.1% reported illicit drug abuse, most commonly cannabis; and 2.0% reported concurrent abuse of alcohol and illicit drugs. Demographic and clinical characteristics of the sample are presented in Table 2.

Clinical and socio-demographic information was taken from medical records by 2 researchers independently. Current severity of affective symptoms was evaluated using the Young Mania Rating Scale (YMRS)67 and the Hamilton Depression Rating Scale (HDRS17).68 Participants were additionally administered the Mini International Neuropsychiatric Interview (MINI)69 and the Beck Hopelessness Scale (BHS).70,71

Subjects participated voluntarily in the study, and each subject provided written informed consent. The study protocol received approval from the local research
<table>
<thead>
<tr>
<th>Author(s), references</th>
<th>Sample characteristics</th>
<th>WMH evaluation</th>
<th>Most relevant location of WMHs</th>
<th>Main findings and implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tighe et al.¹⁶</td>
<td>45 BD-I or -II subjects (with or without PS), and 32 HC</td>
<td>No psychometric instrument</td>
<td>Total volume of WMH</td>
<td>The mean total volume of WMHs in BD-I patients with psychotic features was significantly higher than that of HS.</td>
</tr>
<tr>
<td>Serafini et al.¹⁷</td>
<td>85 CH adult outpatients</td>
<td>Modified Fazekas scale</td>
<td>Not specified</td>
<td>40% had PWMHs and 98% DWMHs. Patients with PWMHs were more likely to have lower CES-D scores than patients without; patients with more severe DWMHs were more likely to be older than those with mild or any DWMHs.</td>
</tr>
<tr>
<td>Oudega et al.¹⁸</td>
<td>81 elderly MDD patients</td>
<td>No psychometric instrument</td>
<td>Total volume of WMH</td>
<td>No differences in change of MADRS scores were found for WMHs. WMHs did not contribute to poor response to ECT.</td>
</tr>
<tr>
<td>Serafini et al.¹⁹</td>
<td>143 BD-I, 42 BD-II, and 62 MDD patients</td>
<td>Modified Fazekas scale</td>
<td>Centrum semiovale (24.4%), corona radiate (20.2%), frontal (17.6%), parietal (15.1%), temporal, and subcortical (8.4%) DWMHs</td>
<td>48% of patients had PWMHs and 39% had DWMHs. Patients with higher dysthymia and lower hyperthymia were more likely to have increased DWMHs than patients with lower dysthymia and higher hyperthymia. Different temperament profiles are associated with differences in the subcortical brain structures.</td>
</tr>
<tr>
<td>Serafini et al.²⁰</td>
<td>54 elderly LO BD patients. (76% BD-I, 24% BD-II)</td>
<td>Modified Fazekas scale</td>
<td>Centrum semiovale (22%), corona radiate (15%), paratrigonal (6%), frontal (46%), parietal (24%), and subcortical DWMHs</td>
<td>Confluence of DWMH lesions was found in 17% of the patients whereas confluent PWMHs in 28%. BD-II patients with DWMHs had a poorer quality of life than BD-I subjects. MRI findings of DWMHs could be a useful biological predictor of severity in patients with BD-II.</td>
</tr>
<tr>
<td>Gunning-Dixon et al.²¹</td>
<td>42 elderly non-psychotic MDD and 25 HC subjects</td>
<td>A semi-automated method</td>
<td>WMHs and subcortical nuclei</td>
<td>Depressed subjects had greater total WMH burden compared to non-depressed controls. Patients who failed to remit with escitalopram had significantly greater WMH burden than patients who remitted and HC. WMHs may confer a vulnerability or perpetuate LL depression.</td>
</tr>
<tr>
<td>Köhler et al.²²</td>
<td>35 subjects aged ≥ 60 years with MDD and 29 HC</td>
<td>Scheltens scale</td>
<td>Total volume of WMH (both DWMHs and PWMHs)</td>
<td>More severe PWMHs and DWMHs were associated with greater deficits in memory and executive functions at follow-up compared with HC.</td>
</tr>
<tr>
<td>Bae et al.²³</td>
<td>24 PD patients and 24 matched HC</td>
<td>Composite Fazekas/Coffey scale</td>
<td>Frontal DWMHs</td>
<td>A greater severity of total WMH was associated with a diagnosis of PD in a dose-dependent pattern. WMHs may play a role in the pathogenesis of PD.</td>
</tr>
<tr>
<td>Fein et al.²⁴</td>
<td>51 LTAA and 46 HC</td>
<td>An automated algorithm</td>
<td>DWMHs and PWMHs</td>
<td>LTAA had more WMHs than HC. WMHs increase with age in LTAA. WMH load was independently associated with alcohol burden and age.</td>
</tr>
<tr>
<td>Pompili et al.²⁵</td>
<td>99 patients: 40.4% BD-I, 21.2% BD-II, and 38.4% MDD</td>
<td>Modified Fazekas scale</td>
<td>Corona radiate (N = 10), centrum semiovale (N = 6), and frontal subcortical WM (N = 18)</td>
<td>27.3% showed PWMHs, 36.4% DWMHs, and 14.1% of patients had WMHs in both locations. Subjects with PWMHs were more likely to have attempted suicide than individuals without PWMHs, even after controlling for potential confounding variables</td>
</tr>
<tr>
<td>Sheline et al.²⁶</td>
<td>83 LL depression subjects and 32 HC</td>
<td>Modified Fazekas scale</td>
<td>Superior/inferior longitudinal, and fronto-occipital/uncinate fasciculus, extreme capsule</td>
<td>Depressed subjects had greater WMHs in the investigated brain regions. Whole brain WMHs correlated with executive functions in depressed subjects; whole brain WM correlated with episodic memory, processing speed, and executive functions.</td>
</tr>
<tr>
<td>Regenold et al.²⁷</td>
<td>20 BP, 15 SCH patients, and 15 with TNS</td>
<td>An automatic volume computation</td>
<td>DWMHs</td>
<td>BD (and not schizophrenia) patients had significantly greater volumes of DWMHs compared to neurologic controls. Treatment resistance and poor outcome correlated significantly with DWMH volume in BD subjects.</td>
</tr>
<tr>
<td>Author(s), references</td>
<td>Sample characteristics</td>
<td>WMH evaluation</td>
<td>Most relevant location of WMHs</td>
<td>Main findings and implications</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Takahashi et al<sup>28</sup></td>
<td>52 MD patients and 14 HC</td>
<td>Modified Fazekas scale</td>
<td>Bilateral frontal areas and the left parieto-occipital region</td>
<td>LO affective disorder patients showed higher ratings of DWMHs than EO patients. Significant between-group differences were detected in the investigated brain regions.</td>
</tr>
<tr>
<td>Zanetti et al<sup>29</sup></td>
<td>129 individuals with FEP and 102 controls</td>
<td>Scheltens scale</td>
<td>Total volume of WMH</td>
<td>There were no statistically significant between-group differences in WMH frequency or severity scores.</td>
</tr>
<tr>
<td>Iosifescu et al<sup>30</sup></td>
<td>65 MDD patients</td>
<td>Modified Fazekas scale</td>
<td>Subcortical and total WMHs</td>
<td>After logistic regression analyses, MDD with anger attacks was associated with higher severity of subcortical WMHs and total WMHs.</td>
</tr>
<tr>
<td>Pompili et al<sup>8</sup></td>
<td>65 AD patients (44.6% with prior SA)</td>
<td>Modified Fazekas scale</td>
<td>Not specified</td>
<td>After logistic regression analyses, the prevalence of WMHs was significantly higher in subjects with past SA. WMHs might be useful biological markers of suicidality.</td>
</tr>
<tr>
<td>Patankar et al<sup>31</sup></td>
<td>50 LO MDD patients and 35 HC</td>
<td>Scheltens scale</td>
<td>Basal ganglia</td>
<td>29 patients were responders, and 21 non-responders to monotherapy. Subjects with greater VRS dilation were more likely to be non-responders than those without.</td>
</tr>
<tr>
<td>Bae et al<sup>32</sup></td>
<td>33 MA abusers and 32 HC</td>
<td>Modified Fazekas scale</td>
<td>DWMHs and PWMHs</td>
<td>Male MA abusers had greater severity of DWMHs and PWMHs than female MA and HC. Severity of DWMHs correlated with cumulative dose of MA inducing brain perfusion deficits.</td>
</tr>
<tr>
<td>Iosifescu et al<sup>33</sup></td>
<td>84 MDD patients and matched HC</td>
<td>Modified Fazekas Scale</td>
<td>Subcortical WMHs</td>
<td>No significant difference was found in the prevalence of WMHs between the depression and the HC group. Left-hemisphere subcortical WMHs correlated with lower rates of treatment response.</td>
</tr>
<tr>
<td>Anstey et al<sup>34</sup></td>
<td>385 adults with WAU</td>
<td>No psychometric instrument</td>
<td>Total volume of WMH</td>
<td>After regression analyses, WAU was not associated with WMHs.</td>
</tr>
<tr>
<td>Jorm et al<sup>35</sup></td>
<td>475 subjects aged 60–64 years</td>
<td>Modified Fazekas Scale</td>
<td>Frontoparietal and PWMHs</td>
<td>Depressive symptoms were related to total brain WMHs but not to basal ganglia hyperintensities (the association is not significant when adjusted for physical disability and smoking).</td>
</tr>
<tr>
<td>Ehrlich et al<sup>36</sup></td>
<td>102 young psychiatric MDD inpatients</td>
<td>Modified Coffey scale</td>
<td>PWMHs</td>
<td>After logistic regression analyses, the prevalence of PWMHs was significantly higher in subjects with past SA compared to those without.</td>
</tr>
<tr>
<td>Lin et al<sup>37</sup></td>
<td>37 elderly LL MDD patients, and 18 HC</td>
<td>Modified Fazekas Scale</td>
<td>PWMHs</td>
<td>Over 60% of patients had significant WMHs. Relative to HC, patients with LL MDD showed more severe PWMHs. WMHs were correlated with later onset of depression.</td>
</tr>
<tr>
<td>Hickie et al<sup>38</sup></td>
<td>47 MDD patients and 21 HC</td>
<td>Modified Fazekas Scale</td>
<td>DWMHs</td>
<td>There was no difference in lesion severity between patients and HC. After controlling for age, vitamin B12 levels were predictive of DWMHs in patients with MDD.</td>
</tr>
<tr>
<td>Heiden et al<sup>39</sup></td>
<td>31 MDD patients (21 re-assessed after 5 years)</td>
<td>Modified Fazekas Scale</td>
<td>Frontal WMHs</td>
<td>Subjects with greater extent of WMHs had significantly higher Hamilton Depression Rating Scale scores, more severe depression at follow-up, and a lower Mini-Mental State Examination score.</td>
</tr>
<tr>
<td>Lyoo et al<sup>40</sup></td>
<td>32 patients with CD, 32 with OD and HC</td>
<td>Composite Fazekas/Coffey scale</td>
<td>Frontal WMHs</td>
<td>Patients with cocaine dependence had greater severity of DWMHs and insular WMHs than those with opiate dependence and HC. Cocaine may induce more ischemia via vasoconstriction than opiates.</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Sample characteristics</td>
<td>WMH evaluation</td>
<td>Most relevant location of WMHs</td>
<td>Main findings and implications</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Firbank et al</td>
<td>29 elderly depressed patients and 32 HC of similar age</td>
<td>Modified Fazekas Scale</td>
<td>Frontal WMHs</td>
<td>Depressed subjects had a significantly greater frontal-lobe WM volume than HC.</td>
</tr>
<tr>
<td>Taylor et al</td>
<td>133 MDD subjects aged 60 years or older</td>
<td>No psychometric instrument</td>
<td>Total volume of WMH</td>
<td>After regression analyses, a greater change in WMH volume was significantly associated with a failure to remit even when controlling for confounding factors.</td>
</tr>
<tr>
<td>Breeze et al</td>
<td>Over 600 psychiatric patients</td>
<td>No psychometric instrument</td>
<td>Total volume of WMH</td>
<td>Subjects with BD were not more likely to have WMH than other psychiatric patients. Lithium use may be subtly associated with WMHs.</td>
</tr>
<tr>
<td>Agid et al</td>
<td>37 MDD patients and 27 age- and sex-matched HC</td>
<td>Basal ganglia, temporal lobe, cerebellum, and brainstem</td>
<td>Mean volume of WMHs was significantly greater in depressed subjects. Depressed patients with WMHs in the basal ganglia may represent a clinically distinct at-risk subgroup within MDD.</td>
<td></td>
</tr>
<tr>
<td>Taylor et al</td>
<td>86 LL depression patients and 47 HC</td>
<td>A semi-automated method</td>
<td>Fronto-striatal WMHs</td>
<td>A significant association between age and WMHs was found in bilateral frontal and left parietal regions.</td>
</tr>
<tr>
<td>Silverstone et al</td>
<td>13 depressed BP patients, 11 unipolar depression, and 19 HC</td>
<td>Modified Fazekas Scale</td>
<td>DWMHs</td>
<td>More BP patients had higher DWMHs scores than both unipolar patients and HC.</td>
</tr>
<tr>
<td>Pillai et al</td>
<td>15 bipolar adolescents, 19 with SCH and 16 HC</td>
<td>No psychometric instrument</td>
<td>Total volume of WMH</td>
<td>VMHs were present in 67% of bipolar patients, 37% of those with schizophrenia and 31% of HC. Bipolar patients had significantly increased VMHs than HC and schizophrenic subjects.</td>
</tr>
<tr>
<td>Ahearn et al</td>
<td>20 unipolar subjects with prior SA matched with those without</td>
<td>Boyko scale, Coffey scale</td>
<td>Subcortical VMHs</td>
<td>A trend toward significance in PWMHs between unipolar patients with a history of SA compared to those without was found.</td>
</tr>
<tr>
<td>Rivkin et al</td>
<td>12 LO and 10 EO SCH patients, and 31 HC</td>
<td>Explicit WMH volume</td>
<td>Total volume of WMH</td>
<td>No significant differences in WMH volume were found between the 3 groups. A trend towards increased WMH volume in the LO schizophrenia group was also found.</td>
</tr>
<tr>
<td>Sachdev et al</td>
<td>27 LO and 30 EO SCH patients, and 34 HC</td>
<td>No psychometric instrument</td>
<td>Total volume of WMH</td>
<td>LO subjects had more PWMHs and subcortical nuclei WMHs than HC.</td>
</tr>
<tr>
<td>Sachdev and Brodaty</td>
<td>25 LO and 24 EO SCH patients, and 30 HC</td>
<td>No psychometric instrument</td>
<td>Widths of periventricular rims and frontal/occipital caps</td>
<td>Subjects with LO schizophrenia had greater WMHs than the two other groups. LO schizophrenia patients had more WMHs in the thalamus than HC. PWMHs had significant negative correlations with intelligence, memory, and frontal-executive functioning.</td>
</tr>
<tr>
<td>Symonds et al</td>
<td>30 EO and 24 LO SCH patients, 15 with OP, and 41 HC</td>
<td>A scale similar to the modified Fazekas</td>
<td>Total volume of WMH</td>
<td>There were no significant differences between psychotic patients and HC or EO and LO schizophrenic subjects in terms of frequency, type, or severity of structural abnormalities.</td>
</tr>
</tbody>
</table>

Note: AD = affective disorders; BD-I = bipolar disorder type I; BD-II = bipolar disorder type II; CD = cocaine dependence; CH = chronic headache; DWMHs = deep WMHs; ECT = electroconvulsive therapy; EO = early-onset; EFA = first-episode psychosis; HC = healthy control; LL = late-life; LO = late-onset; LTAA = long-term abstinent alcoholics; MA = methamphetamine; MADRS = Montgomery-Asberg Depression Rating Scale; MOD = major depressive disorder; MRI = magnetic resonance imaging; OD = opiate dependence; OP = other psychoses; PD = panic disorder; PS = psychotic symptoms; PWMHs = periventricular WMHs; SA = suicide attempts; SCH = schizophrenia; TNS = transient neurologic symptoms; VRS = Virchow Robin spaces; WAU = weekly alcohol use; WMHs = white matter hyperintensities.
ethics review board. Clinical interviews were conducted on average 5 days after admission.

Magnetic resonance image acquisition and rating of white matter hyperintensities

Brain MRIs were performed using a Siemens Sonata MRI scanner (Erlangen, Germany; 1.5 T). The FLAIR scan sequence was used for WMH measurement (ax: TR 10000; TE 125; thickness 5 mm; matrix 144 × 256). Proton density and T2-weighted images were obtained (PD and T2 ax: TR 2870; TE 13/107; thickness 5 mm; matrix 147 × 256) in the axial and the coronal planes. Axial and sagittal T1-weighted images were also obtained (T1 ax: TR 647; TE 17; thickness 5 mm; matrix 128 × 192 T1 sag: TR 552; TE 17; thickness 5 mm; matrix 231 × 192). The presence of a WMH was assessed by a neuroradiologist who was blind to all clinical information, using the modified Fazekas 4-point rating scale, which describes MRI hyperintensities on an ascending scale of intensity and frequency. A second neuroradiologist, who was blind to all clinical information and previous WMH ratings, independently reviewed all MRI films. In the present study, the 4-point assessment of the modified Fazekas scale was collapsed into a dichotomous variable that measured the presence or absence of WMs. The mean k value for inter-rater reliability for both PWMHs and DWMHs was 0.90.

Measures: clinical assessment

MINI

The MINI is a clinically administered, short, structured interview with high validity and reliability that was developed to explore 17 disorders according to the Diagnostic and Statistical Manual of Mental Disorders, 3rd edition, revised (DSM-III-R), and is routinely used in our unit soon after admission. One section of this instrument was developed to assess suicidal risk, it includes questions about past and current suicidality.

Although the MINI should not be a substitute for a psychiatric clinical interview, validation studies confirm the validity of this instrument as a reliable tool in psychiatry. MINI diagnoses were confirmed by clinical DSM-IV-TR diagnoses. Clinical diagnoses were assigned by a psychiatrist and an attending physician who were blind to the results of the MINI and MRI scans.

BHS

The BHS is a 20-item scale for measuring attitudes about the future. Research consistently supports a positive relationship between BHS scores and measures of depression, suicidal intent, and current suicidal ideation. The BHS may, therefore, be used as a proxy indicator of suicide potential. In the study reported in 1985, 91 of people who died by suicide had a score ≥ 9, while only 9% of suicide victims had a score < 9, establishing the BHS cut-off score as 9 or higher as predictive of higher suicide risk.

HDRS, and YMRS

The HDRS, a 17-item clinician-rated scale, was used to evaluate depressive symptom severity. The YMRS is an 11-item rating scale for mania that explores manic symptoms and is considered the gold standard for evaluating the concurrent validity of bipolar mania with newer scales. The item of the HDRS that assesses...
insight (item 17) is measured on a 3-point Likert-type scale [from 0 (acknowledges being ill and depressed) to 2 (denies being ill at all)]. The item of the YMRS that assesses insight (item 11) is measured on a 5-point Likert-type scale [from 0 (present; admits illness; agrees with need for treatment) to 4 (denies any behavior change)]. Both variables were dichotomized, and patients were included in any of the following groups: (1) patients who admitted even only the possibility of being ill at the YMRS (higher insight for mania), and those who denied illness or behavior change (lower insight for depression): (2) patients who admitted to being depressed and ill at the HDRS17 (higher insight for depression) and those who completely denied being ill (lower insight for depression).

To avoid the strong correlation between measures of depression/mania and insight, we estimated depressive (HDRS16) and mania (YMRS10) severity by omitting items of the scales measuring insight.

Statistical Analysis

One-sided Fisher exact tests and t-tests were used for bivariate analyses. All variables that were significant in the bivariate analyses were entered as independent variables into 2 logistic regression analyses with groups with different levels of insight as the criterion. Chi-squared tests (χ^2), Nagelkerke R^2, and -2 Log likelihood statistics are reported as measures of association. Patients were stratified into 2 groups (having similar severity of bipolar illness): those having lower insight (having a > 1 as assessed by YMRS item 11) and those with higher insight (having a ≤ 1 as assessed by YMRS item 11). Among these groups, subjects were subsequently divided in those with lower or higher insight for mania and depression, respectively. All the analyses were performed with the Statistical Package for the Social Sciences (SPSS) for Windows 19.0.

Results

Clinical characteristics of the sample

At the time of assessment, 62.8% of the patients had scores of 9 or higher on the BHS, denoting elevated hopelessness and suicide risk. Approximately 88% and 63% of BD-I patients denied being ill according to item 11 of the YMRS and item 17 of the HDRS17, respectively.

Suicide risk

Around 43% of the patients (42.6%) had attempted suicide at least once in the past, and 48.6% of them had reported suicidal ideation.

MRI findings

A total of 73 subjects (49.3%) had PWMHs and 59 (39.9%) had DWMHs. Overall, 41 (27.7%) subjects had both PWMHs and DWMHs. Of those with PWMHs, 49 (67.1%) had multiple punctate lesions, 23 (31.5%) had beginning confluency of lesions, and only 1 (1.4%) had large confluent lesions as assessed by the modified Fazekas scale. Of those with DWMHs, 47 (79.7%) had multiple punctate lesions, 10 (16.9%) had beginning confluency of lesions, and 2 (3.4%) had large confluent lesions.

Insight ratings

Groups with different levels of insight differed in several variables (see Table 2). BD-I patients with lower insight for mania were more frequently women (51.5% vs 22.2%; $p = 0.05$), had significantly more PWMHs (54.6% vs 22.2%; $p < 0.05$), significantly higher scores on the HDRS16 (27.03 ± 6.54 vs 23.67 ± 6.64; t$_{146} = -1.98; p < 0.05$), and a significantly more frequent BHS score ≥ 9 (66.2% vs 38.9%; $p < 0.05$) when compared to BD-I patients with higher insight for mania.

On the contrary, BD-I patients with higher insight for depression differed only for BHS ($p < 0.05$) and HDRS16 (t$_{146} = -2.00; p < 0.05$) scores. BD-I patients with lower insight for depression had greater depressive severity (27.51 ± 6.72 vs 25.18 ± 6.98) and more frequently had scores of 9 or higher on the BHS (68.8% vs 52.7%).

Two logistic regression models assessed multivariate associations between groups and variables significant at the bivariate analysis when controlling for the presence of other variables. Both models fit the data well (see Table 3). The first model explained 20% of the variability of the data, and groups with different levels of insight in the YMRS differed significantly only for PWMHs ($p < 0.05$). The presence of PWMHs was independently associated with lower insight for mania: Patients who denied illness according to the YMRS were 4 times more likely to have PWMHs (95% CI: 1.21/13.42) than other patients.

The second model explained only 9% of the variability of the data, but none of the variables inserted in the model was independently associated with lower insight for depression (HDRS16; OR = 1.05; $p = 0.15$; BHS ≥ 9: OR = 2.62; $p = 0.07$).

Discussion

To our knowledge, this was the first study to investigate the association between WMHs and insight as assessed by 1 item of the YMRS in a population of patients with BD-I. Subjects with lower insight for mania had significantly more PWMHs when compared to BD-I
patients with higher insight for mania. These results indicate that differences in white matter abnormalities, as assessed using the modified Fazekas scale, are associated with differences in insight levels.

The present findings extended some previous results of studies that investigated the association between WMHs and insight in different psychiatric populations (eg, schizophrenic and/or schizoaffective patients). For example, Antonius et al found that white matter deficits in fronto-temporal brain regions are linked to symptom unawareness, and reduced white matter integrity in temporal and parietal regions is implicated in the misattribution of symptoms. Similarly, Palaniyappan et al, in a sample of predominantly male subjects, found a significant decrease in right posterior insular area in patients with poor insight relative to healthy controls; a negative correlation between insight and local white matter volume of the right posterior insula; and a positive association between the lower surface area of the right posterior insula and the lower degree of insight.

Not all studies, however, reported a relationship between frontal lobe atrophy and impaired insight. Bassitt et al found no significant inverse correlations between insight impairment and gray or white matter volumes in the prefrontal region. Similarly, Rossell et al reported no significant correlations between the whole brain, white and gray matter volumes, and the degree of insight in a sample of 78 male patients with schizophrenia and 36 normal male comparison subjects. According to our results, different levels of insight as assessed by the YMRS are associated with MRI findings. BD-I patients with impaired insight on the YMRS were more likely to have PWMHs. WMHs were observed mostly in the centrum semiovale (24.4%) and corona radiata (20.2%) regions and higher in cortical and subcortical deep frontal (17.6%), parietal (15.1%), and temporal (8.4%) areas. These brain regions are involved in the regulation of mood and may contribute to the emergence of impairments in insight. It is unlikely that impairments in insight are related to a single brain area. Most likely, symptom unawareness is linked to complex abnormalities in the network of fronto-temporal brain regions.

The assumption that some bipolar symptoms might be due to vascular-related processes (eg, degenerative processes including atherosclerosis, lacunar infarcts, atrophic demyelination, and arteriolar hyalinization) that alter the connectivity between these brain structures is intriguing and is supported by the observed post-stroke emergence of mania. However, here we did not find any association between PWMHs and suicidal behavior as assessed using the BHS. The association between bipolar disorder and cardiovascular risk factors, including hypertension, hypercholesterolemia, obesity, and cigarette smoking, is well known. However, our findings did not support this link between vascular risk factors and the emergence of manic symptoms, because after including PWMHs, DWMHs, hypertension, diabetes, total cholesterol, triglycerides, and number of daily cigarettes as covariates in our analyses, the results did not indicate any significant association.

In contrast with our previous findings, our study did not currently find any association between PWMHs and suicidal behavior as assessed using the BHS. However, here we investigated a sample of BD-I patients, whereas the previous findings were found in a mixed sample of bipolar and major depressed patients. The association between PWMHs and suicidal behavior is presumably significant only in some subgroups
of patients with major affective disorders, such as those with a BD type II or major depression.

Overall, these findings provide hypothetical evidence in support of the notion that the presence of PWMHs may significantly predict the presence of impaired insight in subjects with BD-I. Therefore, the presence of PWMHs might be used for grouping those subjects with BD-I who will manifest a more pronounced impairment in insight during hospitalization than other bipolar individuals, which will potentially help to optimize alternative treatment strategies.

Limitations

The present study must be considered in the light of the following limitations. First, the small sample size did not allow for generalization of the present findings. In addition, all our patients were admitted to a psychiatric hospital, which may indicate more severe affective symptoms and poorer insight at admission compared to that usually found in outpatients. This is a potential confounder of the present results according to some recent studies, which suggests that, at least at functional level, some white matter abnormalities may be state-related. However, the present sample did not include bipolar subjects with current psychotic symptoms, nor severely depressed/manic patients as confirmed by the HDRS and YMRS mean total scores (see Table 2). Therefore, we sustained that the observed white matter abnormalities in our sample were trait-related rather than state-related features.

Also, the present study did not include a formal measure of insight. The measurement of insight through item 11 of the YMRS and item 17 of the HDRS may be considered questionable, as the variance is not likely to be high. It is also difficult to make a fair comparison with the one item having a 0–4 range for mania and the other 0–2 for depression. However, our results are in line with those of Shad et al and Ha et al and with other authors, which suggests that insight is a multidimensional domain. Factor analytic studies have often identified that different insight dimensions significantly overlap and may be represented by a single component able to explain approximately 80% of the variance. In addition, it has been demonstrated that a good degree of agreement exists between single- and multiple-item measurement of insight.

Moreover, although all our inpatients were taking psychoactive medications and most had a history of substance abuse, we did not analyze the effects of these variables on insight ratings and image processing. It is reasonable to inquire whether the use of psychotropic medications could influence the presence and maintenance of WMHs. To date, there is no evidence that WMH rates could be influenced by the use of lithium, tricyclic antidepressants, or antiepileptic medications. Conversely, findings concerning the possible influence of antipsychotic drugs is very limited, which suggests that caution should be used when interpreting the significance of WM lesions in patients with major affective disorders who were treated with psychoactive medications. However, most of the subjects included in the present sample were at their first hospitalization, presumably reflecting a short history of exposure to antipsychotic drugs. Also, the lack of accounting for the cognitive effects of medications was due to the fact that these patients did not complete a specific neurocognitive assessment.

Other methodological issues concern the procedure. The MRI studies were of quite low spatial resolution and done on only a 1.5 T scanner. Studies at 3 T and with higher resolution would have likely yielded a much higher number and extent of WMHs. An analysis to quantify total white matter lesion volume would strengthen the findings. In addition, diffusion tensor imaging techniques may be more sensitive for detecting white matter abnormalities in association with mood disorders. Also, although we found that WMHs were predominant in some brain regions, we could not perform regional analysis showing specific regional relationship of WMHs to insight.

Importantly, although WMHs are frequently found in populations of bipolar patients, and different mechanisms are considered in the emergence of WMHs, it is possible that WMHs may represent the “tip of the iceberg” that might be interpreted as an extreme consequence of underlying microstructural processes that affect brain connectivity, and which may be more specifically investigated using diffusion tensor imaging methods. Additionally, the Fazekas rating scale as a lesion assessment method was limited because visual rating scales, even where details of where lesions occur are provided, are a less objective method than many of the volumetric methods that are available.

Conclusions

More than half of our BD-I patients had PWMHs and a significant percentage of them had DWMHs. BD-I patients with impaired insight were more likely to have PWMHs than those without.

Prospective additional studies are needed in order to provide a better understanding of the biological processes that are involved in bipolar illness outcome.

Disclosures

Dr. Serafini has consulted and engaged in research with Janssen-Cilag, Bristol-Myers Squibb Corporation,
REFERENCES:

671 MRI investigation. Onset after age 50 years. 2: Neurological, neuropsychological and
669 hyperintensities in a community-based sample aged 60 to 64 years. Psychosom Med.
672 2006; 68(5): 775-785.
673 35. Jorm AF, Anstey KJ, Christensen H, et al. MRI hyperintensities and
depressive symptoms in a community sample of individuals 60-64 years old. Am J Psychiatry.
675 36. Lin HF, Kuo YT, Chiang IC, Chen HM, Chen CS. Structural
abnormality on brain magnetic resonance imaging in late-onset major depressive disorder. Kasuhiu J Med Sci. 2005; 21(9):
405-411.
680 40. Firbank MJ, Lloyd AJ, Ferrrier N, O'Brien JT. A volumetric study of
681 41. Taylor WD, Steffens DC, MacFall JR, et al. White matter
hyperintensity progression and late-life depression outcomes. Arch Gen Psychiatry. 2003; 60(11): 1090-1096.
682 42. Breeze JL, Hesdorffer DC, Hong X, Frazier JA, Renshaw PF.
Clinical significance of brain white matter hyperintensities in
683 43. Agid R, Levin T, Gomori JM, Leger B, Bonne O. T2-weighted image
684 44. Taylor WD, MacFall JR, Steffens DC, Payne ME, Provenzale JM,
Krishnan KR. Localization of age-associated white matter
685 45. Silverstone T, McPherson H, Li Q, Doyle T. Deep white matter
686 46. Pillai JJ, Friedman L, Streve TA, et al. Increased presence of white
687 47. Ahearne EP, Jamison KH, Steffens DC, et al. MRI correlates of
689 49. Sachdev P, Brodaty H, Rose N, Cathcart S. Schizophrenia with
onset after age 50 years. 2: Neurological, neuropsychological and
690 50. Sachdev P, Brodaty H. Quantitative study of signal hyperintensities
significant gross structural abnormalities in MRIs of older patients
692 52. Vasudev A, Thomas A. 'Bipolar disorder' in the elderly: what's in a
bipolar disorder: magnetic resonance imaging comparison and
694 54. Viaeta E, Suppes T. Bipolar II disorder: arguments for and against a
695 55. Moore PB, Shepherd DJ, Eccleston D, et al. Cerebral white matter
696 56. Cassidy F. Insight in bipolar disorder: relationship to episode
in bipolar disorder: associations with cognitive and emotional
processing and illness characteristics. Bipolar Disord. 2011; 13(4):
343-354.
698 58. Antonius D, Prudent V, Rehany Y, et al. White matter integrity and
lack of insight in schizophrenia and schizoaffective disorder.
Schizophr Res. 2011; 128(1-3): 76-82.
699 59. Bassit DP, Neto MR, De Castro CC, Busatto GF. Insight and
700 60. Palaniyappan L, Mallickaran P, Joseph V, Liddle PF. Appreciating
symptoms and deficits in schizophrenia: right posterior insula and
701 61. Rosell SL, Coakes J, Shapleske J, Woodruff PW, David AS. Insight:
its relationship with cognitive function, brain volume and
suicidal risk in a sample of subjects with chronic migraine and
hyperintensities, suicide risk and late-onset affective disorders: an
temperamental profiles are associated with white matter
hyperintensity and suicidal risk in patients with mood disorders.
705 65. Pompili M, Rihmer Z, Akiskal HS, et al. Temperament and
personality dimensions in suicidal and nonsuicidal psychiatric
706 66. American Psychiatric Association (APA). Diagnostic and Statistical
708 68. Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for
709 69. Hamilton M. A rating scale for depression. J Neurol Neurosurg
710 70. Sheehan DV, Lecrubier Y, Sheehan KH, et al. The Mini
International Neuropsychiatric Interview (M.I.N.I.): the
development and validation of a structured diagnostic psychiatric
711 71. Beck AT, Weismann A, Lester D, Trexler L. The measurement of
712 72. Beck AT, Steer RA. Clinical predictors of eventual suicide: a 5- to
anatomy in depression: a controlled magnetic resonance imaging
765 77. Figiel GS, Krishnan KR, Doraiswamy PM, Nemeroff CB. Caudate
766 age-associated white matter hyperintensities in late-life depression.
767 Neurology 2004; 613–617.
769 hyperintensities in geriatric depression. Neuroanatomic localization of
770 magnetic resonance imaging signal hyperintensities in elderly depressed
771 patients with neuroleptic-induced parkinsonism. J Geriatr Psychiatry
775 80. Steffens DC, Helms MJ, Krishnan KR, Burke GL. Cerebrovascular
776 disease and depression symptoms in the cardiovascular health
778 81. Strakowski SM, Delbello MP, Adler C, Cecil DM, Sax KW.
779 Neuroimaging in bipolar disorder. Bipolar Disord. 2000; 2(3 Pt 1):
780 148-164.
781 82. Taylor WD, Macfall JR, Steffens DC, et al. Localization of
782 age-associated white matter hyperintensities in late-life depression.
783 Prog Neuropsychopharmacol Biol Psychiatry. 2003; 27(3):
784 539-544.
786 hyperintensity volume on brain structure, cognitive performance,
789 84. Berthier ML, Kilovysky J, Gironell A, Fernández Benitez JA.
790 Poststroke bipolar affective disorder: clinical subtypes, concurrent
791 movement disorders, and anatomical correlates. J Neuropsychiatry
793 85. Celik Y, Erdogan E, Tuglu C, Utku U. Post-stroke mania in late life
794 due to right temporoparietal infarction. Psychiatry Clin Neurosci.
796 86. Kilbourne AM. The burden of general medical conditions in
798 87. Yates WR, Wallace R. Cardiovascular risk factors in affective
801 dysfunction in bipolar disorder during emotional face processing.
803 89. Van der Schot A, Kahn R, Ramsey N, Nolen W, Vink M. Trait and
804 state dependent functional impairments in bipolar disorder.
805 Psychiatry Res. 2010; 184(3): 135-142.
806 90. Shad MU, Muddasani S, Prasad K, Sweeney JA, Keshavan MS.
807 Insight and prefrontal cortex in first-episode schizophrenia.
809 91. Ha TH, Youn T, Ha KS, et al. Gray matter abnormalities in paranoid
810 schizophrenia and their clinical correlations. Psychiatry Res. 2004;
812 92. David AS, Buchanan A, Reed A, Almeida O. The assessment of
815 psychotic: reliability, validity and sensitivity to change. Acta
817 94. Cuesta MJ, Peralta V, Zarzuela A. Reappraising insight in psychosis:
819 233-240.
820 95. Drake RJ, Lewis SW. Insight and neurocognition in schizophrenia.
822 96. Lincoln TM, Lüllmann E, Rief W. Correlates and long-term
823 consequences of poor insight in patients with schizophrenia: a
825 97. Sanz M, Constable G, Lopez-Ibor I, Kemp R, David AS. A
826 comparative study of insight scales and their relationship to
827 psychopathological and clinical variables. Psychol Med. 1998;
828 28(2): 437-446.
830 hyperintensities in bipolar and unipolar patients with relatively
832 237-245.
834 in schizophrenia. Schizophr Res. 1997; 27(1): 55-64.