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Abstract 

Kinetically inert cationic Ni(II)TMPyP4+ (H2TMPyP4+ = 5,10,15,20-

tetrakis(methylpyridinium-4-yl)porphyrin) displayed a characteristic fluorescence (τ = 1.2-1.4 

ns, Φ = 2.0×10-3), which was quenched with triethanolamine (TEOA) in a static way. This 

complex proved to be an efficient photocatalyst in the system containing TEOA and 

methylviologen (MV2+) as electron donor and acceptor, respectively. Interestingly, however, 

deviating from the behavior of the analogous Co(III) and Mn(III) complexes in such a system, 

TEOA did not dinamically quench the triplet excited state of Ni(II)TMPyP4+ (τ = 6.31 μs), 

hence no reduction of the metal center occured upon irradition. Instead, in the presence of this 

electron donor (at 1×10-3M) the excited-state lifetime dramatically increased (to τ = 36.6 μs), 

indicating the formation of a Ni(II)TMPyP4+-TEOA associate. This longer-lived triplet was 

efficiently quenched by MV2+ (kq = 9.9×106 M-1s-1), leading to the formation of MV●+. The 

overall quantum yield of this one-step photoassisted electron transfer is considerably high (Φ = 

0.011-0.013 at Soret-band irradiation). Hence, this system, combined with a suitable co-

catalyst, may be applicable for visible light-driven hydrogen generation from water.  
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Several metal complexes of porphyrins and their derivatives are key compounds in natural 

systems as exemplified by chlorophylls, hemoglobin and various cytochromes [1, 2] due to 

their favorable spectral, coordination, and redox features. Their peculiar photoinduced 

behavior can also be used in various artificial photocatalytic systems [3]. Water-soluble 

metallporphyrins are promising for utilization in environmentally friendly procedures.  

Kinetically inert in-plain metalloporphyrins, in which the metal center coplanarly fits into the 

cavity of the ligand, were successfully applied in photocatalytic systems based on outer-

sphere electron transfer [4, 5]. This type of metalloporphyrins can be formed with the ions of 

the iron group, such as Fe(III), Co(III), and Ni(II). However, while the photoredox chemistry 

of iron(III) and cobalt(III) porphyrins was thoroughly studied in the past 2-3 decades [6,7, 8, 

9, 10], the corresponding nickel(II) complexes were hardly examined in this respect [11, 12]. 

Since the complexes of iron(III), cobalt(III) as well as manganese(III) with the cationic 

5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin  (H2TMPyP4+) proved to be promising 

in various photocatalytic systems [3, 7, 8, 13, 14, 15, 16, 17], in this work some photophysical 

and photochemical properties of Ni(II)TMPyP4+ were studied in order to examin the potential 

applicability of this metalloporphyrin  in utilization of solar radiation in the visible range. 

The compounds used for our experiments were of reagent grade. Water purified in a 

Millipore/Milli-Q system was applied as solvent. Stock solutions of Ni(II)TMPyP4+ were 

prepared by in situ generation by the reaction between the corresponding free base and 

nickel(II) sulfate (in 5 fold excess at the porphyrin concentration of  3×10-5 M) under aerated 

conditions. Since the reaction is extremely slow at r.t., it was accelerated by addition of HgCl2 

in a very low concentration (10-6 M) and an elevated temperature (70oC). Even under these 

conditions, the total conversion  took  ca. 10 days. The catalytic effect of Hg(II) with a large 

ionic radius (102 pm [18]) is based on the formation of an out-of-plane intermediate Hg(II)-

porphyrin [19]. In this species, due to the distortion, two diagonal pyrrolic nitrogens become 

more accessible to another metal ion, even with smaller ionic radius, on the other side of the 

porphyrin ligand [20]. The behavior of the final product (Ni(II) porphyrin) was not affected 

by the presence of Hg(II) in the samples prepared by 50-100 times dilution from the stock 

solution. Borate buffer was applied to adjust pH to 8.4.  

Absorption and emission spectra were recorded by using a Specord S-600 diode array 

spectrophotometer and a Fluoromax-4 (Horiba JobinYvon) spectrofluorimeter, respectively. 

The latter equipment supplemented with a time-correlated single-photon counting accessory 

was applied for determination of fluorescence lifetimes too. Ru(bpy)3Cl2 [21] was utilized as 

a reference for determination of the fluorescence quantum yields. Transient absorption 

measurements were carried out on a laser kinetic equipment described elsewhere [22]. 

Photochemical experiments were carried out with 3.5-cm3 argon-saturated solutions in 1-cm 

cells at r.t., continuously homogenized by magnetic stirring. For Soret-band illumination a 

LED light of with a 443-nm maximum intensity was utilized. Incident light intensity was 

determined by ferrioxalate actinometry [23]. 

The Ni(II) ion of 63 pm radius [18] is small enough to fit into the cavity of the porphyrin 

ligands, forming unambiguously in-plane complexes [24]. Absorption spectra of porphyrins, 

both free bases and metalloporphyrins, are featured by two characteristic types of bands. The 

very intense Soret- or B-bands assigned to the S0S2 transitions can be found in the shorter-

wavelength range (380-470-nm), while the Q-bands with one order of magnitude lower molar 

absorbances, assigned to the S0S1 transitions, appear in the longer-wavelength range (500-

700-nm). The Soret-band of the normal (in-plane) metalloporphyrins generally display 

characteristic blue-shift compared to that of the corresponding free base [24, 25]. 

Interestingly, the spectrum of the water-soluble nickel(II) porphyrins (such as Ni(II)TMPyP4+) 

in aqueous solutions represents a border-line case.  



As Fig 1 shows, it displays a double Soret-band due to its two spin states in equilibrium 

[26]. The low-spin metal center is characterized with a square planar coordination sphere, 

while the high-spin one with an octahedral one. The Soret-band of the latter species appears at 

449 nm, while that of the low-spin complex can be found at 420 nm (very close to the Soret-

band of the free-base ligand). Due to this band slightly redshifted compared to  that of the free 

base, Ni(II) porphyrins were categorized as hypso type [4, 27]. 

 

Fig. 1. Absorption spectra of Ni(II)TMPyP4+ and the free base (H2TMPyP4+) in aqueous 

solution (c = 1×10-5 M, l = 1 cm). 

 

The emission spectrum displayed by Ni(II)TMPyP4+ upon Soret-band excitation (Fig 2) is 

very similar to those of the corresponding cationic Co(III) and Mn(III) metalloporphyrins [7, 

17]. The fluorescence bands in the 550-800-nm range of the fluorescence spectra of 

porphyrins, both metalloporphyrins and free bases, can be assigned as S1S0 transitions (the 

individual bands correspond to the (0, 0), (0,1) and (0,2) transitions with respect to vibrational 

states – the latter one is generally not perceptible ) [19]. Due to the strong metal-ligand 

interaction, the emission bands of metalloporphyrins are less intense and blue-shifted 

compared to those of the corresponding free-base porphyrin as in the case of Ni(II)TMPyP4+, 

too (Fig 2).  

 

Fig. 2. Emission spectra of Ni(II)TMPyP4+ (solid lines) and H2TMPyP4+  (dashed line) 

obtained by excitation at the Soret-bands (c  = 5×10-6 M). The corresponding excitation 

wavelength is given at each spectrum. 

No excitation-wavelength-dependence was observed for the shape and the position of the 

emission spectrum, neither in the Soret- nor in the Q-range. This phenomenon indicates that 
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the excited state from which the fluorescence originated was the same in each case (S1), 

besides, it did not depend on which ground state (low-spin or high-spin) was excited. 

Nevertheless, the fluorescence lifetimes for these two spin states slightly deviated: 1.36 ns for 

the square planar and 1.19 ns for the octahedral complex. The fluorescence quantum yield at 

Soret-band excitation (fl = 2.010-3) is in the same order of magnitude as that observed 

earlier for Co(III)TMPyP5+ (9.910-4 [7]). The higher value may be attributed to the larger 

ionic radius of Ni(II) (63 vs. 55 pm [18]) causing a smaller distortion (shrinkage) of the 

porphyrin ring. This fluorescence efficiency, however, is one order of magnitude lower than 

that of the corresponding free base  (fl = 0.0203 in aqueous solution [28]), in accordance 

with the significantly longer emission lifetime of H2TMPyP4+ (fl = 5.2-6.0 ns [28, 29]). The 

reason for this substantial decrease may be the strong interaction between the orbitals of the 

ligand and the open-shell metal center of in-plane position (electronic effect) and the 

distortion of the porphyrin ring (steric effect). Since triethanolamine (TEOA) was applied as 

an electron donor for photocatalytic redox system with Ni(II)TMPyP4+ (see later), its 

influence on the fluorescence was also measured. It did not perceptively affect the emission 

lifetime, but considerably decreased the quantum yield; by about 25% upon addition of 0.05 

M TEOA. 

Similarly to the corresponding manganese(III) and cobalt(III) porphyrins [7, 15, 17], a 

photocatalytic system was realized with Ni(II)TMPyP4+ too in presence of TEOA and MV2+ 

as electron donor and acceptor, respectively,  in argon-saturated aqueous solutions at room 

temperature (Fig. 3). In the previous cases, the formation of stable Mn(II) and Co(II) 

porphyrins were observed,  which forwarded  an electron to methyl viologen in the second 

photochemical step. In the nickel(II) porphyrin system, however, no change in the spectrum 

of the photocatalyst accompanied the photoinduced accumulation of MV+ (Fig 5). The 

quantum yield for the formation of this product at Soret-band excitation moderately depended 

on the pH ( = 0.011 at pH 8.4 and 0.013 at pH 10). These values are of the same order of 

magnitude as those observed with the corresponding Co(III) and Mn(III) porphyrins (( = 

0.026 and 0.015, respectively). Notably, even H2TMPyP4+ can act as a photocatalyst in this 

system, although with a much lower efficiency. Also Q-band irradiation of Ni(II)TMPyP4+ 

resulted in the accumulation of MV+ in this photocatalytic system, but no quantum yield 

measurements were carried out because of the strong inner filter effect of this product. 

 

Fig. 3. Spectral change of the solution initially containing 1.0×10-5 M Ni(II)TMPyP4+, 5×10-4 

M TEOA and 2×10-3 M MV2+ during the Soret-band irradiation at 0, 48, 144, 276 and 720 s  

(l = 1 cm). 
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In the case of Ni(II)TMPyP4+,  formation of the highly instable Ni(I) porphyrin (or 

reduced nickel porphyrin) may be a key step of the mechanism. Such a reduced complex can 

only be generated via triplet excited state quenched by TEOA, similarly to the corresponding 

cobalt(III) and manganese(III) porphyrins. The formation of triplet excited state of the 

Ni(II)TMPyP4+ photocatalyst  was proved by time-resolved laser flash photolysis experiments 

(Fig 4). However, it could not be quenched by the electron donor applied in these systems, 

moreover, its lifetime (6.31 μs) increased to 31.6 μs upon addition of 1.0 × 10-3 M TEOA.  

 

Fig. 4. Transient spectrum of triplet excited state of Ni(II)TMPyP4+ recorded 510 ns after a 

355-nm laser pulse of 5 ns duration. Inset: quenching of triplet Ni(II)TMPyP4+ with MV2+ in 

the presence of 1.0×10-3 M TEOA (l = 1 cm). 

 

This phenomenon suggests the formation of  an associate between the electron donor and 

the ground-state complex, and the excited triplet state of this species is much longer than that 

of the nickel(II) porphyrin alone. This is in accordance with the static quenching of the 

fluorescence. Additionally, the triplet state of this associate was efficiently quenched by 

MV2+, with a rate constant of kq= 9.9×106 s-1M-1 (Fig 4, inset). A similar, even if much 

slighter effect of TEOA was observed with the free-base ligand, too; its triplet-state lifetime 

increased by 5% upon addition of 1.0 × 10-3 M, and by 50% in the presence of 1.0 × 10-2 M 

TEOA. This observation indicates that the electron donor does not coordinate axially to the 

metal center. Instead, it is connected to the ligand. This conclusion was confirmed by the 

change of the absorption spectrum of  Ni(II)TMPyP4+ upon addition of TEOA; the ratio of the 

Soret-bands was shifted toward the shorter-wavelength one belonging to the square planar 

structure, while an axial coordination would have increased the octahedral one. Besides, 

similarly to the corresponding nickel(II) porphyrin, the triplet excited state of the free base in 

the presence of  1.0 × 10-3 M TEOA could also be quenched by MV2+, with a rate constant of 

kq= 1.03×107 s-1M-1. It is in accordance with the photocatalytic generation of MV+ by 

H2TMPyP4+, even if with much lower efficiency. 

The observations above clearly indicate that, deviating from the corresponding Mn(III) 

and Co(III) system, in the case of the nickel(II) porphyrin (and the free base as well) the 

electron transfer from TEOA to MV2+ takes place directly in one step, due to the ground-state 

association of the electron donor and the photocatalyst (Eqs. 1, 2). 

 

Ni(II)TMPyP4+ + TEOA  Ni(II)TMPyP4+TEOA  (1) 

Ni(II)TMPyP4+TEOA + MV2+ + h  Ni(II)TMPyP4+ + MV●+ + TEOAox (2) 



Accordingly, the photocatalyst in this system functions as a special sensitizer, which 

immediately transmits its excitation energy to the electron donor, promoting the direct charge 

transfer towards the acceptor. 

These results well demonstrate that Ni(II)TMPyP4+ may be applicable for solar energy 

utilization in the visible range by photocatalytic hydrogen generation, in the presence of a 

suitable co-catalyst. 
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