- This document is the Accepted Manuscript version of a Published Work that appeared in final form in RSC Advances, copyright © RSC after peer review and technical editing by the publisher. To access the final edited and published work see
- 1 2 3 4
- http://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra18899k#!divAbstract

6	Photocatalytic WO ₃ /TiO ₂ nanowires: WO ₃ polymorphs influencing the Atomic Layer
7	Deposition of TiO₂
8	
9	Dávidné Nagy ^{1,2} , Tamás Firkala ² , Eszter Drotár ³ , Ágnes Szegedi ³ , Krisztina László ⁴ and
10	Imre Miklós Szilágyi ^{2,5}
11	
12	¹ Institute for Materials and Processes, School of Engineering, The University of Edinburgh,
13	The King's Buildings, Mayfield Road, Edinburgh, EH9 3JL, United Kingdom
14	² Department of Inorganic and Analytical Chemistry, Budapest University of Technology and
15	Economics, Szent Gellért tér 4., Budapest, H-1111, Hungary
16	³ Hungarian Academy of Sciences, Institute of Materials and Environmental Chemistry,
17	Magyar tudósok körútja 2., Budapest, H-1117, Hungary
18	⁴ Department of Physical Chemistry and Materials Science, Budapest University of
19	Technology and Economics, Budafoki út 8., Budapest, H-1111, Hungary
20	⁵ MTA-BME Technical Analytical Research Group of the Hungarian Academy of Sciences,
21	Szent Gellért tér 4., Budapest, H-1111, Hungary
22	
23	Abstract
24	
25	50-70 nm hexagonal (h-) and 70-90 nm monoclinic (m-) WO ₃ nanoparticles (NPs) were

prepared by controlled annealing of (NH₄)_xWO₃ in air at 470 and 600 °C, respectively. In 26 27 addition, 5-10 nm thick and several micrometer long h-WO₃ nanowires (NWs) were obtained 28 by microwave hydrothermal synthesis at 160 °C with Na₂WO₄, HCl and (NH₄)₂SO₄ as starting materials. TiO₂ was deposited on h-WO₃ NWs by atomic layer deposition (ALD) at 29 300 °C using Ti(ⁱOPr)₄ and H₂O as precursors. The as-prepared materials were studied by 30 31 TG/DTA-MS, XRD, Raman, SEM-EDX, TEM, ellipsometry, UV-Vis, and their 32 photocatalytic activity was also tested by the photodecomposition of aqueous methyl orange. 33 Our study is the first evidence of diverse ALD nucleation on various WO₃ polymorphs, since on h-WO₃ NWs TiO₂ nucleated only as particles, whereas on m-WO₃ conformal TiO₂ film 34 was formed, explained by the different surface OH coverage of h- and m-WO₃. The h-WO₃ 35 36 NWs had significantly higher photocatalytic activity compared to h-WO₃ NPs, and similar performance as m-WO₃ NPs. By adding TiO₂ to h-WO₃ NWs by ALD method, the 37 photocatalytic performance increased by 65 %, showing clearly the uniqueness of ALD to 38 39 obtain superior oxide composite photocatalysts.

40

41 Introduction

42

43 Water scarcity and the purity of available water resources around the world are concerning issues of our century.^{1, 2} Semiconductor photocatalysis received substantial attention recently 44 to address environmental remediation challenges such as purifying water sources.³⁻⁷ It was 45 presented that using solar energy the purification of water is possible from toxic compounds 46 such as certain pharmaceutical drugs, bacteria or herbicids...etc.^{8, 9} Among semiconductor 47 oxides TiO₂ is one of the most studied photocatalyst since its valence and conductance energy 48 levels are suitable for both oxidation and reduction of water molecules (water splitting)¹⁰⁻¹⁷. 49 However, the utilization of TiO₂ is hugely limited by its restricted light absorption properties 50 51 to the UV range. Therefore, besides TiO₂, the photocatalytic activity of several other semiconductor oxides was also studied (eg. V₂O₅, WO₃, ZnO, ZrO₂)¹⁸⁻²⁴. Nanostructured 52 53 WO₃ can absorb part of the Visible spectrum, making it the second most studied oxide for 54 Visible-responsive photocatalysis²⁵.

55 Another limiting factor of TiO₂ is the relatively fast recombination of the photo-induced 56 charges. One approach to improve the photocatalytic performance of a semiconductor oxide 57 is forming composite photocatalysts with other semiconductors. An important benefit of 58 forming composite nanostructures could be the reduced recombination rate of the photo-59 generated charges by effective charge transfer between the two semiconductor oxide. In the 60 case of type II band alignment where one of the nanostructure has both the valence and conduction band energies lower positioned than the respective bands of the counterpart 61 effective separation of the charge carriers can take place.²⁶ In addition to the production of 62 longer-lived charges, the heterostructure can benefit from Vis activity if a UV active 63 64 photocatalyst such as TiO₂ is coupled with semiconductor oxides absorbing in the Visible region. TiO₂/WO₃ is such a system and several studies showed that such nanocomposite 65 heterostructures have superior photocatalytic activities over single semiconductors ²⁷⁻³⁰. 66

It is also known that the photocatalytic activity is a complex function of several factors such as the crystal structure, morphology or optical properties of the material...etc^{31, 32} In order to achieve high performance photocatalysts maximizing the specific surface area of the material is a general approach. Therefore, several techniques have been adopted to fabricate nanostructured oxide photocatalysts. Among the reported nanostructures, nanofibers have received immense attention due to their high surface-to-volume ratio, good optical, electric and chemical properties ^{33, 34}.

Previous studies revealed that WO_3/TiO_2 1D photocatalysts have huge potential ³⁵⁻³⁸. 74 Unfortunately, WO₃ is quite difficult to prepare with very small dimensions. The smallest 75 76 forms of the most studied WO₃ polymorph, i.e. monoclinic (m-) WO₃ have been 10-100 nm as particles, or 50-200 nm as nanofibers ³⁹⁻⁴¹. Nevertheless, m-WO₃ is a widespread 77 photocatalyst. In contrast, the second most important WO₃ modification, i.e. hexagonal (h-) 78 WO₃, has been studied in photocatalysis only once, and its photocatalytic activity was lower 79 compared to m-WO₃.⁴² It was explained by that unlike the completely oxidized m-WO₃, h-80 WO_3 always contain some cation (e.g. Na^+ , K^+ , NH_4^+) impurities in its hexagonal channels, 81 which are vital for stabilizing the metastable structure.^{43, 44} Besides, h-WO₃ contains also 82 partially reduced W atoms, which may serve as recombination centers during the 83 photocatalytic reaction, decreasing the activity.⁴³ However, h-WO₃ has been prepared 84 recently in the form of very fine nanowires with ca. 5-10 nm thickness, which is a very 85 86 promising morphology for photocatalysis, but unfortunately their photocatalytic properties 87 have not been tested yet.

Recently it was reported that m-WO₃/TiO₂ core/shell nanofibers, where the shell layer was deposited by atomic layer deposition (ALD), had excellent photocatalytic properties due to the synergy of WO₃ and TiO₂⁴⁵. ALD is based on successive, alternating surface controlled reactions from the gas phase to produce highly conformal and uniform thin films with thickness control of sub-nanometer precision. Thus, ALD provides new strategies in modifying the properties of nanoscaled materials and new synthetic routes to novel nanostructures $^{46-52}$.

- In the above example the m-WO₃ nanofibers were 200-300 nm thick. Thus, it is logical to expect better photocatalytic properties, if WO₃ 1D nanostructures with even smaller dimensions can be used as substrates. The now available 5-10 nm thick h-WO₃ fibers are good candidates for employing in WO₃/TiO₂ photocatalysts with improved properties.
- 99 In this study, we obtained h-WO₃ NWs by microwave assisted hydrothermal synthesis at 160 °C with Na₂WO₄, HCl and Na₂SO₄ as starting materials. ALD was the method of choice to 100 101 put TiO₂ onto the h-WO₃ nanowires, since it has the capability to deposit very thin layers on highly structured surfaces. The TiO₂ layer was deposited at 300 °C using Ti(ⁱOPr)₄ and H₂O 102 103 as precursors, and it was designed to have around 3 nm thickness because previous studies 104 showed that thin TiO₂ nanolayers could significantly enhance the photo-efficiency of the nanosized WO₃⁴⁵. It must be noted that up to now ALD growth has been done only on m-105 WO_3 , but not on h-WO₃. Since the two polymorhps have different surface properties ⁴², this 106 107 allowed us to study the characteristics of ALD nucleation on the surface of various WO₃

108 crystalline structures, which was not yet reported in the literature to the best of our109 knowledge.

- 110 For comparison, we also prepared hexagonal (h-) and monoclinic (m-) WO₃ nanoparticles
- 111 (NPs) by controlled annealing of $(NH_4)_xWO_3$ in air at 470 and 600 °C, respectively. In
- 112 addition, we prepared an $m-WO_3/TiO_2$ composite by annealing the $h-WO_3/TiO_2$ sample at
- 113 600 °C in air. It is well established that at this temperature the h-WO₃ structure transforms
- 114 into m-WO₃. Usually when m-WO₃ is formed thermally from nanostructured precursors, it $\frac{1}{2}$
- 115 will be present in the form of 50-200 nm particles 53 . However, we aimed to test whether the
- 116 TiO_2 coating might prevent the morphology change, and m-WO₃/TiO₂ with nanowire 117 morphology could be obtained.
- 118 The obtained materials were studied by TG/DTA-MS, XRD, Raman, SEM-EDX, TEM,
- ellipsometry, UV-Vis, and their photocatalytic activity was tested by UV-Vis through thephoto-bleaching of aqueous methyl orange.
- 121

122 Experimental

123

124 Preparation methods. Hexagonal (h-) and monoclinic (m-) WO₃ nanoparticles (NPs) were

- 125 prepared by annealing hexagonal ammonium tungsten bronze, (NH₄)_xWO_{3-y} in air at 470 °C
- 126 and 600 °C, respectively $^{34, 54}$.
- 127 For the preparation of h-WO₃ nanowires (NWs) a microwave-assisted hydrothermal synthesis
- 128 method was applied ⁴⁴. 1.5 g Na₂WO₄·2H₂O was dissolved in 33.75 ml H₂O, then under
- stirring 3.75 ml 3 M HCl was added dropwise, and finally 22.5 ml 0.5 M (NH₄)₂SO₄ was
- 130 introduced. The as-prepared solution was heated to 160 °C in 20 min, and then kept at 160 °C
- 131 for 3 hours in a Synthos 3000 Anton Paar microwave reactor. The solid reaction product was
- 132 centrifuged, washed two times with water, once with ethanol, and again two times with water.
- 133 In each washing step, 45 ml solvent was poured over the crystals; the dispersion was stirred
- 134 for 1 min, and centrifuged for 5 min at 6000 1/min. Finally, the as-prepared h-WO₃ NWs
- 135 were dried at 80 °C for 12 hours. The yield was 64 %.
- 136 The h-WO₃/TiO₂ nanowire composite was prepared by depositing a TiO₂ nanolayer onto the
- 137 surface of the as-prepared h-WO₃ NWs by atomic layer deposition (ALD). The ALD reaction
- 138 was carried out at 300 °C in a Picosun SUNALE R-100 type reactor. 100 ALD cycles were
- 139 applied using $Ti(O^{i}Pr)_{4}$ (60 °C evaporation temperature) and H₂O as precursors, with 1 s
- 140 pulse and 30 s purge times for both precursors.

141 The m-WO₃/TiO₂ composite sample was obtained by annealing the h-WO₃/TiO₂ sample at 142 600 °C in air.

143

144 *Characterization methods.* Thermal analysis was used to investigate the influence of washing steps during the h-WO₃ NW preparation and to check the thermal stability of as-synthesized 145 h-WO₃ NWs. For this an STD 2960 simultaneous TG/DTA device (TA Instruments Inc.) was 146 147 used, which was on-line coupled to a Thermostar GSD 200 quadruple mass spectrometer 148 (Balzers Instruments) through a heated (200 °C), 100 % silanated quartz capillary (D = 0.15149 mm). During the TG/DTA-MS measurements, samples (ca. 100 mg) were heated in a Pt 150 crucible at 10 °C/min heating rate in flowing air (130 ml/min). The fragments of the evolved 151 gases were monitored by Multiple Ion Detection (MID) mode in the 1-64 m/z range. 152 The crystal phases were determined by recording the XRD pattern of the samples by a 153 PANalytical X'pert Pro MPD X-ray diffractometer using Cu Kα radiation.

154 The Raman spectra provided further information on the crystal structure and the bonds. A155 Jobin-Yvon Labram type spectrophotometer equipped with an Olympus BX-41 microscope

- 156 was used. For excitation source a frequency-doubled Nd-YAG laser (532 nm) was employed.
- 157 The scattered photons were collected by a CCD type detector.

To investigate the optical properties of the catalysts, UV-Vis diffuse reflectance spectra were recorded by a Cary 100 UV-Vis spectrophotometer equipped with a DRA-CA-30I type integration sphere.

For the study of the morphology and composition, SEM-EDX and TEM measurements were applied. A LEO 1540XB type RÖNTEC FEG SEM microscope equipped with a Quantax EDX detector was used for the SEM-EDX recordings. The TEM images were provided by a FEI Morgagni 268D type TEM microscope employing a tungsten cathode.

- 165 For determining the specific surface area of the photocatalysts, the BET model was used. The
- 166 measurement was conducted in a NOVA 2000E type (Quantachrome, USA) device at the

167 temperature of liquid nitrogen applying N_2 as an absorbent gas.

- 168 For estimating the ALD TiO_2 film thickness, a TiO_2 film was deposited on a Si wafer by
- 170 WO_3 NW substrates. The film thickness was determined by ellipsometry. The spectra were

ALD, using 300 cycles and the same precursors, pulse and purge times, as in the case of h-

- recorded by a Woollam M-2000DI ellipsometer between 400 and 1500 nm.
- 172

- 173 *Photocatalysis.* The photocatalytic efficiencies of the as-prepared catalysts were tested in the
- 174 photo-bleaching reaction of methyl-orange (MO). The concentration of the catalyst and the

175 methyl orange were 100 mg/350 ml and 10 mg/350 ml, respectively. A Heraus TQ 150 mercury immersion lamp (radiation flux, Φ: 200-600 nm 47 W, strongest spectral lines: 254 176 177 nm: 4W, 313 nm: 4.3 W, 366 nm: 6.4 W, 405 nm: 3.2W, 436 nm: 4.2 W, 546 nm: 5.1 W, 577 178 nm: 4.7 W) was applied in a Heraus type cylindrical glass photo-reactor. The experiments 179 were conducted under oxygen bubbling at room temperature assured by the continuous water 180 circulation through the cooling jacket of the lamp. At first the solution was kept in dark for 15 181 min, to reach the adsorption equilibrium between the catalyst and the dye. Then the lamp was 182 switched on and 3 ml samples were taken in every 30 min using a syringe equipped with 183 filter (Sigma Aldrich, Iso–Disc, PTFE, 0.45 µm pore size membrane). The decline of the MO 184 concentration was followed by a Jasco V-550 type UV-Vis spectrophotometer at 465 nm.

185

186 **Results and discussion**

187

188 Formation mechanism of h-WO₃ nanowires. The fabrication of nano-sized WO₃ by wet-189 chemical synthesis approaches such as hydrothermal (HT) synthesis is a popularly applied method for cheap and versatile nanostructure formulation. ^{44, 55} To direct crystal growth in 190 191 HT synthesis various structure directing agents were presented in the literature from simple 192 inorganic salts like Na₂SO₄, NH₄NO₃ to complex organic structures like oxalic acid or polyethylene glycol.^{33, 55, 56} To fabricate delicate h-WO₃ nanowires in this paper (NH₄)₂SO₄ was 193 used following an earlier report.⁴⁴ It is believed that the capping agents such as $(NH_4)_2SO_4$ 194 195 dictate anisotropic 1D growth by selectively binding to specific crystal facets of the initial 196 crystal nuclei of WO₃. The adsorption of capping agents increases the surface energy of the selected facets leading to inhibited crystal growth rates and resulting in the formation of 1D 197 nanostructures.⁴⁴ It is also known that several other factors may contribute to the morphology 198 and crystal phases of the final nanomaterials such as time, temperature or the pH.^{31, 55, 57} This 199 200 latter one plays an especially important role in the formation of WO₃ since H⁺ is essential to 201 form tungstic acid from the selected tungsten precursor which is typically a tungstate. Then 202 WO_3 is formed according to Equation 1.

203

$$WO_4^{2-} + 2H^+ \leftrightarrow H_2WO_4 \stackrel{T(^{\circ}C)}{\leftrightarrow} WO_3 + H_2O$$
 Equation 1

205 Thermal analysis. The role of washing steps in reaching pure h-WO₃ nanowires after the 206 microwave hydrothermal reactions was studied by TG/DTA-MS measurement. The results 207 (presented in detail in the Supporting information) confirmed that washing steps were 208 effective and removed all precursors and reactants. The as-prepared, non-washed, only dried 209 h-WO₃ NW samples contained significant amount from not used reagents, i.e. (NH₄)₂SO₄, 210 HCl, and water as well, from which various gaseous products were detected in air, e.g. H₂O, NH₃, from the decomposition of NH_4^+ , NO and N₂O from the combustion of NH₃, HCl, SO 211 and SO₂ from the decomposition of SO₄²⁻⁵⁸. (Table S1). When the sample was annealed, 212 until 100 °C small amount of adsorbed H₂O was released in an endothermic reaction (Fig. 213 214 S1-S2). Then between 150-300 °C H₂O and NH₃ evolved accompanied by an endothermic 215 heat effect, whereas between 300-450 °C H₂O, NH₃, NO_x and SO_x gases were detected. The 216 combustion of NH₃ was an endothermic reaction, which changed the DTA curve to endothermic ⁵⁹. HCl was released above 450 °C, accompanied by further release of SO₂. 217

218 After the washing steps (Fig. S3-S4), all impurities were removed, and accordingly the total 219 mass loss until 900 °C decreased from 18.2 % to 5.8 %. Now only the release of water was 220 observed in two endothermic reactions between 25-200 and 200-450 °C. The metastable 221 hexagonal WO₃ framework was transformed into the thermodynamically stable m-WO₃ at 222 503 °C in an exothermic reaction. The results confirmed the importance of proper washing 223 steps after the microwave hydrothermal reaction in order to obtain pure h-WO₃ nanowires. The thermal analysis also showed that the cleaned, pure h-WO₃ was stable until 500 °C, 224 225 therefore performing the ALD reaction at 300 °C was safe.

After the ALD reaction performed at 300 °C-on and 10^3 Pa vacuum the h-WO₃ NWs lost considerable amount of adsorbed and structural water (only 2.5 % mass loss) (Fig. S6-S7). The exothermic DTA peak belonging to the hexagonal-monoclinic WO₃ transformation was at 506 °C.

230

231 *XRD*. The XRD patterns (Fig. 1) served information about the crystalline structure of the 232 samples. No crystalline impurities were detected in any of the samples. All reflection peaks 233 of h-WO₃ NPs were assigned to pure h-WO₃ (ICDD 33-1387). The h-WO₃ NWs exhibited 234 well-defined and intense diffraction peaks supposing high crystallinity of the sample. The 235 crystalline phase was confirmed to be pure h-WO₃. The XRD pattern of m-WO₃ NPs was 236 interpreted as pure monoclinic WO₃ (ICDD 43-1035).

- 237 In the diffraction pattern of h-WO₃/TiO₂ nanocomposite (Fig. 1) only the h-WO₃ phase could
- be identified (ICDD 33-1387). The characteristic reflections of TiO_2 could not be detected in the XRD pattern due to the very thin TiO_2 layer (aimed to be less than 3 nm).
- 240

Raman. The crystalline phases of the as-prepared WO₃ nanostructures were confirmed by their Raman spectra as well (Fig. 2), in agreement with the XRD results. The h-WO₃ NPs showed well-defined bands characteristic of h-WO₃. The most intense peak at 785 cm⁻¹ along with the bands at 650 and 691 cm⁻¹ can be associated with the stretching vibration modes of (O-W-O) $^{60, 61}$. The bands at 263 and 320 cm⁻¹ can be assigned to bending vibrations of W-O-W, whereas at 186 cm⁻¹ the lattice vibration mode can be found $^{60, 62}$.

247 The Raman spectrum of h-WO₃ NWs was substantially different from that of the h-WO₃ NPs. One of the deviances was that the h-WO₃ NW exhibited overlapping bands in the region of 248 249 600 and 850 cm⁻¹. Another considerable difference was that exclusively in the Raman spectra 250 of h-WO₃ NWs terminal W=O stretching modes were recognizable in the interval of 925-965 cm^{-1} ^{60, 63-65}. These peaks are common for all types of WO₃ hydrates, and in some cases the 251 appearance of these bands were attributed to surface humidity ⁴³. The absence of these bands 252 253 in the spectra of h-and m-WO₃ NPs can be ascribed to the high temperature treatment at 500 254 and 650 °C, respectively. Santato et al. reported that the W=O stretching modes in the latter 255 wavenumber interval gradually disappeared by applying increasing annealing temperature in the synthesis process 63 . 256

The Raman bands of m-WO₃ NPs were in good correspondence with literature values ⁶⁶. The peaks were sharp and well-developed supposing good crystallinity of the sample. The bands positioned at 806 and 720 cm⁻¹ can be assigned to stretching (O-W-O) vibrational modes. The bands at lower wavelength values belong to (O-W-O) deformation modes ⁶⁰.

The Raman bands of h-WO₃/TiO₂ nanocomposite (Fig. 2) were broadened, compared to h-261 WO₃ NWs. Probably during the ALD deposition some partially reduced W atoms were 262 produced, either due to the conditions (300 $^{\circ}$ C, 10³ Pa vacuum) or to the reaction between the 263 264 precursors and the substrate, and therefore the structure became less ordered. The Raman spectrum is sensitive to the different oxidation states of the atoms due to the change of the 265 chemical bond strength, which resulted in a small shift of the peak positions involving W 266 atoms of different oxidations states⁴². In the h-WO₃/TiO₂ sample the bands involving 267 268 completely oxidized (+6) and partially reduced (+5, +4) W atoms overlapped, making the 269 peaks broader. The presence of partially reduced tungsten atoms was also indicated by the 270 color change of the sample (it became blue) and by its optical behavior, discussed later. In

- addition, the terminal W=O stretching modes (above 900 cm⁻¹) of the h-WO₃/TiO₂ nanocomposite had much lower intensities compared to the substrate h-WO₃ NW. The occurred ALD nucleation and the applied temperature and pressure could be accounted for the reduced band intensities.
- 275 Characteristic bands of TiO_2 could not be observed as the bands of TiO_2 usually become 276 perceptible above 10 nm film thickness ⁴⁵. Similar findings were made by others who found 277 that 1-5% WO₃ loading in a WO₃/TiO₂ nanostructure did not show bands for WO₃ due to low 278 content of WO₃.⁶⁷
- 279 280
- SEM-EDX, TEM. Fig. 3 shows the SEM and TEM images of the prepared catalyst. It was found that the h-WO₃ NPs (Fig. 3a-b) consisted of 50-70 nm nanocrystals. The SEM and TEM images confirmed the formation of uniform and good quality nanowires for the h-WO₃ NWs (Fig. 3c-d) being several micrometer long and ca. 5-10 nm thick. On Fig. 3e-f the m-WO₃ NPs can be viewed, consisting of irregularly-shaped nanoparticles with a characteristic dimension of 60-90 nm.
- The EDX elemental analysis revealed that h-WO₃ NWs contained 2.82 atom% of Na beside W and O atoms, which can be attributed to stabilizing Na ions in the hexagonal channels ⁴³.
- 289 SEM-EDX results were also obtained about the effectiveness of the washing steps. On the 290 SEM image of the as-prepared, non-washed, dried h-WO₃ NW sample micrometer scale 291 particles of the not used reactants can be also seen, and EDX analysis confirmed the presence
- of N, Cl and S, besides O, Na and W (Fig. S5).
- In the h-WO₃/TiO₂ NWs the SEM and TEM images (Fig. 4a-b) revealed that the TiO₂ was successfully deposited onto the surface of h-WO₃ NWs in the form of individual nanoparticles. The TiO₂ nanoparticles had the diameter of around 5-10 nm, which corresponds to double thickness obtained by ellipsometry data, and is rationalized by the 3D growth of the TiO₂ particles. This is in agreement with expectations, as in the case of nanoparticle nucleation a 3D ALD growth is taking place. EDX showed 2.64 atom% Ti in the h-WO₃/TiO₂ sample, and confirmed the successful deposition of TiO₂ onto the h-WO₃ NWs.
- 300 It was also investigated whether an $m-WO_3/TiO_2$ composite with nanowire morphology could
- 301 be obtained by annealing the h-WO₃/TiO₂ sample. According to SEM and TEM images (Fig.
- 302 4c-d), the fine nanowire morphology was lost when h-WO₃ transformed into m-WO₃. In the
- 303 m-WO₃/TiO₂ composite m-WO₃ was present in the form of 30-50 nm particles, some of them

being connected to each other in a line, pointing to their h-WO₃ nanowire origin. The TiO₂ could be observed as 10 nm particles on the surface of m-WO₃.

306

307

308 BET. The BET measurements were carried out to compare the specific surface area of the synthesized WO₃ nanostructures. For h-WO₃ NPs it was found to be $11 \text{ m}^2\text{g}^{-1}$.⁶⁸ Whereas the 309 h-WO₃ NWs exhibited a much higher surface area of 101 m^2g^{-1} which is in good agreement 310 with earlier literature results.⁴⁴ The almost an order of magnitude higher specific surface area 311 of the h-WO₃ NWs relative to the h-WO₃ NPs showed the significant effect of the 312 313 morphology in the specific surface area which is considered to be an important factor in photocatalysis. The BET surface area of m-WO₃ nanostructure was calculated to be the 314 lowest among the WO₃ nanostructures with 6.5 m^2g^{-1} .⁴² 315

316

317 *Ellipsometry*. The estimation of the equivalent TiO_2 layer thickness was determined by 318 ellipsometry on a reference Si wafer. As the native oxide layer on the Si wafer is 319 approximately 3 nm thick, three times more ALD cycle (300 ALD cycle) were run under the 320 same condition on the reference wafer than during the preparation of the nanocomposite in 321 order to make the estimation more accurate. The approximated equivalent TiO_2 thickness 322 prepared by 100 ALD cycles was calculated as 3.65 nm.

- 323
- 324

325 ALD nucleation determined by the surface properties of WO_3 polymorphs. Based on SEM 326 and TEM results, it was found that the TiO₂ nucleation followed a distinct pattern on WO₃ 327 polymorphs. Earlier it was reported that the ALD-deposited TiO₂ formed a continuous layer on the surface of electrospun m-WO₃ nanofibers resulting in a core-shell nanocomposite 45 . 328 329 Our results revealed that for h-WO₃ nanowires, instead of a continuous layer, the deposited 330 TiO₂ formed nanoparticle islands. The surface chemistry of the nanostructures plays a key 331 role in the ALD reaction as the native functional group coverage on the surface serves as first binding sites for the ALD reaction ⁶⁹⁻⁷¹. Most probably, the distinct ALD nucleation could be 332 333 accounted for the different surface OH⁻ group density of the WO₃ polymorphs. Szilagyi et al 334 reported that based on the XPS spectra the amount of surface OH⁻ group was 0.52 % for the h-WO₃ NPs and 0.70 % for m-WO₃ NPs 42 . The nucleation of TiO₂ nanoparticles on the 335 surface of h-WO₃ as opposed to continuous film construction, is probably due to the less 336 337 available nucleation sites.

UV-Vis absorption. All WO₃ nanostructures regardless of the crystal phase exhibited pale yellow colour, however it was found that h-WO₃/TiO₂ NWs nanocomposite turned into blue after the ALD reaction. Solid phase UV/Vis diffuse reflectance (DR) spectra were recorded and analyzed to reveal the optical behavior of the nanostructures and help to understand the reason for the colour differences. The DR spectra is shown in Fig. 5.

343 It was observed that the h-WO₃ NWs and NPs exhibited a sharp drop of the absorption 344 around 460 nm and 478 nm respectively. Similarly, m-WO₃ NPs showed an absorption 345 threshold at about 485 nm. These values are typical band edges for nanostructured WO₃. ^{56, 72} 346 It is believed that h-WO₃ nanostructures typically exhibit higher energy band values 347 (therefore appears at lower wavelength) due to structural differences.⁷³

For the h-WO₃/TiO₂ nanocomposite it was noted that although TiO₂ has a typical absorption 348 threshold around 390-410 nm,⁷⁴ the nanocomposite still exhibited absorption in the whole Vis 349 350 range. Presumably, the enhanced visible absorption arose from the newly generated in-gap 351 states in the band gap due to the presence of partially reduced W atoms. The reduced W 352 atoms were indicated by Raman spectroscopic results and it is believed to be caused by the 353 high temperature and vacuum used over the course of ALD reaction. The blue appearance of 354 the sample is also an indication of the presence of in-gap states in the far-red region of the 355 Visible spectrum.

- 356
- 357

358 Photocatalysis. The photo-efficiency of the catalysts was modelled in the photo-bleaching 359 reaction of methyl orange under UV-Vis light irradiation (Fig. 6). The relative absorbance 360 was calculated and plotted against time to follow the dye degradation (see on Fig. 6 a)). 361 Additionally, first-order kinetics could be used to describe the behavior of our data which can 362 be expressed in the following form:

$$\ln(\frac{C}{C_0}) = kt$$
 Equation 2

where C is the dye concentration, C_0 is the initial dye concentration, k is the first-order rate constant and t is time. To test the repeatability of the photocatalytic results multiple experiments were performed. It was found that the experimental error has never exceeded $\pm 4\%$ and was typically 2-3\%. The effect of photolysis was negligible under the experimental conditions. The catalysts after the photocatalytic test did not show any visible change eg. in their color. 369 It was found that the nanowire morphology could enhance significantly the photoactivity of h-WO₃ NWs. Compared to the reference h-WO₃ NPs, the h-WO₃ NWs photo-bleached more 370 371 than twice as much dye within 4 hours. The enhanced efficiency was reflected on the firstorder rate constant values as well, exhibiting $1.72 \cdot 10^{-3}$ min⁻¹ and $4.93 \cdot 10^{-4}$ min⁻¹, respectively. 372 It is generally expected that 1D nanostructures could improve the photocatalytic performance 373 374 by providing enhanced charge carrier properties and therefore reduced charge recombination.⁷⁵ However, in some cases it was revealed that other factors such as the 375 oxidation state of the WO₃ could significantly reduce the photo-bleaching performance 376 despite the 1D morphology.³¹ Our results confirmed that there was no such inhibiting factor 377 therefore the nanowire morphology provided an enhanced efficiency over the nanoparticle 378 379 morphology in the photocatalytic test.

Additionally, the photo-efficiency of the h-WO₃ NWs was comparable to that of the m-WO₃ 380 NPs showing similar rate constant values of $1.72 \cdot 10^{-3}$ min⁻¹ and $1.79 \cdot 10^{-3}$ min⁻¹, respectively. 381 The monoclinic phase WO₃ was reported to exhibit higher photo-efficiency relative to 382 hexagonal WO₃ due to the more oxidized composition 42 , which was confirmed by our results 383 when h-WO₃ and m-WO₃ NPs with similar morphologies were compared. Clearly, beside the 384 385 prominent effect of the crystal phase, the morphology could play an important role in the 386 determination of the photo-efficiency. The highest photo-degradation was presented by the h-WO₃ NW/TiO₂ nanocomposite. It decomposed 56 % of the original dye concentration by the 387 388 end of the 4-hour reaction, which represents a higher than four times improvement relative to 389 the h-WO₃ NPs and almost two times better performance relative to the h-WO₃ NWs. Therefore, the highest rate constant of $4.22 \cdot 10^{-3}$ min⁻¹ was calculated for the h-WO₃ NW/TiO₂ 390 391 nanocomposite. The enhanced photoactivity can be attributed to the better light utilization 392 due to absorption in the complete UV-Vis spectrum, and reduced recombination of the photo-393 generated charges through effective charge separation between h-WO₃ and TiO₂. In the 394 literature it was earlier reported that m-WO₃-TiO₂ nanocomposite prepared by depositing 395 TiO₂ onto nanofibers of m-WO₃ by ALD showed improved activities relative to bare WO₃ and TiO2.45 However, successful ALD reaction onto h-WO3 NWs to prepare h-WO3 396 397 NW/TiO₂ nanocomposite has not yet been presented to the best of our knowledge. The 398 advantage of coupling WO₃ with TiO₂ in various crystal phases and morphologies was shown to have a great potential in improving photocatalytic performances.^{35, 76, 77}This was not 399 400 straightforward, since previously it was observed that in the case of blue h-WO₃ samples with partially reduced W atoms the photocatalytic activity was significantly lower, even compared 401 to yellow h-WO₃ NPs.⁴² The reason could be that although the blue h-WO₃ had absorption in 402

403 the complete UV-Vis spectrum, this was overcome by that the partially reduced W atoms404 served as recombination centers for photo-generated electrons and holes.

405 Nevertheless, in the case of the $h-WO_3/TiO_2$ NW sample, the addition of TiO₂ strongly 406 influenced the photocatalytic activity, and resulted in a more effective photocatalyst 407 compared to pure $h-WO_3$ or $m-WO_3$. It clearly shows the efficiency of ALD to reprogramme 408 the surface properties of nanostructures by depositing nanolayers or nanoparticles on them, 409 and thus to prepare photocatalysts with superior properties.

- 410
- 411

412 Mechanism of photocatalytic activities. It was revealed that m-WO₃ nanostructures typically overperform h-WO₃ nanostructures.⁴² It is believed that structural differences play a key role 413 in that. Photoluminescence studies (PL) confirmed that although h-WO₃ and m-WO₃ has 414 415 similar emission pattern, h-WO₃ typically shows lower intensities in the luminescence spectrum.⁴² This was previously attributed to the partially reduced state of h-WO₃ compared 416 417 to m-WO₃ which arose from the presence of stabilizing cations in its hexagonal crystal 418 structure. Between the reduced W atoms polaron transition could take place induced by the 419 absorbed light.⁷⁸ Due to this, fewer light portion can actually play role in the excitation of electrons from the valence band to the conduction band of the h-WO₃ which explains the 420 421 somewhat limited photocatalytic activities of h-WO₃ relative to m-WO₃.

422 One approach to mitigate $e^{-}h^{+}$ pair recombination in single nanostructures is to form 423 heterojunctions. In the event of beneficially aligned energy levels, the photo-generated 424 charges can accumulate on different semiconductors which was found to produce longerlived charges.²⁶ For a WO₃/TiO₂ system the electrons would favor to accumulate on the 425 426 conduction band of WO₃ whereas holes would be preferably injected from the valence band 427 of WO_3 to the valence band of TiO_2 . This way the separation of the photo-generated charges 428 can take place which supports photocatalytic surface reaction to take place. PL studies were also applied earlier to confirm the effective charge-separation in WO₃-TiO₂ systems.⁶⁷ It was 429 430 found that the emission intensities for the nanocomposite versus eg. TiO₂ was much lowered 431 which was explained by the improved charge separation in the nanocomposite material.

432

433 Conclusions

434

435 In this paper h-WO₃ has been prepared by controlled annealing of $(NH_4)_xWO_3$ and by 436 microwave hydrothermal synthesis to produce nanoparticles and nanowires, respectively. The

- 437 two distinct morphologies were tested in photocatalytic application against m-WO₃ 438 nanoparticles prepared also from $(NH_4)_xWO_3$. The h-WO₃ and m-WO₃ NPs were pure and 439 consisted of 50-70 nm and 70-90 nm particles, respectively. The h-WO₃ NWs were single 440 crystalline, 5-10 nm thick and several micrometer long. It was found that the h-WO₃ NWs 441 had double as high photocatalytic activity compared to h-WO₃ NPs, and their performance 442 was similar to m-WO₃ NPs.
- 443 The h-WO₃ nanowires were then used as substrates for TiO₂ deposition by atomic layer 444 deposition to study the nucleation characteristics of TiO₂ on hexagonal phase WO₃ for the 445 first time. It was shown that the nucleation on the surface of h-WO₃ was substantially 446 different from that of the m-WO₃. When TiO₂ was deposited by ALD onto h-WO₃ NWs, it 447 did not form a continuous layer as on the surface of m-WO₃, but rather 5-10 nm particles. 448 The unique nucleation pattern was understood by the lower surface OH density of h-WO₃ 449 compared to m-WO₃ which did not serve dense enough nucleation sites for the ALD 450 reactions to occur in a continuous manner. It was also presented that in contrast to yellow h-451 WO₃ NWs, the h-WO₃/TiO₂ NW turned to blue, due to the appearance of partially reduced W 452 atoms. Our study is the first investigation of ALD nucleation on various WO₃ polymorphs 453 and also the first example that different crystalline modifications of the same oxide material 454 have so diverse effect on ALD growth.
- 455 When TiO_2 was grown on h-WO₃ NWs, it significantly increased the photocatalytic 456 degradation rate, and resulted in a 65 % increase in photocatalytic performance. Our results 457 show that ALD is an outstanding tool to prepare composite photocatalysts.
- 458

459 Acknowledgements

460

D. Nagy acknowledges the Principal Career Development Scholarship awarded by the University of Edinburgh. I. M. Szilágyi acknowledges a János Bolyai Research Fellowship of the Hungarian Academy of Sciences and an OTKA-PD-109129 grant. Z. Baji, A.L. Tóth are acknowledged for contributing to the ALD depositions, ellipsometry and SEM-EDX measurements (Hungarian Academy of Sciences, Centre for Energy Research, Institute of Technical Physics and Materials Science, Budapest, Hungary).

467 **References**

468

469 1. H. Zhu and T. Lian, *Energy & Environmental Science*, 2012, **5**, 9406-9418.

470	2.	R. Das, S. B. Abd Hamid, M. E. Ali, A. F. Ismail, M. S. M. Annuar and S.
471		Ramakrishna, <i>Desalination</i> , 2014, 354 , 160-179.
472 473	3.	H. Tong, S. X. Ouyang, Y. P. Bi, N. Umezawa, M. Oshikiri and J. H. Ye, Adv. Mater., 2012 24, 220 251
473 171	1	I Byrne P Dunlon I Hamilton P Fernández-Ibáñez I Polo-Lónez P Sharma and
475	4.	A Vennard <i>Molecules</i> 2015 20 5574
476	5.	N. Zhou, V. Lopez-Puente, O. Wang, L. Polavarapu, I. Pastoriza-Santos and OH.
477		Xu, <i>RSC Adv.</i> , 2015, 5 , 29076-29097.
478	6.	W. Wu, J. Changzhong and V. A. L. Roy, Nanoscale, 2015, 7, 38-58.
479	7.	W. Zhong, D. Li, S. Jin, W. Wang and X. Yang, Appl. Surf. Sci., 2015, 356, 1341-
480		1348.
481	8.	S. Yurdakal, V. Loddo, V. Augugliaro, H. Berber, G. Palmisano and L. Palmisano,
482		<i>Catal. Today</i> , 2007, 129 , 9-15.
483 484	9.	S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco and W. Gernjak, <i>Catal.</i> <i>Today</i> 2009 147 1-59
485	10	X B Chen L Liu P Y Yu and S S Mao Science 2011 331 746-750
486	11.	G Halasi, I. Ugrai and F. Solymosi, J. Catal. 2011, 281 , 309-317
487	12	M Gratzel <i>Nature</i> 2001 414 338-344
488	13.	O. Gu, J. L. Long, Y. G. Zhou, R. S. Yuan, H. X. Lin and X. X. Wang, J. Catal.
489		2012, 289 , 88-99.
490	14.	A. Fujishima, X. T. Zhang and D. A. Tryk, Surf. Sci. Rep., 2008, 63, 515-582.
491	15.	O. Czakkel, E. Geissler, M. Szilágyi Imre and K. László, Journal, 2013, 1, 23.
492	16.	S. Banerjee, D. D. Dionysiou and S. C. Pillai, Applied Catalysis B: Environmental,
493		2015, 176–177 , 396-428.
494	17.	Y. Zhang, Z. Jiang, J. Huang, L. Y. Lim, W. Li, J. Deng, D. Gong, Y. Tang, Y. Lai
495		and Z. Chen, RSC Adv., 2015, 5, 79479-79510.
496	18.	K. Teramura, T. Tanaka, M. Kani, T. Hosokawa and T. Funabiki, J Mol Catal a-
497		<i>Chem</i> , 2004, 208 , 299-305.
498	19.	T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara and K. Sayama, Catal.
499		<i>Commun.</i> , 2008, 9 , 1254-1258.
500	20.	ZG. Zhao and M. Miyauchi, Angew. Chem. Int. Ed., 2008, 47, 7051-7055.
501	21.	D. S. Bohle and C. J. Spina, J. Am. Chem. Soc., 2009, 131 , 4397-4404.
502	22.	K. Tang, J. Zhang, W. Yan, Z. Li, Y. Wang, W. Yang, Z. Xie, T. Sun and H. Fuchs, J.
503		<i>Am. Chem. Soc.</i> , 2008, 130 , 2676-2680.
504	23.	G. Panthi, M. Park, HY. Kim, SY. Lee and SJ. Park, <i>Journal of Industrial and</i>
505	2.4	Engineering Chemistry, 2015, 21 , 26-35.
506	24.	W. W. Zhong, Y. F. Lou, S. F. Jin, W. J. Wang and L. W. Guo, <i>Sci Rep</i> , 2016, 6 .
507	25.	ZF. Huang, J. Song, L. Pan, X. Zhang, L. Wang and JJ. Zou, <i>Adv. Mater.</i> , 2015,
508	26	21, 5309-5321.
509 510	20.	1. J. Wang, Q. S. Wang, X. T. Zhan, F. M. Wang, M. Saldar and J. He, <i>Nanoscale</i> , 2013 5 8326-8339
511	27	R Bogue Sensor Rev 2014 34 1_{-8}
512	27.	D L Liao C A Badour and B O Liao <i>Journal of Photochemistry and</i>
513	20.	Photobiology A: Chemistry 2008 194 11-19
514	29	H Y Wang Y Yang X Li L I Li and C Wang Chin Chem Lett. 2010 21
515	_/.	1119-1123.
516	30.	M. Reza Gholipour, CT. Dinh. F. Beland and TO. Do. <i>Nanoscale</i> . 2015. 7 . 8187-
517		8208.
518	31.	D. Nagy, D. Nagy, I. M. Szilágyi and X. Fan, RSC Adv., 2016, 6, 33743-33754.

519 32. F. Amano, E. Ishinaga and A. Yamakata, J. Phys. Chem. C, 2013, **117**, 22584-22590.

- 520 33. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater., 2003, 15, 353-389. 521 F. B. Firkala Tamás, Drotár Eszter, Tompos András, Tóth Attila, Varga Josepovits 522 34. 523 Katalin, László Krisztina, Leskela Markku, Szilágyi Imre Miklós, Catal. Lett., 2013. F. Wang, X. Chen, X. Hu, K. S. Wong and J. C. Yu, Sep. Purif. Technol., 2012, 91, 524 35. 525 67-72. 526 36. Z. D.-F. MENG Shu-Qian, ZHU Xiao-Fei, YANG Guo-Cheng, LI Zhao-Hui, Journal 527 of Inorganic Materials, 2014, 29, 605-613. B. Lu, X. Li, T. Wang, E. Xie and Z. Xu, Journal of Materials Chemistry A, 2013, 1, 528 37. 529 3900-3906. 530 L. T. M. P. Guo, C. H. Wang, Advanced Materials Research, 2013, 850-851, 78-81. 38. 39. 531 E. Kamali Heidari, E. Marzbanrad, C. Zamani and B. Raissi, Nanoscale Res. Lett., 532 2010, 5, 370-373. H. Long, W. Zeng and H. Zhang, J Mater Sci: Mater Electron, 2015, 26, 4698-4707. 533 40. 534 41. I. M. Szilágyi, E. Santala, M. Heikkilä, M. Kemell, T. Nikitin, L. Khriachtchev, M. 535 Räsänen, M. Ritala and M. Leskelä, J. Therm. Anal. Calorim., 2011, 105, 73-81. 536 42. I. M. Szilágyi, B. Fórizs, O. Rosseler, Á. Szegedi, P. Németh, P. Király, G. Tárkányi, B. Vajna, K. Varga-Josepovits, K. László, A. L. Tóth, P. Baranyai and M. Leskelä, J. 537 538 Catal., 2012, 294, 119-127. 539 43. I. M. Szilágyi, J. Madarász, G. Pokol, P. Király, G. Tárkányi, S. Saukko, J. Mizsei, A. L. Tóth, A. Szabó and K. Varga-Josepovits, Chem. Mater., 2008, 20, 4116-4125. 540 541 A. Phuruangrat, D. J. Ham, S. J. Hong, S. Thongtem and J. S. Lee, J. Mater. Chem., 44. 542 2010, **20**, 1683-1690. 543 45. S. E. Szilágyi I. M., Heikkilä M., Pore V., Kemell M., Nikitin T., Teucher G., Firkala 544 T., Khriachtchev L., Räsänen M., Ritala M., Leskelä M., Chem. Vap. Deposition, 545 2013, DOI: 10.1002/cvde.201207037. V. Miikkulainen, M. Leskela, M. Ritala and R. L. Puurunen, J. Appl. Phys., 2013, 546 46. 547 113. 548 47. M. N. Liu, X. L. Li, S. K. Karuturi, A. I. Y. Tok and H. J. Fan, Nanoscale, 2012, 4, 549 1522-1528. 550 I. M. Szilágyi and D. Nagy, Journal of Physics: Conference Series, 2014, 559, 48. 551 012010. 552 49. H. Kim, H. B. R. Lee and W. J. Maeng, Thin Solid Films, 2009, 517, 2563-2580. 553 I. M. Szilágyi, G. Teucher, E. Härkönen, E. Färm, T. Hatanpää, T. Nikiti, L. 50. 554 Khriachtchev, M. Räsänen, M. Ritala and M. Leskelä, Nanotechnology, 2013, 24, 555 245701. M. Knez, K. Nielsch and L. Niinistö, Adv. Mater., 2007, 19, 3425-3438. 556 51. 557 S. Boyadjiev, V. Georgieva, L. Vergov, B. Zs, F. Gáber and I. M. Szilágyi, Journal of 52. 558 Physics: Conference Series, 2014, 559, 012013. I. M. Szilágyi, J. Pfeifer, C. Balázsi, A. L. Tóth, K. Varga-Josepovits, J. Madarász and 559 53. G. Pokol, J. Therm. Anal. Calorim., 2008, 94, 499-505. 560 561 54. I. M. Szilágyi, S. Saukko, J. Mizsei, A. L. Tóth, J. Madarász and G. Pokol, Solid State 562 Sciences, 2010, 12, 1857-1860. 563 V. B. Patil, P. V. Adhyapak, S. S. Suryavanshi and I. S. Mulla, J. Alloys Compd., 55. 564 2014, 590, 283-288. T. Peng, D. Ke, J. Xiao, L. Wang, J. Hu and L. Zan, J. Solid State Chem., 2012, 194, 565 56. 566 250-256. 567 57. J. Yu, L. Qi, B. Cheng and X. Zhao, J. Hazard. Mater., 2008, 160, 621-628. 568 58. D. Hunyadi, A. Vieira Machado Ramos and I. M. Szilágyi, J. Therm. Anal. Calorim., 2015, 120, 209-215. 569
 - 17

- 570 59. D. Hunyadi, I. Sajó and I. M. Szilágyi, J. Therm. Anal. Calorim., 2014, 116, 329-337. 571 60. A. Sonia, Y. Djaoued, B. Subramanian, R. Jacques, M. Eric, B. Ralf and B. Achour, 572 Mater. Chem. Phys., 2012, 136, 80-89. 573 61. S. S. I. M. Szilágyi, J. Mizsei, P. Király, G. Tárkányi, A Tóth, A. Szabó, K. Varga-574 Josepovits, J. Madarász, G. Pokol, Mater. Sci. Forum, 2008, 589, 161-165. I. M. Szilágyi, L. Wang, P.-I. Gouma, C. Balázsi, J. Madarász and G. Pokol, Mater. 575 62. 576 Res. Bull., 2009, 44, 505-508. 577 C. Santato, M. Odziemkowski, M. Ulmann and J. Augustynski, J. Am. Chem. Soc., 63. 578 2001, 123, 10639-10649. 579 64. A. Rey, P. García-Muñoz, M. D. Hernández-Alonso, E. Mena, S. García-Rodríguez 580 and F. J. Beltrán, Applied Catalysis B: Environmental, 2014, 154-155, 274-284. I. M. Szilágyi, I. Sajó, P. Király, G. Tárkányi, A. Tóth, A. Szabó, K. Varga-581 65. Josepovits, J. Madarász and G. Pokol, J. Therm. Anal. Calorim., 2009, 98, 707-716. 582 J. Zhang, W. Zhang, Z. Yang, Z. Yu, X. Zhang, T. C. Chang and A. Javey, Sens. 583 66. 584 Actuators, B, 2014, 202, 708-713. 585 H. Shen, I.-R. Ie, C.-S. Yuan and C.-H. Hung, Applied Catalysis B: Environmental, 67. 586 2016, 195, 90-103. N. Dávidné, F. Tamás, F. Xianfeng and S. Imre Miklós, European Chemical Bulletin, 587 68. 588 2016, 5, 40-42. 589 69. C. Y. Y. Cheol Seong Hwang, Atomic Layer Deposition for Semiconductors, Springer 590 New York Heidelberg Dordrecht London, 2014. 591 N. Pinna and M. Knez, Atomic Layer Deposition of Nanostructured Materials Wiley-70. 592 VCH Verlag & Co. KGaA, Weinheim, Germany, 2011. 593 71. M. Ritala and M. Leskelä, in Handbook of Thin Films, ed. H. S. Nalwa, Academic 594 Press, Burlington, 2002, DOI: http://dx.doi.org/10.1016/B978-012512908-4/50005-9, 595 pp. 103-159. 596 72. S. Adhikari and D. Sarkar, RSC Adv., 2014, 4, 20145-20153. 597 J. Su, X. Feng, J. D. Sloppy, L. Guo and C. A. Grimes, Nano Lett., 2010, 11, 203-208. 73. G. Liu, L.-C. Yin, J. Wang, P. Niu, C. Zhen, Y. Xie and H.-M. Cheng, Energy & 598 74. 599 Environmental Science, 2012, 5, 9603-9610. 600 H. Dong, Z. Wu, F. Lu, Y. Gao, A. El-Shafei, B. Jiao, S. Ning and X. Hou, Nano 75. 601 Energy, 2014, 10, 181-191. J. K. Yang, X. T. Zhang, H. Liu, C. H. Wang, S. P. Liu, P. P. Sun, L. L. Wang and Y. 602 76. 603 C. Liu, Catal. Today, 2013, 201, 195-202. 604 L. Yang, Z. Si, D. Weng and Y. Yao, Appl. Surf. Sci., 2014, 313, 470-478. 77. 605 78. S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson and S. K. Deb, 606 Electrochim. Acta, 1999, 44, 3111-3115. 607
- 608

Figure 1. Powder diffraction pattern of the m-WO₃ NPs, h-WO₃ NPs, m-WO₃ NWs, and h WO₃/TiO₂ NWs samples

- 615 Figure 2. Raman spectra of the m-WO₃ NPs, h-WO₃ NPs, m-WO₃ NWs, and h-WO₃/TiO₂
- 616

NWs samples

617

619

618 Figure 3 TEM and SEM images, respectively, of the prepared samples (a, b) h-WO₃ NPs, (c,

d) h-WO₃ NWs, (e, f) m-WO₃ NPs

- Figure 4. TEM and SEM images of the (a-b) h-WO₃/TiO₂ NWs catalyst, (c-d) m-WO₃/TiO₂
 samples obtained by annealing h-WO₃/TiO₂ NWs

