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Abstract 

 

Water-soluble, early lanthanide(III) mono- and bisporphyrin complexes possess very 

similar UV-Vis absorption, photophysical and photochemical properties, as a consequence of a 

special type of aggregation, through the peripheral substituents. In the absence of the bidentate, 

O-donor acetate ligand, bisporphyrin can form too, which has slightly redshifted and broadened 

absorption bands, compared to those of the monoporphyrin. Also the bisporphyrin displays a 

blueshifted and less intense fluorescence, related to the free-base porphyrin. The formation of 

complexes and the transformation between the mono- and bisporphyrins are very slow reactions 

in dark at room temperature. These reactions are accelerated by the photolysis of the system; 

which are considerable by-processes of the photoredox degradation. Depending on the 

wavelength of irradiation, two types of photoproducts can appear: during the photolysis at the 

Soret-band, a radical type intermediate can be observed, which disappears in dark. However, 

during the irradiation at the Q-bands, a new photoproduct appears, which is stable in dark and 

undetectable in the case of post-transition metal ions’ out-of-plane porphyrin complexes. 
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Metal ions can form in-plane metalloporphyrins, fitting into the cavity of the porphyrin 

ring, or several of them are located out of the ligand plane, resulting in out-of-plane (OOP or 

sitting-atop=SAT) complexes with dome-distorted structure, thermodynamic instability, kinetic 

lability, typical  photophysical features, and photochemical reactivity [1, 2]. Besides, the OOP 

position promotes the formation of bis- or oligoporphyrins, so called sandwich complexes, 

mainly if the metal center is susceptible to higher coordination numbers (Fig. 1) [3-6]. 

Lanthanide(III) complexes are the model compounds of metallo-oligoporphyrins, in which the 

π-π interaction depends on the distance between the macrocycles, strongly influenced by the 

size of the metal center [7-9]. Therefore, lanthanide(III) ions offer good opportunities to 

examine this dependence due to the fine tuning of the out-of-plane distances, utilizing the well-

known lanthanide contraction: the radii of Ln3+ ions monotonously decrease from 116 pm to 98 

pm (at coordination number 8) with the increase of atomic numbers within the lanthanide series 

(Fig. 2) [10]. As a consequence of their strong susceptibility to higher coordination numbers, 

the investigation of their monoporphyrins is complicated: another multidentate, but O-donor 

ligand must be applied to hinder the coordination of the second porphyrin to the metal ion [11-

16]. From optical and photophysical aspects, porphyrins are able to efficiently sensitize the 

near-infrared luminescence of lanthanide ions, which can be widely applied, e.g. in optical 

telecommunication, spectral conversion of solar energy, and biomedical optical imaging [11-

16]. Furthermore, lanthanide(III) porphyrins may be useful in the photocatalytic cleavage of 

water because the metal center, reduced due to the photoinduced charge transfer from ligand to 

metal (LMCT) [1, 2, 17, 18], has a negative redox potential large enough to produce hydrogen 

(except Eu3+, Fig. 2) [9]. 

 

 

Fig. 1. Structure of the out-of-plane 

complexes with various metal:porphin 

compositions. 

Fig. 2. Contraction and redox potentials of 

lanthanide(III) ions. 

 

In this work, we studied the photophysical and primary photochemical properties of the 

complexes between a water-soluble, anionic porphyrin, the 5,10,15,20-tetrakis(4-

sulfonatophenyl)porphyrin anion (H2TSPP4-, abbreviated as H2P
4-) and early lanthanide(III) 

ions (Ln=La,Ce,Nd,Sm). Lanthanide(III) ions are hard Lewis acids, due to the classification of 

Pearson, therefore, their insertion into the coordination cavity of the tetradentate, N-donor 

porphyrin ligand is a slow and complicated process in aqueous solution, originating partly from 

the strong bond of the solvent water molecules to the metal ions [13, 19-22]. This kinetic barrier 

is vanquishable, e.g. by heating: in our case to ~60 oC [22]. The presence of bidentate, O-donor 

acetate ion enhances the coordination of the first porphyrin ligand, due to its trans effect, but it 

hinders the connection of a further porphyrin, i.e. the formation of bisporphyrins, because it 

remains on the lanthanide(III) ion in axial position [9, 22]. Insertion of these larger metal ions 
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into the porphyrin cavity can be spectrophotometrically followed due to the redshifts of UV-

Vis, intraligand ππ* absorption bands (Fig. 3), similarly to other typical OOP complexes, which 

display “common” absorption properties [23]. In the absence of the bidentate, O-donor ligand, 

bisporphyrin (Ln3P2
3–) can form too, which has slightly redshifted and broadened absorption 

bands, compared to those of the monoporphyrin. 

 

Fig. 3. Molar absorption spectra of 

cerium(III) mono- and bisporphyrin as well 

as the corresponding free base in the Soret-

range. 

Fig. 4. Singlet-1 fluorescence spectra of 

cerium(III) mono- and bisporphyrin as well 

as the corresponding free base. 

 

These bisporphyrins display a blueshifted and less intense singlet-1 fluorescence, related 

to the free-base porphyrin (Fig. 4). While the lifetimes for mono- and bisporphyrin complexes 

are almost equal (~2 ns), only the fluoresence quantum yield decreases slightly  because the 

formation of bisporphyrin results only in the deceleration of radiative decay, as a consequence 

of a special type of aggregation, probably through the peripheral, sulfonato substituents [16, 22, 

24, 25] (tail-to-tail or perpendicular head-to-tail dimerization) without strong π-π interactions 

between the macrocycles [22, 23]. If these interactions were stronger, the absorption bands 

should show much larger redshifts and hyperchromicities, and the fluorescence should be much 

weaker, nearly disappear. This was manifested in the case of the (parallel) head-to-tail dimer of 

the protonated porphyrin, (H4TSPP2–)2 [26], and of the bisporphyrins of mercury(II) ion: 

(parallel) head-to-tail HgII
2(TSPP)2

8– and typical head-to-head HgII
3(TSPP)2

6– [5, 23]. 

The photoinduced reactions of lanthanide(III) mono- and bisporphyrins are also very 

similar in both the Soret- (Fig. 5) and the  Q-band-photolysis experiments (Fig. 6). Also this 

phenomenon may confirm this special type of aggregation through the peripheral sulfonato 

substituents because in the case of post-transition metal ions the differences are much larger, 

mainly in the range of Q-bands [5, 6]. 

 

 
Fig. 5. Spectral changes in the range of Soret- and Q-bands during the photolysis at the Soret-

maximum (421 nm). 
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The out-of-plane position of the metal center in porphyrin complexes can generally cause 

two types of photochemical reactions: 1) photoinduced dissociation of the metal ion from the 

cavity of the ligand (without charge transfers) as a consequence of the lability of the complex; 

2) photoredox degradation of the macrocycle initialized by an irreversible LMCT reaction 

resulting in oxidation of the ligand and reduction of the metal center. The charge of the metal 

center decreases, and its size increases, thus its charge density falls down, hence the 

coordinative bonds can easily split. The reduced metal ion can step out from the cavity (Fig. 7), 

mainly in polar solvent, and can induce further redox reactions, depending on its stability in the 

given medium (Fig. 2). The oxidized and metal-free porphyrin (cat)ionic radical is a very strong 

base: it gets immediately protons, forms the free-base radical, which is long-lived and a 

relatively strong oxidizer, mainly in oxygen-free solution (τ1/2>>1 ms, E1/2>1 V) [27]. But it 

would oxidize water to oxygen only at higher pH, therefore a slightly stronger reducer, for 

example water-soluble alcohols or aldehydes, are required, from which useful byproducts can 

be formed in photocatalytic hydrogen production. In the absence of reducer (without 

regeneration, cyclization), the primary photochemical processes take place: in an overall four-

electron oxidation, ring-opening reaction, a dioxo-tetrapyrrole derivative (bilindione) can form 

(Fig. 7) [1, 2, 27]. This ring-opening process can be spectrophotometrically followed, due to 

the disappearance of the Soret-band, and a radical type intermediate can be observed at 450 nm, 

which disappears in dark (Fig. 5). 

 

Fig. 6. Spectral changes during the 

photolysis at the Q-maximum (555 nm). 

Fig. 7. Suggested steps for the 

photodegradation of OOP metallo-

porphyrins [2]. 

 

However, during the photolysis of early lanthanide(III) porphyrins at the maximum of the 

Q-bands (~555 nm), a new photoproduct appears, which is stable in dark (Fig. 6) and 

undetectable in the case of post-transition metal ions’ typical OOP complexes [1, 2]. The Soret-

band disappeared as a consequence of the ring-opening reaction; hence, the absorption band at 

590 nm may be assigned to a complex between lanthanide(III) and this open-chain, dioxo-

tetrapyrrole derivative (Fig. 7), owing to the high affinity of these metal ions to the oxo-groups. 

In the absence of acetate, the lanthanide(III) mono- and bisporphyrins are in equilibrium, 

moreover free-base ligands may also remain; hence, during the photolyses, they are 

simultaneously excited. Owing to a deeper evaluation of spectral changes, also photoinduced 

transformation between the mono- and bisporphyrin complexes can be identified, beside the 

photoredox degradations to the mentioned, open-chain photoproducts and dissociation to the 

free-base porphyrin. The equilibria between the complexes are varied by excitation, i.e. the 

significant parts of the overall photochemical quantum yields originate from these 

photoinduced transformations of complexes to each other in this photostationary state [9]. Light 
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accelerates these reactions by orders of magnitude, compared to their very low rate in dark at 

room temperature [22]. 

For the determination of photochemical quantum yields, the widely-used initial slope 

method is inappropriate because the initial absorbance also decreases considerably (Fig. 5), 

furthermore, other absorbing species may appear during the photolysis (Fig. 5 and Fig. 6). In 

such a case the so-called integral fitting method and the evaluation method based on the 

concentration distribution of the absorbing species may be suitable to understand the 

photochemical mechanism and to determine the quantum yields for each type of photoinduced 

reactions. First, we studied the effect of ionic strength: the overall photochemical quantum yield 

displayed a quasi-linear dependence on that as a consequence of the enhanced possibility of the 

photoinduced charge separation after LMCT. The effect of the porphyrin concentration was 

also investigated: the overall photochemical quantum yields monotonously increased with the 

concentration. This suggests that the excited complex molecules can undergo bimolecular, 

thermal (redox) reaction with the species in ground state [9]. 

More profound studies about these photoinduced reactions are in progress for all 

lanthanide(III) ions, to find tendencies between the photoactivities and the out-of-plane 

distances. 
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