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Abstract 

Although  Mn(III) porphyrins were considered earlier to be very weakly emissive, the 

fluorescence displayed by Mn(III) complexes with the cationic TMPyP2+ ligand (H2TMPyP4+ 

= 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin) as well as with its other alkyl (such 

as hexyl and dodecyl) derivatives proved to be strong enough for a comparative study. 

Elongation of the alkyl substituent increased both the quantum yield and the lifetime of the 

emission for the Mn(III) porphyrins, while resulted in an opposite effect for the corresponding 

free bases in homogeneous solutions. The presence of cationic micelles, however, reversed 

this tendency regarding the emission lifetime of the complexes. These cationic 

metalloporphyrins were applied in a photocatalytic system involving triethanolamine (TEOA) 

as a sacrificial electron donor and methylviologen (MV2+) as an acceptor. In the first step of 

the catalytic process outer-sphere photoinduced reduction of the metal center took place via 

quenching of the triplet excited state of these metalloporphyrins by TEOA. The corresponding 

manganese(II) porphyrins formed in this way were also photoactive; they forwarded an 

electron to MV2+ upon irradiation, regenerating the starting complex. Elongation of the alkyl 

substituents increased the quantum yield of the formation of methylviologen radical (MV+) in 

this system, but considerably decreased the durability of the photocatalyst. Anionic micelles 

totally hindered the photoinduced generation of Mn(II) porphyrins, while cationic micellar 

environment appreciably increased the efficiency of the accumulation of MV+. 

Keywords: cationic manganese(III) porphyrins; amphiphilic; micellar; fluorescence; 

photocatalysis; triplet state  
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1. Introduction 

Metalloporphyrins represent a very important group of compounds playing key roles in 

nature, due to their special spectral, coordination and redox features. Their favorable 

photoinduced properties can also be utilized in various photocatalytic procedures [1]. Water-

soluble derivatives can be applied in environmentally benign aqueous systems. Kinetically 

inert in-plane metalloporphyrins, in which the metal center is coplanarly located in the cavity 

of the ligand, may offer promising possibilities for realization of photocatalytic systems based 

on outer-sphere electron transfer [2]. Within the normal or in-plane metalloporphyrins, the so-

called hyper porphyrins are especially interesting from this viewpoint, due to their distorted 

structure, which may increase the (photo)redox reactivity of these complexes. The Mn(III) ion 

of 58 pm ionic radius [3] is rather small compared to the size of the cavity in the ligand 

center. Thus, it promotes the contraction of the porphyrin ring, distorting it, forming typical 

hyper porphyrin complexes. According to the generally accepted concept, earlier the highly 

distorted complexes with Mn(III) or Co(III) metal center were considered not to display 

appreciable fluorescence at room temperature [4]. However, in recent studies characteristic 

emission spectra were observed in the case of Co(III)TMPyP5+ [5] and manganese(III) 

complexes with 5-[4-(5-carboxy-1-butoxy)-phenyl-10,15,20-tris(1-methylpyridinium-4-

yl)porphyrin [6], 5,10,15,20-tetraphenylporphyrin, and 5,10,15,20-tetra(3-

hydroxyphenyl)porphyrin [7]. 

Photoredox reactions of water-soluble manganese(III) porphyrins, sometimes along with 

the corresponding cobalt(III) complexes, were investigated in several respects. Photocatalytic 

oxidation of sulfide to sulfate in a wastewater was studied with Co(III)TMPyP5+, 

Mn(III)TMPyP5+, and Fe(III)TMPyP5+ (H2TMPyP4+ = 5,10,15,20-tetrakis(1-

methylpyridinium-4-yl)porphyrin) [8]. Manganese(III) porphyrins, both cationic 

Mn(III)TMPyP5+and anionic Mn(III)TSPP3-, (H2TSPP4- = 5,10,15,20-tetrakis(4-

sulfonatophenyl)porphyrin), were applied for photocatalytic oxygenation of various bicyclic 

organic compounds, utilizing visible light [9, 10, 11]. Mn(III)TMPyP5+proved to be 

successful also in photoinduced oxidation of polynucleotides [12]. Cationic manganese(III) 

porphyrins were efficient photocatalysts in the systems containing suitable electron donors 

(such as EDTA and TEOA) and methylviologen (MV2+) as an appropriate electron acceptor 

[1, 13, 14]. However, the mechanism of the catalytic processes has not been completely 

elucidated. Thus, the aim of our work was to study the photophysical (especially 

fluorescence) and photochemical (mostly photocatalytic) properties of Mn(III)TMPyP5+ as 

well as its corresponding hexyl and dodecyl derivative, in order to investigate the effect of the 

length of alkyl chain. Besides, connecting to the hydrophobic/hydrophilic interactions, the 

influence of the micellar environment on the photoinduced behaviors was also studied.  

 

2. Experimental 

 

2.1. Materials 

 

The compounds used in our experiments were of reagent grade. Amphiphilic porphyrin 

ligands (H2THPyP4+ = 5,10,15,20-tetrakis(1-hexylpyridinium-4-yl)porphyrin and H2TDPyP4+ 

= 5,10,15,20-tetrakis(1-dodecylpyridinium-4-yl)porphyrin ) were synthesized according to a 

literature method [15]. H2TMPyP4+ was purchased from Sigma-Aldrich. For preparation of 

the manganese(III) porphyrins and for the photoinduced experiments with them, water 

purified in a Millipore/Milli-Q system was applied as solvent. Stock solutions of 

manganese(III) porphyrins were prepared by in situ generation by the reaction between the 

corresponding free base and manganese(II) sulfate (in 4 folds excess at the porphyrin 
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concentration of 3×10-4 M) under aerated conditions. The reaction is rather slow at room 

temperature  (at least one week), thus it was accelerated by addition of HgCl2 in a very low 

concentration (10-6 M). Catalytic effect of mercury(II) with a large ionic radius (102 pm [3]) 

is based on the formation of an out-of-plane intermediate Hg(II)-porphyrin [16]. The 

distortion of this species makes two diagonal pyrrolic nitrogens more accessible to another 

metal ion, even with smaller ionic radius, on the other side of the porphyrin ligand [17]. The 

behavior of the final product (manganese(III) porphyrin) was not affected by the presence of 

Hg(II) in the samples prepared by 50-100 times dilution from the stock solution. Control 

experiments were carried out with commercially available pure Mn(III)TMPyP5+ (from 

Frontier Scientific), and no deviation was observed from the behavior of the corresponding 

home-made metalloporphyrin. Borate buffer was applied to adjust pH to 8.3. In the case of 

dodecyl substituted porphyrin, the solvent was 1:1 ethanol: water mixture. 

2.2. Analytical procedures 

The absorption spectra were recorded by using a Specord S-600 diode array 

spectrophotometer. For the measurement of fluorescence a Fluoromax-4 (Horiba JobinYvon) 

spectrofluorimeter was applied. It was supplemented with a time-correlated single-photon 

counting accessory for determination of fluorescence lifetimes too. Ru(bpy)3Cl2 [18] was used 

as a reference for determination of the fluorescence quantum yields. The emission quantum 

yield of this complex is 0.042 at 20-25oC. It displays a strong absorption in the 400-480-nm 

range, covering the Soret-bands of the free-base porphyrins and their manganese(III) 

complexes. Considering the relatively long emission lifetime of Ru(bpy)3
2+,  its solution was 

carefully argon-saturated by 40-min bubbling.  Transient absorption measurements were 

carried out on a laser kinetic equipment described elsewhere [19]. All analytical 

measurements were realized at room temperature. 

2.3. Photolyses 

Photochemical experiments were carried out with 3.5-cm3 argon-saturated solutions in 1-cm 

cells at room temperature. During the irradiations the reaction mixtures were continuously 

homogenized by magnetic stirring. For illumination a LED light of 430-490-nm emission with 

a 457-nm maximum intensity was utilized. Incident light intensity was determined by 

ferrioxalate actinometry [20, 21].The experimental results were processed and evaluated by 

MS Excel programs on PCs. 

 

3. Results and Discussion 

 

3.1. Photophysical properties 

3.1.1. Absorption spectra 

Absorption spectra of porphyrins, both free bases and metalloporphyrins, display two types 

of bands. The Q-bands, assigned to the S0→S1 transitions, can be found in the longer-

wavelength range (500-700-nm), while the more intense Soret- or B-bands with one order of 

magnitude higher molar absorbances, assigned to the S0→S2 transitions, appear in the shorter-

wavelength range (380-480-nm). Generally, the Soret-bands of the normal (in-plane) 

metalloporphyrins display characteristic blue-shift compared to that of the corresponding free 

base, while the out-of-plane (OOP) complexes, in which the metal center, due to its large size, 

is located above the plane of the porphyrin ligand, distorting it, display red-shifted bands [22, 

23, 24, 25]. Deviating from the general tendency, however, in the case of the in-plane 
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porphyrin complexes of Mn(III), this band is red-shifted [1, 6, 7]. This phenomenon is well 

demonstrated by the spectra of H2THXPyP4+, Mn(III)THXPyP5+ and Mn(II)THXPyP5+ as 

shown in Fig 1 and by the data of Table 1. A similar behavior can be observed for the Q-

bands. In the free-base porphyrins the presence of protons on two (diagonally situated) 

pyrrolic nitrogens results in a split of the S1-state. Hence, the shift of Q-bands must be 

calculated with respect to the average energy of the Qx(0,0) and Qy(0,0) bands of the free-base 

porphyrin. 

Such metalloporphyrins, the spectra of which could not be interpreted by the 4 MO theory 

of Gouterman, have been classified as hyper porphyrins [25, 26]. In the case of the d-type 

hyper porphyrins, the metal centers with d1 through d6 configuration have vacancies in the 

eg(dπ) orbitals, which make a porphyrin ligand-to-metal charge transfer transition possible 

[27].  There is also a mixing of the metal dπ orbitals with the LUMO of the porphyrin (eg(π*)) 

because they are of the same symmetry (eg) [28]. This extensive mixing easily occurs if the 

metal orbitals are close in energy to the porphyrin LUMO as in the case of Mn(III), resulting 

in a complex spectrum [29]. Nevertheless, a structural distortion may also contribute to this 

effect; the radius of the low-spin Mn3+ ion is so small (58 pm) that the porphyrin ring 

contracts, resulting in a ruffled distortion [25].  

 

Fig 1. Molar absorption spectra of Mn(III) and Mn(II) complexes formed with H2THXPyP4+, 

compared to that of the free base.  

 

Table 1. Characteristic absorption data of the Soret-band and some (stronger) Q-bands of 

cationic porphyrins of Mn(III) and Mn(II) as well as the corresponding free bases. 

  Species                    Wavelength/nm 

Soret-band (lg ε)       Q-bands 

Ref. 

 

H2TMPyP4+ 422 (5.35) 521, 558, 585, 642 [30, this work] 

Mn(III)TMPyP5+ 463 (5.20) 565, 594 [14, this work] 

Mn(II)TMPyP4+ 445 (5.28) 575, 625 [14] 

single-column 

figure 
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H2THXPyP4+ 426 (5.42) 519, 557, 587, 642 [15, this work] 

Mn(III)THXPyP5+ 463 (5.12) 562, 596 [this work] 

Mn(II)THXPyP4+ 452 (5.25) 576, 623 [this work] 

H2TDPyP4+ 428 (5.18)a 519, 555, 592, 648 [15, this work] 

Mn(III)TDPyP5+ 463 (5.15)a 568, 600 [this work] 

Mn(II)TDPyP4+ 456a (b) b [this work] 

a In 1:1 ethanol:water mixture, b could not be determined due to the fast degradation of the 

ligand 

The Soret-band of the manganese(II) porphyrins is also red-shifted compared to that of the 

related free base, however, it is blue-shifted in the relation of the corresponding (more 

distorted) manganese(III) hyper porphyrin. This phenomenon can be accounted for the larger 

Mn2+ ion (rion = 83 pm), the metalloporphyrins of which are border-line cases displaying out-

of-plane characteristics, similarly to the iron(II) complex studied earlier [25, 31]. 

The absorption spectra of the Mn(III) complexes with the methyl, hexyl and dodecyl 

substituted pyridinium porphyrins do not show significant differences, indicating that the 

electronic interaction and structural (ruffle) distortion determining the band energy are not 

appreciably affected by the length of the alkyl group. However, the Soret bands of the free-

base porphyrins display a slight red-shift if the length of this hydrocarbon chain grows. Even 

stronger red-shift can be observed in the case of the Mn(II) complexes between the methyl 

and hexyl substituted derivatives, suggesting that the distortion playing role in the out-of-

plane characteristics is much more sensitive to the length of this alkyl group than in the hyper 

porphyrins. The size of this alkyl chain may considerably influence the rotation of the 

pyridinium group relative to the porphyrin plane. Apparently the qualitative difference 

between the hexyl and dodecyl groups in this respect is less significant. 

3.1.2. Emission properties 

The fluorescence bands in the 600-800-nm range of the emission spectra of porphyrins, 

both free bases and metalloporphyrins, can be assigned as S1→S0 transitions; the individual 

bands correspond to the (0, 0), (0,1) and (0,2) transitions with respect to vibrational states 

[25]. The fluorescence bands of metalloporphyrins (of any type) are blue-shifted and 

significantly less intense compared to those of the corresponding free-base porphyrin. The 

hypsochromic effect in the fluorescence is apparently in contrast with the red shift in the 

absorption. However, this blue shift–red shift anomaly is virtual, because in the case of free 

bases the emission derives not from the hypothetical average level, but from the energetically 

lower S1x-state (populated in Qx(0,0) absorption).  
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Fig 2. Emission spectra of Mn(III)TMPyP5+ and H2TMPyP4+  obtained by excitation at the 

Soret-bands in aqueous solution. 

 The fluorescence spectrum of Mn(III)TMPyP5+ obtained upon Soret-band excitation (Fig 

2 and Table 1) is very similar to that of the manganese(III) complex with 5-[4-(5-carboxy-1-

butoxy)-phenyl-10,15,20-tris(1-methylpyridinium-4-yl)porphyrin [6], indicating the 

negligible effect of the deviating substituent of the latter porphyrin.  In accordance with the 

expectations, the fluorescence peak of the previous complex is appreciably blue-shifted 

compared to the emission bands of the free base. However, even this blue shift is significantly 

smaller than the red shifts of the corresponding absorption bands (Table 1), suggesting that 

the structural difference between the ground (S0) and the excited (S1) states is bigger for the 

free base than for the metalloporphyrin. This phenomenon may be attributed to the 

predistortion (shrinking) effect of the metal center in the S0 state, which decreases the 

structural change (distortion) upon excitation to the S1 state. 

 

Fig 3. Emission spectra of Mn(III)THXPyP5+ and H2THXPyP4+  obtained by excitation at the 

Soret-bands in aqueous solution.  

single-column 

figure 

single-column 

figure 
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Similarly to the absorption spectra, the fluorescence spectrum of H2THXPyP4+ (Fig 3, 

Table 2) did not show any significant deviation from that of H2TMPyP4+. However, in the 

case of the corresponding manganese(III) complexes, the intensity of the longer-wavelength 

Q(1,0) band of Mn(III)THXPyP5+ (at 665 nm)  is comparable with that of the shorter-

wavelength Q(0,0) band (at 631 nm), while for the methyl derivative the previous one is 

hardly perceptible (at ca. 668 nm), only the asymmetry of the merged peak intimates its 

hidden existence. This phenomenon indicates that the longer alkyl substituent more efficiently 

promotes the transition to the vibrationally excited ground electronic state due to the higher 

inertia of the structure. In the case of the dodecyl derivatives, the emission bands of the free 

base are slightly blue-shifted compared to those of the methyl and hexyl derivatives (Fig 4, 

Table 2). Besides, the separation of the bands in the emission spectrum of H2TDPyP4+ is 

much stronger than in the previous cases, due to the solvent effect of ethanol (present for 

solubility reason).  

 

 

Fig 4. Emission spectra of Mn(III)TDPyP5+ and H2TDPyP4+  obtained by excitation at the Soret-

bands in 1:1 ethanol:water mixture. 

 

As shown in Figs 2-4, the intensity of the emission of the manganese(III) porphyrins  is 

significantly (1-2 orders of magnitude) lower than that of the corresponding free bases. The 

radiation quantum yields measured at Soret-band excitation are in accordance with this 

observation as shown by the data in Table 2. While the quantum yields (Φr) for the 

manganese(III) porphyrins are in the order of 10-4-10-3, those for the corresponding free bases 

are 1-2 orders of magnitude higher. Although the latter data were determined in methanol, 

their order of magnitude is the same as of those measured in water. This is demonstrated by 

the fluorescence quantum yields determined earlier for H2TMPyP4+ in aqueous solutions 

(0.030 [30], 0.040 [32]). The much weaker fluorescence of the manganese(III) complexes 

may be accounted for the in-plane position of the open-shell metal center as an electronic 

effect (strong interaction between the orbitals of the ligand and the metal), and the ruffled 

distortion as a steric effect.  

 

 

single-column 

figure 
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Table 2. Fluorescence bands (Q(0,0), Q(1,0)), quantum yields and lifetimes for the emission 

of cationic manganese(III) porphyrins and the corresponding free bases at Soret-band 

excitation in aqueous solution (unless otherwise stated).  

 free bases                   Q(0,0)   Q(1,0) 

 and complexes                   λ / nm 
       Φr105 lifetime / ns 

H2TMPyP4+                         662         702 

H2THXPyP4+               663        702           

H2TDPyP4+                 652        712 

  

Mn(III)TMPyP5+             632         ≈668 

Mn(III)THXPyP5+        631        665 

Mn(III)TDPyP5+          628        671 

      40  (59a) 

      38  (38a) 

      12b (27a) 

 

       0.11 

       1.4 

       1.4b   

9.8a 

9.2a  

8.7a 

 

3.9 

4.6 

6.6b   
a In methanol [15]. 
b In 1:1 ethanol:water mixture. 

 

The quantum yields for the fluorescence of the free bases display a moderate, but 

monotonous decrease upon increasing the alkyl chain on the pyridinium substituent. This 

effect may be interpreted by an increased chance for energy loss from the excited state via 

non-radiative ways of decay (e.g. vibration). In the case of the manganese(III) porphyrins an 

opposite and more significant effect can be observed. The increase of the length of the alkyl 

chain (from methyl to hexyl) enhances the quantum yield by one order of magnitude. This 

considerable change may be explained by the stronger electron-donating effect of the hexyl 

group, increasing the basicity of the pyrrolic nitrogens as observed for the 5,10,15,20-

tetrakis(1-alkylpyridinium-2-yl)porphyrins (for the deprotonation of the free bases, pKa2 is 

10.9  for the methyl and 12.2 for the hexyl derivatives [33]). This electronic effect increases 

the strength of the Mn-N coordinative bonds and, thus, the structural rigidity of 

Mn(III)THXPyP5+, promoting the energy loss of the singlet excited state via light emission. In 

the case of the dodecyl derivative, however, no further increase of the quantum yield was 

observed, suggesting the leveling of this effect above a certain length of the alkyl chain. 

Table 2 also indicates the fluorescence lifetimes for both the complexes and the 

corresponding free bases. The fluorescence decay of these species proved to be biexponential 

in each case; both in our experiments and in previous studies [15, 34]. Its longer component 

can be unambiguously assigned to the S1→S0 transition, while the shorter one (with 

significantly lower amplitude) was interpreted in deviating ways (e.g. adsorption effect [34] 

or mixing of the S1 and a CT state [15]). Hence, only the longer ones were taken into 

consideration for comparison (Table 2). Although the data regarding the free bases in Table 2 

were determined in methanol, they are comparable with those measured in water as indicated 

by the values for H2TMPyP4+: 6 ns [32], 5.2 [30]. 

The tendencies regarding the changes of lifetimes upon increasing the length of the alkyl 

chain are in accordance with those observed for the quantum yields. They show a 

monotonous, even if relatively slight decrease in the case of the free bases, while a more 

significant increase is indicated for the complexes. Notably, the latter tendency may be 

enhanced by the presence of ethanol in the case of the dodecyl derivative. 

 

Since the photochemistry of the complexes were studied in cationic micellar systems too 

(see later), it was reasonable to measure the effect of such a microenvironment on their 

fluorescence lifetimes. For this purpose, these experiments were carried out in aqueous 

solutions containing 4.3810-3 M CTAB, which means about 5.610-5 M concentration of the 

micelles, due to the aggregation number (61) and the CMC (9.610-5 M) of this surfactant 
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[35]. Hence the complex/micelle ratio was less than one. The fluorescence decay obeyed 

biexponential kinetics in this case too, and for comparison with the data obtained in 

homogeneous systems the lifetimes belonging to the major, longer lived components were 

taken. In contrast with the tendency observed in water, in micellar system the fluorescence 

lifetime decreased upon increasing the length of the alkyl chain (3.40 ns, 3.03 ns, and 2.30 ns 

for Mn(III)TMPyP5+, Mn(III)THXPyP5+, and Mn(III)TDPyP5+, respectively). This 

phenomenon, which is just the opposite of the change observed in the homogeneous aqueous 

system, can be interpreted by the stronger and stronger hydrophobic interaction between the 

alkyl chains of the surfactant in the micelles and those of the substituents on the porphyrins 

(in the order of methyl, hexyl, and dodecyl). This interaction can cause a moderate quenching 

of the fluorescence due to the energy loss via other, non-radiative ways. Since bromide ions 

originated from CTAB may also quench the fluorescence of these metalloporphyrins, the 

effect of Br- was checked in homogeneous aqueous solutions with addition of KBr up to  

110-2 M. No detectable quenching effect was observed in this concentration range of 

bromide ions, confirming the possible role of the hydrophobic interaction.  

3.2. Photochemistry 

Although Mn(III)TMPyP5+ was studied much earlier in a photoredox catalytic cycle in 

the presence of TEOA and MV2+ as electron donor and acceptor, respectively [14], its 

reproduction was necessary for comparison. Beside the methyl derivative, Mn(III)THXPyP5+ 

was also studied under the same conditions. As Fig 5 indicates, similarly to Mn(III)TMPyP5+, 

at the applied concentrations, photocatalytic generation of MV●+ could be achieved with this 

photocatalyst, too. A blind probe was also carried out; no spectral change occurred in the dark 

(i.e., without irradiation) indicating that without photoexcitation no redox reactions take place 

in this system.   

 

 

Fig 5. Spectral change in the system initially containing 1×10-5M Mn(III)THXPyP5+, 5×10-4 

M TEOA and 2×10-3 M MV2+ during the irradiation at 0, 10, 20, and 30 min (ir = 463 nm, l 
= 1 cm). 

In the first step of the catalytic cycle photoinduced reduction of the manganese(III) 

complex with TEOA (Eq 1) took place as shown by the change in the position (from 463 to 

452 nm) and intensity of the Soret band. In the next redox reaction (Eq 2) the corresponding 

manganese(II) porphyrin (Mn(II)TMPyP4+ in this case) photochemically reduced MV2+ to 

MV●+ as indicated by the appearance of the characteristic band of the latter species at 398 nm 

[36].  

single-column 

figure 
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Mn(III)THXPyP5+ + TEOA + hν → Mn(II)THXPyP4+ + TEOAox    (1) 

Mn(II)THXPyP4+ + MV2+ + hν → Mn(III)THXPyP5+ + MV●+    (2) 

The other characteristic, but much wider and less intensive weaker band of MV●+  at 605 nm 

merged with the 576- and 623-nm Q-bands of Mn(II)THXPyP4+ (Fig 5).  

As shown in Fig 5, in accordance with the previous observations [1,14], practically the 

whole amount of the starting manganese(III) complex was converted to the corresponding 

Mn(II) species in the initial period of irradiation. The +2 oxidation state of the metal center 

persisted till the end of the 210-min illumination. This phenomenon indicates that the rate of 

the reduction of Mn(III) porphyrin is higher than that of the oxidation of the Mn(II) species in 

this period of time.  After depletion of most of TEOA, the oxidation state of the metal center 

gradually returns to + 3. However, in the case of the hexyl derivative, during this irradiation 

period more than 55% degradation of the porphyrin ligand took place. The methyl derivative 

proved to be more stable; less than 22% decomposition was observed during the same 

illumination time. Notably, the dodecyl derivative (Mn(III)TDPyP5+) could not function as an 

efficient photocatalyst in such a system because of the fast degradation of the porphyrin 

ligand. These results clearly indicate that elongation of the alkyl substituent on these 

manganese(III) porphyrins significantly decreases the stability of these complexes against 

photoredox degradation. It may be the consequence of the increased electron-donating 

character of the substituent, which can promote a photoinduced ligand-to-metal charge 

transfer (LMCT), leading to an irreversible cleavage of the porphyrin ring. This is a typical 

photochemical reaction of the out-of-plane (OOP) or sitting-atop (SAT) metalloporphyrins, in 

which the metal center, due to its relatively big size compared to the coordination cavity, is 

located out of the ligand plane [1, 22, 24, 31]. Since the Mn2+ center formed in the first 

photochemical step is relatively large (rion = 83 pm [3]), its porphyrin complexes display OOP 

characteristics [25].  

In an independent experiment it was confirmed that manganese(II) porphyrins in ground 

state cannot react with MV2+. This electron acceptor was added to the system (in the dark, 

under anaerobic conditions) only after the photoreductive generation of the manganese(II) 

species. No formation of MV●+ was observed, in accordance with the ground-state redox 

potentials [14]. Therefore, excitation of the reduced catalyst (e.g., Mn(II)THXPyP4+) is 

indispensable for the electron transfer toward the methylviologen as indicated in Eq. 2. The 

overall quantum yield (Φ) for the formation of MV●+ in these photocatalytic systems was 

determined from the initial rate of the accumulation of this radical. An increase of the alkyl 

substituent from methyl to hexyl enhanced Φ from 1.5 to 2.5%. The order of magnitude of 

these values agrees with that obtained for Co(III)TMPyP5+ under similar conditions [5], and 

may be considerable for a potential application of such a system for hydrogen generation from 

water, combined with a suitable co-catalyst such as colloidal palladium or platinum [37]. 

Beside the change of the alkyl substituent, the effects of micellar environment on these 

photocatalytic processes were also investigated. In the presence of 1.210-2 M sodium lauryl 

sulfate (SLS) no reduction of the Mn3+ metal center was detected in the case of 

Mn(III)TMPyP5+. This phenomenon may be attributed to the strong attraction between the 

oppositely charged micelles and metalloporphyrins, sterically (and perhaps also 

electronically) hindering the electron transfer from TEOA. Interestingly, Mn(III)THXPyP5+, 

under the same conditions, underwent the photoinduced reduction, but no generation of MV●+ 

took place in this system. Accordingly, the longer alkyl chain promoted the reduction of the 

metal center, in agreement with the enhanced overall quantum yield in homogeneous aqueous 

solution. The lack of the MV●+ accumulation can also be accounted for the strong coulomb 

interaction between the negatively charged micellar surface and MV2+, hindering the redox 
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reaction of the latter species. Cationic micelles, in the solutions containing 4.410-3 M 

cetyltrimethylammonium bromide (CTAB), significantly enhance the quantum yields by 

about 40% for both manganese(III) porphyrins studied. Besides, the maximum steady-state 

concentration of MV●+ increased too in a similar order of magnitude, due to the promotion of 

charge separation and the hindrance of the back reactions between the products of the redox 

processes. Additionally, a moderate increase of the stability of the Mn(III)TMPyP5+ 

photocatalyst was also observed in the presence of cationic micelles; its degradation 

decreased (from ca. 22%) to 15% during the 210-min irradiation. The durability of the hexyl 

derivative, however, was not appreciably influenced by the cationic microenvironment, 

indicating the determining role of the longer alkyl substituent in this respect.  

Although the photochemistry of cationic manganese(III) porphyrins was investigated 

earlier in photoredox catalytic cycles in the presence of TEOA and MV2+ [1,14], the role of 

the excited states was not elucidated in those systems. Hence, Mn(III)TMPyP5+, as the 

simplest representative of the complexes in this work, has been chosen for this purpose. Since 

the singlet excited state of this metalloporphyrin is too short-lived (3.9 ns) to be efficiently 

quenched by TEOA, one can expect its triplet to play role in the first redox step (Eq 1). In 

order to confirm this assumption, flash photolysis experiments were carried out with this 

complex. A long-lived (τ0 = 53 μs) transient was detected upon excitation at 540 nm (Fig. 6), 

which can be assigned to the triplet state of Mn(III)TMPyP5+. As the Stern-Volmer plot 

indicates (Fig 6 inset), this triplet state could be efficiently quenched with TEOA (kq = 

6.7×106 M-1s-1), confirming our suggestion. This value is similar to that obtained for Co(III) 

TMPyP5+ under the same conditions [5]. Since the formation of methylviologen radical needs 

excitation of the manganese(II) porphyrin formed in the reductive quenching with TEOA, an 

oxidative quenching of the triplet Mn(II)TMPyP4+ with MV2+ is reasonable in the secondary 

redox step in this photocatalytic system.  

 

 

Fig 6. Transient absorption spectrum right after a 540-nm laser pulse in aqueous solution 

containing 1×10-5 M Mn(III)TMPyP5+. Inset: Stern-Volmer plot of its quenching by 

triethanolamine (TEOA). 

 

 

single-column 

figure 
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4. Conclusions 

As typical representatives of in-plane hyper porphyrins, cationic manganese(III) 

complexes were studied from photophysical and –chemical points of view. The effects of 

changing the length of the alkyl group on the pyridinium substituents were investigated in 

homogeneous solutions and micellar systems. Deviating from the tendency observed for the 

fluorescence of the free ligands, elongation of the alkyl chain enhanced the emission 

efficiency and lifetime of the metalloporphyrins. Cationic micelles inverted the latter trend, 

due to hydrophobic interactions. Similarly to the behavior of Co(III)TMPyP5+, in the 

photocatalytic system containing TEOA and MV2+ as electron donor and acceptor, 

respectively, reductive quenching of the triplet excited state of the cationic manganese(III) 

porphyrins led to the formation of the corresponding, thermodynamically stable Mn(II) 

complexes. Photoinduced electron transfer from these species toward MV2+generated MV+, 

which, using an appropriate co-catalyst, can generate hydrogen from water. Elongation of the 

alkyl substituent resulted in contradictory effects on this photocatalytic system. The influence 

of the micellar environment dramatically depended on the charge of the surfactant applied, 

due to predominantly electrostatic interactions. These results well demonstrated how 

significantly the water-solubilizing substituents and the micellar environment affect the 

photoinduced behavior of these cationic manganese(III) porphyrins. 
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