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ABSTRACT 

 Experiments have been carried out to compare the stabilization effect of two flavo-

noid type natural antioxidants, dihydromyricetin (DHM) and quercetin (Q) in polyethylene 

(PE). Additive concentrations changed between 0 and 500 ppm in several steps and 1000 

ppm Sandostab PEPQ phosphorus containing secondary stabilizer was also added to each 

compound. Both antioxidants are very efficient stabilizers for PE, sufficient melt stability 

was achieved already at 50 ppm DHM content. At small concentrations dihydromyricetin 

proved to be more efficient melt stabilizer and it protected the secondary antioxidant better 

than quercetin. In spite of its better efficiency in melt stabilization, polymers containing 

DHM had the same residual stability as those prepared with quercetin. Accordingly, the 

larger efficiency does not result from the larger number of active phenolic hydroxyls in the 

molecule, but from interactions with the phosphorous secondary stabilizer that is stronger 

or at least different for DHM than quercetin. In spite that DHM is a white powder, it gave 

the polymer a brownish color which became deeper with increasing number of extrusions 

and additive content. Nevertheless, both natural antioxidants can be used efficiently for the 

stabilization of polymers in applications in which color is of secondary importance. 

 

KEYWORDS: polyethylene, processing stabilization, long chain branching, natural antiox-

idants, dihydromyricetin, solubility, color  

 

1. INTRODUCTION 

 Polyethylene (PE) is exposed to heat, shear, and oxygen during its processing and 

use. Adequate stabilization is essential to protect the polymer already during the manufac-

ture of the final product and hinder degradation which usually results in the deterioration of 

properties. Synthetic antioxidants (AO) are used for stabilization in industrial practice, but 
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sometime ago questions emerged regarding the effect of their reaction products on human 

health [1]. Most of these questions have not been answered satisfactorily yet. As a conse-

quence, more and more attempts are made to find new solutions including the use of natural 

antioxidants for the stabilization of food [2-4], but also of polymers [5-15]. These com-

pounds usually can be found in vegetables and fruits, are often used as spices and are known 

to have beneficial effect on the human health. 

 Several compounds with different chemical structures have been studied as potential 

stabilizers in polymers and also in polyethylene. Vitamin E, i.e. α-tocopherol, is a natural 

phenolic compound which was shown to be a very efficient antioxidant [5-8] and it is used 

in practice for the stabilization of hip replacements prepared from ultra-high molecular 

weight polyethylene (UHMWPE). Attempts were made to use lignin, a natural polyphenol, 

as stabilizer and it proved to have some antioxidant effect indeed [9-11]. Recently, the sta-

bilization of PE with another natural compound, curcumin, was studied in detail [16] and it 

was found that its melt stabilizing efficiency is superior to that of the synthetic antioxidant 

extensively used in industrial practice. The effect of the antioxidant was further enhanced 

by the addition of a phosphorus containing secondary stabilizer. The study has shown that 

besides its phenolic –OH groups, also the linear linkage between the two methoxyphenyl 

rings participates in stabilization reactions leading to a unique reaction route and increased 

efficiency. 

 Quercetin, i.e. [2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one] (Q), 

is also a natural antioxidant found in fruits, vegetables, leafs and seeds in nature. The com-

pound is a flavonol type flavonoid, which has proven antioxidant, antiviral and anti-inflam-

matory effect in the human body. It was already used for the stabilization of polyolefins 

[17,18], and also as a component of active packaging materials [19-22]. Quercetin was 

added to polyethylene [17], polypropylene [18] and an ethylene vinyl alcohol copolymer 
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and it proved to be an efficient stabilizer in all cases. However, quercetin was applied at 

concentrations of 2000-3000 ppm [17,18] or at even larger quantities in most studies, which 

raises the question of solubility, efficiency and price. 

 Although the studies cited above [17,18] proved that quercetin is a very efficient 

stabilizer in various polymers, several questions remained open. Quercetin is a polar com-

pound with a melting temperature of around 320 °C, thus its solubility in the polymer is 

limited. Its efficient homogenization is questionable under the usual conditions of polyolefin 

processing, since the additive does not melt. The concentrations used in previous studies 

also seemed to be quite large [17,18]. In a recent study the melt stabilization effect of quer-

cetin was investigated in a Phillips type polyethylene at much smaller concentrations, in the 

range of 5 to 1000 ppm [23]. It proved to be very efficient and prevented the formation of 

long chain branches already at a concentration as small as 50 ppm, while its dosage at 250 

ppm provided the polymer sufficient residual stability. There were indications that quercetin 

interacted with the phosphonite secondary stabilizer used and that the mechanism of stabi-

lization might differ from that of hindered phenolic stabilizers routinely used in practice. 

However, besides the advantages of quercetin, its very high melting temperature, limited 

solubility in polyethylene and strong yellow color are definite drawbacks for this compound. 

 The disadvantages mentioned in the previous paragraph might be overcome by the 

use of another flavonoid type natural antioxidant dihydromyricetin (2R,3R)-3,5,7-trihy-

droxy-2-(3,4,5-trihydroxyphenyl)-2,3-dihydrochromen-4-one) (DHM). The compound is 

very similar to quercetin, but it is colorless and has a lower melting temperature. According 

to our knowledge only two attempts were made to use DHM as a stabilizer in polymers and 

both were done by the same group [24,25]. Chen et al. added DHM to polyethylene [24] 

and polypropylene [25] at 2000 ppm and without any secondary antioxidant. According to 

the authors the additive is more efficient than the commercial stabilizers used as reference. 
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They explained the large efficiency with the position and the large number of hydroxyl 

groups in the molecule, but did not offer any information about melt stability, color, the 

effect of concentration or stabilization mechanism. As a consequence, the goal of this study 

was to explore the possibility of using DHM as stabilizer in polyethylene. The effect of the 

compound was compared to that of quercetin discussed above. Stabilization was studied as 

a function of composition at much smaller amounts than that used by Chen et al. [24,25]. 

Special attention was paid to processing stability, solubility and color in the study. 

 

2. EXPERIMENTAL 

2.1. Materials 

The polymer used in the experiments was the Tipelin FS 471 grade ethylene/1-hexene 

copolymer (melt flow rate: 0.3 g/10 min at 190 °C, 2.16 kg; nominal density: 0.947 g/cm3) 

polymerized by a Phillips catalyst. The additive-free polymer powder was provided by Tisza 

Chemical Ltd. (TVK), Hungary. Quercetin (Sigma-Aldrich, 95%) and dihydromyricetin 

(Y&L Biotech Co., Ltd., China, 98%) were added to the polymer in various amounts, at 5, 

10, 25, 50, 100, 250 and 500 ppm, to study the effect of additive content on stability. Each 

compound contained also 1000 ppm Sandostab PEPQ (PEPQ, Clariant) phosphonite sec-

ondary stabilizer. 

 

2.2. Sample preparation 

The polymer and the additives were homogenized in a high speed mixer (Henschel 

FM/A10) at a rate of 500 rpm for 10 min. The necessary amount of quercetin was dissolved 

in 200 mL acetone and the solution was added to the PE powder in the mixer. The resulting 

powder was dried overnight to remove acetone. DHM was added to the polymer together 

with PEPQ directly and homogenized in the high speed mixer under the same conditions as 
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described above. The dry blend was processed and pelletized in six consecutive extrusion 

steps at 50 rpm and barrel temperatures of 180, 220, 260 and 260 °C under normal laboratory 

conditions using a Rheomex S ¾” type single screw extruder attached to a Haake Rheocord 

EU 10V driving unit. Samples were taken after each extrusion step. For further studies films 

of about 100 µm thickness were compression molded at 190 °C and 5 min using a Fontijne 

SRA 100 machine. 

 

2.3. Characterization 

 The melt flow rate (MFR) of the polymer was determined according to the ASTM 

D 1238-79 standard at 190 C with 2.16 kg load using a Göttfert MPS-D MFR tester. The 

residual thermo-oxidative stability of the polymer was characterized by the oxidation induction 

time (OIT) measured at 200 °C in oxygen atmosphere with constant, 20 ml/h flow rate in open 

aluminum pans using a Perkin Elmer DSC 2 apparatus. The functional groups (methyl, un-

saturated and carbonyl) of polyethylene were determined by FTIR spectroscopy on the 100 

m thick compression molded films in transmission mode using a Tensor 27 (Bruker) spec-

trophotometer. Five parallel measurements were carried out on each sample between 4000 

and 400 cm-1 wavelengths at 2 cm-1 resolution by 16 scans. Concentration of methyl, trans-

vinylene and vinyl groups were calculated by absorptions at 1378 cm-1, 965 cm-1 and 908 

cm-1, respectively. Amount of carbonyl groups were measured by calculating the peak area 

between 1780 and 1680 cm-1. FTIR spectroscopy was used also for the determination of 

residual PEPQ content based on the absorption of P(III)-O-C groups at 850 cm-1. The color 

of the samples was described by the yellowness index (YI) and the optical L* parameter meas-

ured on a Hunterlab Colourquest 45/0 apparatus. The UV-VIS spectra of reaction products of 

quercetin and dihydromyricetin were predicted by Time-Dependent Density Functional The-

ory (TDDFT) calculations at PBE0 [26]/6-311++G** [27] level. Geometries were optimized 
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for these calculations in three steps. First conformations with the lowest energies were identi-

fied by molecular mechanics using the Merck molecular force field (MMF94) [28] from 2D 

structures drawn by using the MarvinSketch (ChemAxon) program, then the selected conform-

ers were optimized by DFT calculations at the PBE0/6-311++G** level with Gaussian09 [29]. 

The obtained geometries were optimized again after manually orienting hydrogens towards 

possible intramolecular hydrogen bonds resulting in lower energies. Finally, vibrational fre-

quencies of the resulting conformers were calculated by the same DFT method ensuring their 

correspondence to local minima. 

 

3. RESULTS AND DISCUSSION 

 The results are presented in several sections. First the structure and physical charac-

teristics of the two natural antioxidants are compared to each other and then their effect on 

processing stability, residual stability, solubility and color are presented in the respective 

sections. The possible reason for the differences observed and the mechanism of stabiliza-

tion are discussed in the last section of the paper. Special attention is paid to color and 

practical consequences in this final section. 

 

3.1. Antioxidant characteristics 

 We selected DHM as a potential natural antioxidant because it is similar in chemical 

structure to quercetin, but also differs in several aspects. Both are flavonol type flavonoid 

compounds with the same basic structure. The most important characteristics of the two 

antioxidants are listed in Table 1. The lower melting point can be a clear advantage for 

DHM, since one can hope that, contrary to quercetin, the stabilizer melts during processing 

that may lead to its more homogeneous distribution in the polymer. The difference in the 

color of the two compounds is obvious for the first sight. The strong discoloration of the 
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polymer in the presence of quercetin was regarded as a disadvantage in the previous study 

[23]. We hoped that DHM being a white powder would not have the same effect and we can 

produce compounds without any strong color. 

Table 1 Characteristics of the two natural antioxidants used in the experiments 

Characteristic Quercetin Dihydromyricetin 

Mn (g/mol) 302.24 320.25 

Melting point (°C) 316 243 

Color 

  

Structure 

  

Structural differences  double bond in C ring 

 no. of hydroxyls in B ring: 2 

 single bond in C ring 

 no. of hydroxyls in B ring: 3 

No of phenolic –OH 

groups 
4 5 

 

 The difference in color is a direct consequence of the chemical structure of the two 

compounds also shown in Table 1. The strong yellow color of quercetin comes from the 

conjugation of the double bond in ring C with the delocalized  electrons of ring B. This 

double bond is missing from DHM. The additional phenolic –OH group in ring B of DHM 

is a further difference which might be beneficial for the use of this antioxidant as stabilizer 
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in PE. The larger number of phenolic hydroxyl groups would be expected to result in larger 

efficiency [24,25] further emphasized by the smaller dissociation enthalpy of the H atom of 

the pyrogallol structure compared to that of the pyrocatechol moiety [30,31]. All these dif-

ferences in chemical structure and physical properties promised improved homogeneity, 

better efficiency and a colorless product, which clearly justified the selection of dihydromy-

ricetin as a potential stabilizer for PE. 

 

 

Fig. 1 Effect of additive content and the number of extrusions on the melt stability (MFR) 

of a Phillips polyethylene. Symbols: () no primary antioxidant, ( ) 25, () 50, 

() 500 ppm quercetin, ( ) 25, () 50, () 500 ppm DHM. 

 

3.2. Processing stabilization 

 The processing of polymers is accompanied by chemical reactions which change 

their structure. Most polymers, including polyolefins must be protected against these effects 
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to maintain their processing and application characteristics. This is especially valid for pol-

yethylenes produced by the Phillips technology, since each molecule contains a vinyl group 

which reacts readily with oxygen, but also with alkyl radicals. This latter reaction results in 

the formation of long chain branches (LCB) increasing viscosity and leading to processing 

problems. As a consequence, changes in the vinyl group content of the polymer is a sensitive 

indicator of processing stability and they are closely related to the variation, usually in-

crease, of viscosity. Most of these reactions take place in the first processing step and phos-

phorous secondary stabilizers, PEPQ in this case, protect the polymer very efficiently 

against such changes. 

 

 

Fig. 2 Dependence of the MFR of polyethylene on stabilizer content at different number 

of extrusions. Symbols: () Q, 1st extrusion, () DHM, 1st extrusion, () Q, 6th 

extrusion, () 6th extrusion. 
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 The MFR of polymers containing either DHM or Q in different amounts is plotted 

against the number of extrusions in Fig. 1. At zero antioxidant content MFR decreases quite 

rapidly with increasing number of extrusions. The increase in viscosity is usually associated 

with the formation of long chain branches [32,33], but cross-linking may also occur even-

tually. Both antioxidants efficiently hinder these reactions already at very small concentra-

tions. The correlation is shown only for selected antioxidant contents in order to avoid over 

cramming and confusion in the figure. Already 25 ppm stabilizer is effective and 50 ppm 

protects the polymer quite efficiently. Above 100 ppm additive content MFR practically 

does not change. According to the results, DHM seems to be more efficient than quercetin, 

since the viscosity of the polymer remains constant already at only 50 ppm additive content. 

Apparently either the larger number of phenolic hydroxyl groups or the smaller dissociation 

enthalpy of the phenolic hydrogens renders this compound more effective than quercetin. 

 Melt flow rate is plotted against the amount of stabilizer added to the polymer (Fig. 

2) to show the effect of additive content. Since the molecular weight of the two compounds 

is different (see Table 1), stabilizer content is expressed in mmols. MFR values measured 

after the 1st and 6th extrusions are plotted to avoid confusion. The effect of the two additives 

is very similar in the first extrusion, but their dissimilar efficiency is clearly shown after the 

6th extrusion at least at small additive contents. Both natural antioxidants protect the polymer 

very efficiently against degradation at large antioxidant concentrations. It is interesting to 

note that at very small stabilizer contents MFR decreases, i.e. viscosity increases, after the 

first extrusion of the polymer that could indicate the formation of long chain branches. This 

effect is quite surprising considering the considerable efficiency of these stabilizers. How-

ever, the phenomenon is the same for both stabilizers and we explained it earlier with the 

interaction of the primary and the secondary antioxidant (PEPQ) used in this study [23]. The 

interaction was confirmed by DSC measurements as well [23], but needs further attention 
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in the future. 

 

Fig. 3 Changes in the vinyl group content of polyethylene as a function of antioxidant con-

tent and processing history. Symbols are the same as in Fig. 2. 

 

 Changes in viscosity and processability are attributed to the formation of LCBs go-

ing through the chain-end vinyl groups of the polymer [32,33]. The effect of additive content 

and processing history (No. of extrusions) on the vinyl group content of the polymer is pre-

sented in Fig. 3. The number of vinyl groups increase with increasing additive concentration 

indicating that less vinyl groups enter into chain extension reactions during processing. The 

effect of the two additives is similar in the first extrusion, but DHM is more efficient than 

quercetin at larger number of extrusions. The correlations presented in Fig. 3 clearly prove 

that changes in MFR are caused by the reactions of the vinyl groups indeed. Several studies 

proved that the role of the secondary stabilizer is essential in the protection of the polymer 
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against degradation especially in the first processing step [34]. The amount of residual sec-

ondary stabilizer is plotted against the number of extrusions in Fig. 4 at two additive con-

tents. All the differences observed earlier in Figs. 1-3 can be detected also here. PEPQ con-

tent decreases drastically with increasing number of extrusions at small antioxidant content, 

while much slower at 500 ppm stabilizer concentration. The larger efficiency of DHM can 

be clearly seen in the figure. Obviously all the processes taking place during the extrusion 

of polyethylene are related to each other. The natural antioxidant and the phosphorous sec-

ondary stabilizer prevents the reaction of the vinyl groups in a synergistic action, while the 

natural antioxidant protects PEPQ and decreases its rate of consumption. We may conclude 

that both natural antioxidants used in this study are efficient processing stabilizers and that 

the effect of DHM surpasses that of quercetin in melt stabilization. 

 

 

Fig. 4 Effect of the number of extrusions and antioxidant content on the residual amount 

of PEPQ in polyethylene processed in multiple extrusions. Symbols: () 25, () 
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500 ppm Q; () 25, () 500 ppm DHM. 

 

Fig. 5 Unique correlation between the amount of the natural antioxidant used and the re-

sidual stability (OIT) of polyethylene. Symbols are the same as in Fig. 2. 

 

3.3. Residual stability 

 Processing stability is important for most products, but long term stability can be 

also crucial in certain applications like in gas or water pipes. Moreover, residual stability 

may offer further information about the mechanism of stabilization and the effect of the 

chemical structure of the stabilizer on efficiency. The residual stability of PE is plotted 

against the amount of stabilizer used in Fig. 5. Concentration is expressed in mmol antiox-

idant/kg PE units, which disregards the different number of phenolic –OH groups in the 

molecule. The correlation is linear and the effect of the two antioxidants is similar. The 

linearity is not very surprising, since several authors have proved that OIT is linearly pro-

portional to the amount of phenolic antioxidant [35-37]. Obviously the slope of the straight 
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line depends on the structure of the stabilizer and on the additive package, i.e. on the type 

and amount of secondary stabilizer and other components used [35]. However, only limited 

information is available on the effect of these latter factors on residual stability.  

 The unique correlation is much more surprising. Based on the larger number of phe-

nolic hydroxyls in DHM, as well as on the results presented in the previous section, one 

would expect larger stability in polymers containing this additive [24,25]. According to 

these results not all phenolic –OH groups react during the measurement of OIT and the 

stabilization effect does not depend on the number of functional groups, but only on the 

amount of stabilizer present. This result raises the question of reaction mechanism and the 

activity of the reaction products formed in the first stabilization reaction. 

 

 

Fig. 6 Determination of the solubility of the natural antioxidants studied from the concen-

tration dependence of color after the 1st extrusion. Symbols: () Q, () DHM. 
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3.4. Solubility 

 The solubility of stabilizers is important for their effect. Larger solubility results in 

better homogeneity and efficiency [38]. Quercetin was shown to have very limited solubility 

in PE indicated by the composition dependence of color and by the fact that quercetin crys-

tals were observed in the polymer at larger additive contents [23]. The yellowness index of 

the polymer is plotted against antioxidant concentration in Fig. 6. The measurement was 

done after the first extrusion step. The discoloration effect of quercetin is very strong, yel-

lowness index reaches more than 90 at large additive content. Rather surprisingly DHM 

originally being a white powder also discolors the polymer quite strongly, yellowness indi-

ces in the range of 50 were measured. Apparently, the reaction products of the stabilizer are 

not colorless, they discolor the polymer significantly. 

 The composition dependence of color was used earlier for the determination of the 

solubility of quercetin in polyethylene [23]. The same approach was used in this study and 

the result is shown in Fig. 6. The basic idea behind the determination of solubility is that 

dissolved stabilizer molecules have a much stronger effect on color than the additive being 

present as a separate phase, in the form of crystals. This concept is definitely valid for quer-

cetin, but more difficult to accept for DHM, since discoloration seems to be caused by the 

reaction products of the additive. Comparison is further complicated by the small number 

of points in the steeply increasing leg of the correlation and the different levels of color 

caused by the two additives. Nevertheless, we can state that the correlations as well as the 

solubility levels are similar, the latter being very small, in the range of 15-20 ppm. This 

similarity is not surprising since the molecular structure of the two additives is similar. For-

tunately, this limited solubility does not influence the efficiency of the two compounds in 

stabilization. 
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Fig. 7 Effect of additive content and processing history (No. of extrusions) on the yellow-

ness index of polyethylene. Symbols: () no primary antioxidant, () 5, () 500 

ppm Q; () 5, () 500 ppm DHM. 

 

3.5. Color 

 The color of the product is very important in some applications, while much less of 

an issue in others. In black products the possible discoloration effect of the additive does 

not matter, but colorless compounds are often much more advantageous. The yellowness 

index of polyethylene is plotted against the number of extrusions in Fig. 7 for compounds 

containing the two additives in selected amounts. The very strong coloring effect of quer-

cetin is seen already at 5 ppm additive content and discoloration is extremely intense at 500 

ppm. As mentioned above DHM colors the polymer less. Interestingly the measured values 

slightly decrease during consecutive processing steps in the case of quercetin, and increase 
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for dihydromyricetin. The consumption of the dissolved yellow stabilizer results in the de-

crease in the first case, while the formation of colored reaction products leads to the deep-

ening of color in the second. However, yellowness index does not reflect the hue of the color 

well, especially if it differs from yellow. The Optical L* parameter gives an idea about the 

deviation from white; the larger the value is, the closest is the color to white. The L* param-

eter decreases slightly with increasing quercetin content and does not change much with 

increasing number of extrusions; it takes values between 76 and 63. On the other hand, the 

L* parameter decreases both with additive content and the number of extrusions for DHM 

and changes between 76 and 37 in the studied range. These relationships are demonstrated 

much better by Figs. 8a and b than by the optical L* parameter. In Fig. 8a the effect of 

additive content on color is shown after the first extrusion, while the influence of processing 

history can be seen in Fig. 8b at 500 ppm additive content. It is clear from the figure that 

quercetin colors the polymer to yellowish red, while DHM from light ochre to dark brown. 

Obviously, we could not solve the problem of discoloration by the selection of the new 

natural antioxidant, dihydromyricetin. 
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a) b) 

Fig. 8 Changing color of polyethylene in the presence of the two natural antioxidants 

studied; a) effect of additive content, 1st extrusion, b) effect of the number of ex-

trusions, 500 ppm. 

 

3.6. Discussion 

 The result presented above prove that both natural antioxidants are efficient melt 

stabilizers for polyethylene. However, some of the results, like the similar effect on residual 

stability, or the discoloration of the polymer in the presence of DHM were somewhat unex-

pected. The reactivity and stabilization effect of phenolic antioxidants depend on their 

chemical structure, on the number of hydroxyl groups and their position. Four mechanisms 

have been proposed in the literature for the stabilization reactions of phenolic antioxidants: 

single electron transfer (SET) [39-40], sequential proton loss electron transfer (SPLET) [41-
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42], radical adduct formation (RAF) [43] and hydrogen atom transfer (HAT) [44-45]. In 

polyethylene the last one is the most probable and accepted mechanism of stabilization. The 

rate of hydrogen transfer depends on the dissociation enthalpy of the hydrogen atom from 

the phenolic hydroxyl and this is smaller for the hydrogens located on the OH groups in the 

B ring of DHM than in quercetin [30-31]. According to the OIT results shown in Fig. 5 

DHM is not more efficient than quercetin in spite of the larger number of –OH groups in 

the molecule. This indicates that after the first reaction, in spite of the reactivity of the prod-

ucts formed, both molecules become much less active than the original compound. This 

explains the similarity of their effect, but not the differences in efficiency in protecting the 

polymer during processing. 

 

 

Fig. 9 Correlation between the vinyl content of polyethylene and its melt flow rate. Sym-

bols: () Q, () DHM.  
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 As discussed earlier long chain branches form during processing through the reac-

tion of the vinyl groups located at one end of the polyethylene chains. The combined, syn-

ergetic effect of the primary and secondary antioxidant hinders this reaction, but the inter-

action of the two stabilizers decreases also their consumption rate. The correlation between 

the vinyl content of the polymer and MFR is presented in Fig 9. It is clear that viscosity is 

constant above a certain vinyl content and increases drastically below that (approximately 

0.86 vinyl/1000 C). The larger efficiency of DHM is shown by the fact that the points 

(squares) for the polymer containing this additive are located on the upper right part of the 

correlation, while many of those belonging to quercetin (circles) appear in the lower left 

range. The crucial role of the phosphorous antioxidant is demonstrated well by the fact that 

below a certain PEPQ content (approximately 100 ppm) MFR starts to decrease drastically 

to very small values. The interaction of the two types of stabilizers (primary, secondary) is 

important and different for the two natural antioxidants leading to the larger efficiency of 

DHM. The exact nature of this interaction and the mechanism of stabilization need further 

study and considerations. 

 

Fig. 10 Chemical structure and appearance of dihydroquercetin (taxifolin) having no dou-

ble bond in its ring C. 
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 The disappointing color change also requires explanation. The strong yellow color 

of quercetin results from the conjugation of the double bond in the C with the electrons in 

the B ring. Dihydroquercetin (or taxifolin) is a white powder similarly to DHM (Fig. 10). 

As a consequence, the brownish color must form during the processing of the polymer con-

taining the antioxidants. Various quinoidal compounds may form as a result of stabilization 

reactions which depend on the molecular structure of the antioxidant. Assuming that hydro-

gen transfer occurs from the B ring, the reaction of quercetin results in two compounds, 

while that of DHM in one. The reaction leading to these compounds and their structures are 

presented in Fig. 11. Obviously all three are conjugated systems absorbing light in the visi-

ble range.  

 

 

 

Fig. 11 Formation of quinoidal compounds in stabilization reactions; a) quercetin, b) di-

hydromyricetin. 
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Fig. 12 Predicted UV-VIS spectra of the quinoidal compounds forming from the natural 

antioxidants during stabilization; a) quercetin I, b) dihydromyricetin III. 

 

An attempt was made to estimate the color of these compounds by molecular mod-

eling. The spectra resulting from the calculations are shown in Fig. 12 for two compounds, 

compound I formed from quercetin and compound III derived from DHM. Absorption bands 

appear at 240, 314, 364, 394 and 509 nm in the spectrum of the first, but we are interested 

only in the visible region. At 394 and 509 nm the violet and green components of visible 

light are absorbed leading to a mixture of red and yellow colors. The absorption of com-

pound II also results in yellow-orange colors confirmed by Figs. 8a and b. Similarly, com-

pound III absorbs at 378, 452, 511 and 537 nm corresponding to lilac, blue, and green colors. 

Brown is a mixed color resulting from the absorption of the blue components of light, thus 

it is highly probable that this absorption leads to the ochre-brownish color of the polymer 
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processed in the presence of dihydromyricetin (see Fig. 8). However, in spite of this discol-

oration the natural antioxidants studied in this work are efficient stabilizers of PE and can 

be used for certain products. 

 

4. CONCLUSIONS 

 Experiments carried out to determine the stabilization activity of two flavonoid type 

natural antioxidants in polyethylene proved that both stabilize PE very efficiently. At small 

concentrations dihydromyricetin proved to be more efficient melt stabilizer than quercetin, 

less vinyl groups were consumed during processing, less long chain branches formed and 

thus MFR was larger in its presents than with the same amount of quercetin. DHM protected 

the secondary antioxidant better than quercetin, less PEPQ was consumed in its presence 

during processing. In spite of its better efficiency in melt stabilization, polymers containing 

DHM had the same residual stability as those prepared with quercetin. Accordingly, the 

larger efficiency does not result from the larger number of active phenolic hydroxyls in this 

molecule, but from interaction with the phosphorous secondary stabilizer that is stronger or 

at least different for DHM than for quercetin. Although DHM is a white powder, it gave the 

polymer brownish color which became stronger with increasing number of extrusions and 

additive content. In spite of this slight disadvantage both natural antioxidants can be effi-

ciently used for the stabilization of polymers in applications in which color is of secondary 

importance. 
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