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The stability of an elastic beam is studied when the beam is subjected to a longitudinal
force governed by a feedback loop. The setup of the simplified mechanical model is
motivated by a basic problem of electroacoustics. The corresponding governing equation
is the 1D wave equation with delayed boundary conditions. By means of the D'Alembert

that includes two time delays. The intricate stability chart is constructed analytically in the
parameter plane of the gain parameter and the ratio of the time delays. The complete
chart extends the numerical results of the literature, while it also draws attention to the
numerical difficulties of finite degree of freedom approximations and to the extreme
sensitivity of the dynamics with respect to the time delay parameters of the system.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic properties of continua are often studied by means of finite element analysis and modal decomposition. These
standard methods transform the original partial differential equation (PDE) into a large system of ordinary differential
equations (ODE). However, as the size of the system increases, some properties of the finite degree of freedom (DoF)
approximations may not tend to those of the continuum model. This is a critical issue often addressed in the literature [1–4].

In practical applications, feedback loops are frequently used to reduce vibrations in continuum dynamical systems, which
is an especially hard task if the internal damping is small like in acoustic systems (see, for example, [5,6]). Delay is an
essential element in any feedback loop. The presence of this unavoidable time delay in the controlled continuum system
may lead to governing equations that consist of partial differential equations with delayed boundary conditions. There exist
many representative examples in the literature. The study of Ma and Butcher [7] investigated the stability of a continuum
beam when delayed follower force is applied at its end; in the paper of Haraguchi and Hu [8], the vibration suppression of a
continuum beam is studied in the presence of delayed control. In both cases, they used low DoF approximations since the
PDE models with delayed boundary conditions were too complex for analytical approaches. A basic microphone feedback
systemwas also modelled as a chain of rigid blocks with elastic springs and time delay in the control loop in [9], which again
leads to a finite DoF approximation of a wave equation with delayed boundary conditions. The results showed discrepancies
in convergence as the DoF was increased.
: þ36 1 463 3471.
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An alternative route in the analysis of these controlled continua is based on travelling wave solutions of the PDE part of
the model. As representative mechanical examples, we mention the report in [10] that presents controllability conditions for
a flexible beam in robotic applications, and the paper [11] of Szalai that studies the impact mechanics of elastic structures
with delay models. An interesting experimental study has been published recently by Schmitz in [6] where the analogy of
the squeal phenomenon in public address systems and the regenerative vibrations of machine tools was explored. The
essential elements of the analogy are the existence of travelling waves and related time delays in both systems. Vibration
suppression in both cases has a vast literature, here we refer only to spindle speed variation (the inverse of time delay
variation) in machining processes [12,13], and to echo cancellation [14–16] or noise control [17–19] in electroacoustics.

The unavoidable occurrence of even a tiny time delay often complicates the desired stability properties of delay-free
dynamical systems as analyzed in case of active vibration absorbers in [20,21]. Datko [22] showed it already in the 1980s
that feedback stabilized hyperbolic systems were not robust with respect to small delays [23,24]. There are many intricate
cases like these, which are explored by the methods developed for the stability analysis of linear neutral delay differential
equations (NDDEs) (see the book [25] of Michiels and Niculescu or the series of publications by Olgac and Sipahi [26,27]).
Since in case of NDDEs, the highest derivative of the state variable also appears in delayed form, infinitely many char-
acteristic exponents can be located in the right half of the complex plane. This property makes these systems very sensitive
for the variation of certain parameters, especially for the variation of the ratios of multiple time delays.

The rigorous mathematical result of Hale and Lunel [28] in 2002 showed that the linear difference equations with finite
number of discrete delays are almost always unstable when the sum of the absolute values of the weights of the delayed
terms is large enough, actually, if this sum is greater than 1. These difference equations serve as the essential parts [29,30]
(also called associated delay-difference equations [25]) of the NDDEs, while the governing PDEs of continua can often be
transformed to NDDEs by means of the travelling wave solutions [31,32]. Consequently, undamped continuum systems with
delayed boundaries can be unstable for any irrational ratios of the arising time delays in the system. Still, a few zero-
measure (in engineering terms, zero-probability) stability domains were identified in some numerical examples, while these
tiny stable domains could not be obtained through finite DoF approximations [9]. Similar numerical examples were pre-
sented also in section 1.2.5 of [25] related to the continuity properties of the spectrum with respect to the time delays.

The aim of this paper is to determine the complete and exact stability chart for the delayed boundary value problem
modelling a controlled but otherwise undamped elastic beam. The chart is constructed in the parameter plane of the
feedback delay and the feedback gain in closed mathematical form. This result also provides an explanation why these kinds
of stability charts cannot be obtained by finite DoF approximations of the continuum beam. The physical and engineering
relevance of the results are pointed out by means of the calculation of the closed form stability boundaries of the corre-
sponding controlled beams in the presence of internal viscous damping.

The rest of the paper is organized as follows. In Section 2, the mechanical model of the controlled beam is presented
including its geometry, material properties and the feedback parameters. The transformation of the equations of motion to
NDDE is introduced in Section 3, where its essential part, a delay-difference equation with two discrete delays is also
derived. In the subsequent sections, the preliminary results are summarized and the rigorous stability analysis is carried out
for the undamped beam in case of rationally dependent time delays. The stability boundaries of the damped case are
constructed analytically in Section 6, which leads to the concluding remarks on the numerical and engineering relevance of
the results.
2. Mechanical model

The linearly elastic prismatic beam presented in Fig. 1 is subjected to a longitudinal load at its left end. The beam has
length l, cross sectional area A; its material has density ρ and modulus of elasticity E. The distributed state variable is
denoted by uðx; tÞ that describes the longitudinal displacement of a beam cross section at spatial position x at time instant t.
The normal force at the left end is governed by a feedback loop that amplifies the normal force sensed at the right end of the
beam, which is otherwise fixed to a rigid wall. The feedback is characterized by the dimensionless gain K and time delay τ.

The governing equation of the longitudinal vibrations of the beam assumes the form

€uðx; tÞ�c2u″ðx; tÞ ¼ 0; (1)

where dot and prime denote derivatives with respect to the time t and the space coordinate x, respectively. The speed of
Fig. 1. Mechanical model of elastic beam subjected to delayed feedback.
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sound is given by

c¼
ffiffiffiffiffiffiffiffi
E=ρ

p
: (2)

While the right end of the beam is fixed, i.e. uðl; tÞ ¼ 0, the vibrations are sensed there by means of the variation of the
normal stress resultant Fðl; tÞwhich is linearly proportional to the normal stress σðl; tÞ expressed by the measured strain ϵðl; tÞ
through Hooke's Law:

Fðl; tÞ ¼ Aσðl; tÞ; σðl; tÞ ¼ Eϵðl; tÞ; ϵðl; tÞ ¼ u0ðl; tÞ: (3)

This force is then fed back with gain K and delay τ to the left end of the beam that results the normal stress resultant

Fð0; tÞ ¼ KFðl; t�τÞ: (4)

Consequently, the two boundary conditions of PDE (1) assume the form:

uðl; tÞ ¼ 0; (5)

u0ð0; tÞ�Ku0ðl; t�τÞ ¼ 0: (6)

In case of public address systems mentioned in the Introduction, the microphone could be the sensor at the right end, while
the loudspeaker may be the exciter at the left end. While the model is clearly over-simplified in this case, the consideration
of linear characteristics at the boundaries and also at the amplifier between the sensor and the exciter is justified for linear
stability analysis.
3. D0Alembert solution

The D0Alembert (or the so-called travelling wave) solution of Eq. (1) can be written in the form:

uðx; tÞ ¼ f ðt�x=cÞþgðtþx=cÞ; (7)

where f and g are unknown scalar functions. The time needed for a wave of speed c travelling along the beam is denoted by

T ¼ l=c: (8)

The substitution of the solution (7) into (5) and (6) results the new expressions of the boundary conditions:

f ðt�TÞþgðtþTÞ ¼ 0; (9)

� _f ðtÞþ _gðtÞ�Kð� _f ðt�τ�TÞþ _gðt�τþTÞÞ ¼ 0: (10)

Eq. (9) leads to a shift between the unknown functions

gðtÞ ¼ � f ðt�2TÞ; (11)

with which one can transform Eq. (10) to an NDDE with respect to the unknown function f in the form:

_f ðtÞþ _f ðt�2TÞ�2K _f ðt�T�τÞ ¼ 0: (12)

The corresponding characteristic function DðλÞ with characteristic exponent λAC is obtained after the substitution of the
exponential trial solution f ðtÞ ¼ Beλt in (12):

DðλÞ ¼ λð1þe�2Tλ�2Ke�ðTþ τÞλÞ: (13)

Note that λ¼ 0 corresponds to the trivial solution uðx; tÞ � 0 independently from the corresponding constant values of the
functions f and �g in Eqs. (11) and (7). By dropping this λ¼ 0 trivial root, the characteristic function (13) results the
characteristic equation

1þe�2Tλ�2Ke�ðTþ τÞλ ¼ 0: (14)

This corresponds to a delay-difference equation with two time delays in it; one of the delays is 2T that is the time needed
for a wave to travel along the beam to and fro, while the other delay is Tþτ where τ is the delay in the feedback loop. The
continuous-time difference equation assumes the actual form

yðtÞþyðt�2TÞ�2Kyðt�ðTþτÞÞ ¼ 0; (15)

for the new variable y¼ _f . This is the essential part of the NDDE (12) (see [25,29,30]). In the present case, the condition
Re λo0 for all the (infinitely many) characteristic exponents λ satisfying the characteristic equation (14) is equivalent to the
exponential stability of the essential part (15), which is equivalent to the exponential stability of the original PDE (1) with
the delayed boundary conditions (5) and (6).
Please cite this article as: L. Zhang, & G. Stepan, Exact stability chart of an elastic beam subjected to delayed feedback,
Journal of Sound and Vibration (2016), http://dx.doi.org/10.1016/j.jsv.2016.01.002i

http://dx.doi.org/10.1016/j.jsv.2016.01.002
http://dx.doi.org/10.1016/j.jsv.2016.01.002
http://dx.doi.org/10.1016/j.jsv.2016.01.002


L. Zhang, G. Stepan / Journal of Sound and Vibration ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
4. Preliminary results on stability

In order to analyze the stability of the linear difference equation (15), we recall a basic theorem of Hale and Lunel [28].
For a scalar difference equation of the form

xðtÞ�
Xm
k ¼ 1

akxðt�τkÞ ¼ 0 (16)

with rationally independent delays τ1; τ2;…; τm, the zero solution of Eq. (16) is exponentially stable if and only if

Xm
k ¼ 1

jakjo1: (17)

Under this condition, the real parts of all the (infinitely many) characteristic roots λ of the associated characteristic equation

1�
Xm
k ¼ 1

ake
� λτk ¼ 0 (18)

are less than zero. The stabilizability of an NDDE having essential part of the form (16) and satisfying the condition (17) is
studied in detail in [25–27]: if condition (17) does not fulfill, the corresponding linear NDDE cannot be exponentially stable
for rationally independent delays.

In case of the characteristic equation (14) of the continuum beam subjected to delayed feedback, the corresponding time
delays are

τ1 ¼ 2T ; τ2 ¼ Tþτ: (19)

The sum of the absolute values of the coefficients of the delayed terms does not satisfy condition (17) since

X2
i ¼ 1

jaij ¼ j�1jþj2Kj ¼ 1þj2KjZ1: (20)

Consequently, if the time delays are rationally independent and the feedback gain K is non-zero, the system governed by
PDE (1) with boundary conditions (5) and (6) is exponentially unstable. However, when the time delays are rationally
dependent, exponential stability is still possible as also shown in some numerical examples in [25] for specific cases like
τ1 ¼ 1, τ2 ¼ 2. For the system governed by (15), numerical results in [9] show that τ values that are odd integer multiples of T
also result in exponential stability for certain gain parameters K.

As an attempt to confirm these numerical examples and to find all the exponentially stable domains in explicit form, the
efforts will be put on the analytical stability investigation of the cases when T and τ (and consequently, τ1 and τ2 in (19)) are
rationally dependent. It is done in spite of the fact that these stability domains look physically irrelevant since they have
zero-measure in the parameter plane, in other words, the slightest perturbation of the delay parameters leads to expo-
nentially unstable systems. As already mentioned in Section 1, these domains are still important for checking the con-
vergence and accuracy of numerical methods, and they will also serve as a basis for the study of systems that include
internal damping.
5. Stability analysis

Consider the characteristic equation (14) with commensurable delay components τ and T. Then positive integers p and q
can be found such that

τ=T ¼ p=q; p; qANþ : (21)

Without loss of generality, we consider that p and q are coprimes. Then introduce the characteristic multiplier μ by

C 3 μ : ¼ ehλ; Rþ 3 h : ¼ τ=p¼ T=q: (22)

This way, the stability condition expressed by means of the characteristic exponent λ is transformed for the characteristic
multiplier μ as

Re λo03 jμjo1; (23)

and the characteristic equation (14) assumes the form

μpþqþμp�q�2K ¼ 0: (24)

Note that there is finite number n¼maxðp; qÞþq of characteristic multipliers μk, k¼ 1;…;n that are obtained as roots of (24),
while the number of the characteristic exponents

λk;j ¼
1
h
log jμkjþ i

1
h

arctan
Im μk
Re μk

72jπ
� �

; k¼ 1;…;n; j¼ 1;2;… (25)
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is still infinite; they are uniformly distributed along finite number of vertical lines in the complex plane in accordance with
(22).

In the special case of no feedback delay, that is when τ¼ 0, the corresponding characteristic equation can be simplified to

μ2q�2Kμqþ1¼ 0: (26)

It is known from Floquet Theory [25] that the system cannot be exponentially stable since the product of the characteristic
multipliers must be 1 due to Vieta's 2nd formula; this case is also called marginal stability. Straightforward calculation
shows that the condition of (marginal) stability is

jμj ¼ 13�1rKr1: (27)

In order to obtain an overview on the effect of the feedback delay τ40 on the stability of the system, the so-called
stability chart is constructed in the plane of two parameters: the ratio τ=T ð ¼ p=qÞ and the gain K. The characteristic
equation (24) is investigated in several steps. First, those critical values of the parameters are determined where some of the
characteristic multipliers have absolute value jμcrj ¼ 1. Then the variation of the absolute value of each critical characteristic
multiplier is determined for feedback gains close to their critical values Kcr based on the fact that the roots of polynomials
depend continuously on the coefficients of the polynomials. This procedure is carried out first for critical gains at zero, then
it is repeated for any large critical values of the gain K.

5.1. Critical parameter values

Consider the cases when critical characteristic multipliers jμcrj ¼ 1 exist. Then substitute

μcr ¼ eiα (28)

with i2 ¼ �1; αAR into Eq. (24):

eiðpþqÞαþeiðp�qÞα�2K ¼ 0: (29)

The corresponding real and imaginary parts satisfy the system of equations

cos ðpαÞ cos ðqαÞ�K ¼ 0; (30)

sin ðpαÞ cos ðqαÞ ¼ 0: (31)

From these, select the critical gain parameters Kcr in two cases:

cos qαð Þ ¼ 0 ) αj ¼
ð2jþ1Þ
2q

π; Kcr;� ¼ 0; j¼ 0…2q�1 (32)

sin pαð Þ ¼ 0 ) αk ¼
k
p
π; Kcr;k ¼ ð�1Þk cos

kq
p
π

� �
; k¼ 0…2p�1 (33)
Fig. 2. Location of characteristic multipliers for τ=T ¼ 11=5, (a) K ¼ Kcr;� ¼ 0 and (b) K ¼ Kcr;17 ¼ ð�1Þ17 cos ð17 � 5π=11Þ ¼ cos ð8π=11Þ.
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where p and q are optional positive (coprime) integers referring to any commensurable delay components τ and T according
to (21).

Typical arrangements of the characteristic multipliers in the complex plane are presented in Fig. 2. Panel (a) refers to a
case when the critical gain is zero in accordance with formula (32). Note that there are further non-critical roots of (29); in
case of the chosen parameters p¼ 11; q¼ 5, there are characteristic multipliers at zero with multiplicity p�q¼ 6, apart
from the 2q¼ 10 critical roots on the unit circle given also in (32).

Panel (b) of Fig. 2 presents the characteristic multipliers for a non-zero critical gain Kcr;k in accordance with formula (33).
Note that μcr;k ¼ eiαk in (33) is not the only critical root; in case of the chosen parameters p¼ 11; q¼ 5; k¼ 17, one can find
that Kcr;17 ¼ Kcr;5 ¼ Kcr;6 ¼ Kcr;16, which means that there are 4 critical roots μcr;17;5;6;16 on the unit circle, apart from further
8 roots located outside and another 4 roots located inside. Although it is typical to have 4 critical roots at a critical gain Kcr;k,
it will be satisfactory to track only the corresponding μcr;k given in (33).

At loss of stability, all the characteristic multipliers are located in the open unit disk except the critical ones that are
located on the unit circle (see, for example, panel (a) of Fig. 2). Consequently, the boundaries of the stable parameter regions
form a subset of all the possible parameters p; q;Kcr given in (32) and (33) where some of the characteristic multipliers are
located on the unit circle independently whether the others are inside or outside (see, for example, panel (b) of Fig 2). In
order to select the critical parameters at the stability boundaries only, the critical characteristic multipliers are checked
whether they leave or enter or just graze the unit circle at the critical parameters as the gain K is increased through its
critical values (32) and (33). This property is also called root tendency in the literature [26].

5.2. Crossing the unit circle at critical parameters

The implicit differentiation of the characteristic equation (29) with respect to the gain parameter K leads to

dμ
dK

¼ 2
ðpþqÞμðpþq�1Þ þðp�qÞμðp�q�1Þ: (34)

The sense of crossing the unit circle of the complex plane, that is, the root tendency can be deduced from the variation of the
absolute value of the characteristic multipliers:

djμj
dK

¼ 1
jμjRe μ

dμ
dK

� �
; (35)

where μ denotes the complex conjugate of μ. This derivative does not depend explicitly on the gain K as shown by the
substitution of (34) into (35). So when we check the sign of this derivative at the critical gain values Kcr, the corresponding
critical characteristic multipliers μcr ¼ eiα are substituted into (35) where the α values are given in (32) and (33). The
algebraic manipulation results

djμj
dK

����
μ ¼ eiα

¼ p cos ðpαÞ cos ðqαÞ�q sin ðpαÞ sin ðqαÞ
p2ð1þ cos ð2qαÞÞþq2ð1� cos ð2qαÞÞ : (36)

Clearly, if this derivative is positive (or negative) for a critical α given in (32) and (33), the corresponding characteristic
multiplier eiα crosses the unit circle outwards (or inwards, respectively).

If (36) is zero, the second derivative is needed, too. This can be calculated based on the formula

d2μ

dK2 ¼ �4
ðpþqÞðpþq�1Þμpþq�2þðp�qÞðp�q�1Þμp�q�2

ððpþqÞμpþq�1þðp�qÞμp�q�1Þ3
(37)

and by transforming it further to the absolute value of μ at μcr. The lengthy details of this calculation are not presented here.
The denominator of (36) is positive for any α. At the critical parameters (32), the first term of the nominator is zero; in

contrast, the second term is zero for (33). This way, the investigation of the root tendency number

S≔sign
djμj
dK

����
μ ¼ eiα

(38)

is simplified separately for the case of (32) when the critical gain is always zero, and for (33) when several critical non-zero
gain values exist.

5.3. Critical gain at zero

When K¼0, the characteristic function (24) has critical roots of number 2q, which are uniformly distributed along the
unit circle of the complex plane in accordance with formulae (28) and (32):

μcr;j ¼ cos
2jþ1
2q

π

� �
þ i sin

2jþ1
2q

π

� �
; j¼ 0…2q�1 (39)

(see also panel (a) of Fig. 2). Further roots exist for p4q, which are all at zero; there are no other roots when K¼0. Thus, the
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systemwith zero gain is at the limit of stability, in other words, it is marginally stable for any positive integers p and q; this is
otherwise obvious for the original mechanical system without feedback, which is conservative.

With the help of the root tendency number S of (36), those p; q parameters can be identified where all the roots along the
unit circle move inwards with increasing or decreasing gain K, that is, where regions of exponential stability exist. In
accordance with the critical case (32), the calculation of (38) gives the root tendency number of the jth critical root μcr;j ¼ eiαj

as

S jð Þ ¼ ð�1Þjþ1sign sin p
2jþ1
2q

π

� �� �
; j¼ 0…2q�1: (40)

If S(j) is þ1 (or �1) for all j then exponentially stable parameter domains exist as the gain K decreases (or increases,
respectively) from its zero value. If the sign of S changes at certain ðj�1Þst and jth critical roots then some of the roots (39)
move inwards the unit circle while others move outwards, consequently, there is no stable region there for small gain values
K around zero.

In summary, for given parameters p and q,
(i) if SðjÞ ¼ þ1 for all values of j then stable parameter domain exists for small negative gain values K;
(ii) if SðjÞ ¼ �1 for all values of j then stable parameter domain exists for small positive gain values K;
(iii) if there exists a value j such that Sðj�1ÞSðjÞ ¼ �1 then there is no stable region there for small gain K;
(iv) if SðjÞ ¼ 0 for certain j then the sign of the second derivative must be checked with the help of formula (37).
First, the case of odd p is investigated while the coprime q is optional, then the case of even p is considered when the

coprime q can be an odd number only.

5.3.1. Case of odd p
If q¼1, then (40) can be calculated as

S jð Þ ¼ ð�1Þjþ1sign sin p
2jþ1
2

π

� �� �
¼ ð�1Þðpþ1Þ=2; (41)

which is independent of the index j of the roots, that is, all the critical roots move in the same direction from the unit circle.
More specifically, S¼ �1 and all the critical roots move inwards for p¼ 1;5;9;… presenting exponentially stable domains at
small positive gains K40 for τ=T ¼ 1;5;9;… (see panel (a) of Fig. 3), while S¼ þ1 and all the critical roots move outwards
for p¼ 3;7;11;… presenting exponentially stable domains at small negative gains Ko0 for τ=T ¼ 3;7;11;… (see panel (b) of
Fig. 3). The corresponding domains can be identified as parts of the thick straight lines representing the exponentially stable
parameter domains in the stability chart of Fig. 6 explained in detail later.

If qa1 then there always exists j such that Sðj�1ÞSðjÞ ¼ �1, which means that there always exist characteristic multi-
pliers outside the unit circle for any small non-zero gain K (see panel (a) of Fig. 4). The proof of this is presented in
Appendix A.
Fig. 3. Locus curves of all the characteristic multipliers as gain K increases through Kcr;� ¼ 0 for (a) τ=T ¼ 9 when the critical roots at e7 iπ=2 move inwards
and for (b) τ=T ¼ 11 when these critical roots move outwards the unit circle.
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Fig. 4. Locus curves of characteristic multipliers as gain K increases through Kcr;� ¼ 0 for (a) τ=T ¼ 13=5 when neighboring critical roots exist on the unit
circle with opposite root tendencies, and for (b) τ=T ¼ 10=7 when critical roots at e7 iπ=2 graze the unit circle from outside.

Fig. 5. Locus curves of characteristic multipliers for (a) τ=T ¼ 9, K ¼ �0:1;…;0:3 and for (b) τ=T ¼ 11, K ¼ �0:3;…;0:1.
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5.3.2. Case of even p
If p is even then the coprime q must be odd. Consequently, there exists an integer j¼ ðq�1Þ=2 for which formula (32) of

the critical cases presents a critical root with argument αj ¼ π=2. For this root

djμj
dK

����
μ ¼ eiπ=2

¼ 0; (42)

since both cos ðqπ=2Þ ¼ 0 and sin ðpπ=2Þ ¼ 0 due to the odd q and even p substituted in (36).
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Thus, the second derivative of the modulus of jμj with respect to K is needed. This lengthy calculation can be carried out
with the help of formula (37) that leads to the simple result

d2jμj
dK2 μ ¼ eiπ=2 ¼ 4

p
q2

40
���� : (43)

This means that there is a characteristic multiplier that just grazes the unit circle from outside (see also panel (b) of Fig. 4),
and consequently, all these cases are exponentially unstable for small non-zero gains K.

5.4. Non-zero critical gains

There is a set of critical parameters calculated in (33) where the critical gain values Kcr;k ¼ ð�1Þk cos ðqkπ=pÞ are non-zero
and the arguments of the critical roots are αk ¼ kπ=p for all k¼ 0;…;2p�1. At these critical parameters, the root tendency
number S in (38) can easily be calculated from (36):

sign
djμj
dK μ ¼ eikπ=p ¼ sign ð�1Þk cos q

p
kπ

� �� ����� ) S¼ sign Kcr;k: (44)

This means that the critical characteristic multipliers move outwards both for increasing positive gain values and for
decreasing negative gains. Thus, the system cannot be stabilized by increasing absolute values of the gain, and the system
loses stability at the first non-zero gain in those parameter domains where it is exponentially stable for near-zero gains. For
positive gains, these critical stability boundaries are

min
k ¼ 0;…;2p�1

Kcr;k ¼ cos
p�1
2p

π

� �
40; p¼ 1;5;9;…; (45)

while for negative gains, the corresponding critical stability boundaries are

max
k ¼ 0;…;2p�1

Kcr;k ¼ cos
pþ1
2p

π

� �
o0; p¼ 3;7;11;… : (46)

Corresponding representative examples are given in panels (a) and (b) of Fig. 5.

5.5. Stability chart

In the space of the system parameters, a stability chart presents those parameter domains where the actual equilibrium
or motion of a system is stable. In case of the elastic beam subjected to delayed feedback at its boundaries, the system is
governed by the linear PDE (1) with boundary conditions (5) and (6), and the exponential stability of the equilibrium can be
represented in the parameter plane of the delay ratio τ=T and the feedback gain K. Based on the existing instability results of
the literature for rationally independent delays, and the results of the above analyses of all the possible combinations of the
rationally dependent (commensurable) delays, we can state that the only parameters where the equilibrium is exponentially
Fig. 6. Stability chart in the plane of the delay components ratio τ=T and the gain K. White regions refer to exponentially unstable domains, thick black
lines represent exponentially asymptotically stable domains, and gray thick line at τ¼ 0 represents marginally stable domain.
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asymptotically stable are the following zero-measure sets:

τ=T ¼ 4n�3; 0oKo cos
2n�2
4n�3

π

� �
n¼ 1;2;…ð Þ (47)

and

τ=T ¼ 4n�1; cos
2n

4n�1
π

� �
oKo0 n¼ 1;2;…ð Þ (48)

where the non-zero bounds of the gain K are obtained from the min/max formulas in (45) and (46). These domains are
presented in Fig. 6 together with the marginally stable regions �1rKrþ1 at τ¼ 0 (see (27)), and τ40 at K¼0 where the
uncontrolled system is conservative.

The stability chart follows the peculiar property predicted by the discontinuity of the spectrumwith respect to the delays
[25], that is, optionally small variation of the delay may cause the abrupt change of the system from exponentially
asymptotically stable to exponentially unstable. In the meantime, the continuity of the spectrum is preserved with respect
to the gain parameter; this is the reason why the stable domains have finite ‘lengths' along the vertical axis of the chart.
Although these stable regions are irrelevant from engineering view-point, the presence of some damping in the controlled
beam may change them qualitatively. This is studied in the subsequent section, again, with closed form analytical results.
6. Stability in the presence of damping

There are several options to model damping effects in continua [33]. The most relevant ones are the so-called external
damping when the dissipative forces are proportional to the velocities of the particles that are in contact with the envir-
onment, and the internal damping when the dissipative forces are proportional to the relative velocities between neigh-
boring particles. Similarly, these damping forces could be of Coulomb-type. The case of viscous internal damping is con-
sidered here with a factor η40 that describes the damping forces proportional to the internal elastic forces, while the
absorption effects at the ends of the beam are neglected. This leads to the simplest possible mathematical model of the
damped continuum beam in the form:

€uðx; tÞ�ηc2 _u″ðx; tÞ�c2u″ðx; tÞ ¼ 0 (49)

with the same boundary conditions (5) and (6) as in the undamped case. The difficulty of the stability analysis of PDE (49)
arises from the fact that the corresponding characteristic exponents are not located on finite number of vertical lines in the
complex plane in contrast to the undamped case (see (25)), although their real parts still converge to finite number of values
as their modulus tends to infinity (see [29]). Still, the stability boundaries can be found in explicit form.

Substitute the exponential trial solution uðx; tÞ ¼UðxÞeλt into Eq. (49). Then the vibration mode U(x) satisfies the ODE

U″ xð Þ� λ2

c2ð1þηλÞU xð Þ ¼ 0 (50)

with boundary conditions

UðlÞ ¼ 0; U0ð0Þ�KU0ðlÞe� λτ ¼ 0 (51)

inherited from (5) and (6). The corresponding general solution

UðxÞ ¼ P1eðλ=
ffiffiffiffiffiffiffiffiffiffiffi
ð1þηλÞ

p
Þðx=cÞ þP2 e�ðλ=

ffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηλÞ

p
Þðx=cÞ (52)

satisfies the boundary conditions (51) with non-trivial coefficients P1;2 if

eð1=
ffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηλÞ

p
ÞλT e�ð1=

ffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηλÞ

p
ÞλT

λð1�Keð1=
ffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηλÞ

p
ÞλT� λτÞ �λð1�Ke�ð1=

ffiffiffiffiffiffiffiffiffiffiffi
ð1þηλÞ

p
ÞλT� λτÞ

" #
P1

P2

" #
¼ 0

0

� �
: (53)

The determinant of the leading matrix leads to the characteristic function

D λð Þ ¼ λ cosh
Tλffiffiffiffiffiffiffiffiffiffiffiffi
1þηλ

p �Ke� τλ

 !
: (54)

In case of the uncontrolled beam, K¼0 and the characteristic equation simplifies to

eTλ=
ffiffiffiffiffiffiffiffiffiffiffi
ð1þηλÞ

p
þe�Tλ=

ffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηλÞ

p
¼ 0 ) 2Tλffiffiffiffiffiffiffiffiffiffiffiffi

1þηλ
p ¼ 7 i 2kþ1ð Þπ; k¼ 0;1;… : (55)

Since the right-hand side involves both positive and negative values, the square of this equation leads to

4T2λ2þηð2kþ1Þ2π2λþð2kþ1Þ2π2 ¼ 0; k¼ 0;1;…; (56)

from which the infinitely many characteristic exponents of the proportionally damped and uncontrolled beam can be
calculated in closed form. Clearly, each value of k represents a vibration mode, and each mode is associated with a viscous
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Fig. 7. The critical curves in the parameter plane of delay ratio τ=T and gain K represent parameters where pure imaginary characteristic exponents exist
for the dimensionless damping factor ~η ¼ 0:001. The regions where the trivial solution of (49) is exponentially stable are shaded in gray. Within these
regions, the blue vertical lines represent the zero-measure stability domains for the undamped case ~η ¼ 0 as given in Fig. 6. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 8. Stability chart for dimensionless damping factor ~η ¼ 0:01. Gray regions refer to exponential stability; K¼0 axis is also exponentially stable in the
presence of damping. Vertical thick black lines refer to exponential stability in the undamped case.

L. Zhang, G. Stepan / Journal of Sound and Vibration ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 11
damping proportional to the square of the corresponding natural frequency in accordance with the proportional nature of
damping considered in the model. The Routh–Hurwitz criterion guarantees that Re λko0 for all k due to the positive
coefficients of the polynomial in (56), which is in accordance with the exponential stability of the uncontrolled damped
beam. This calculation cannot be repeated for K40.

For the controlled (Ka0) but undamped (η¼ 0) case, the characteristic function (54) simplifies to (13). Still, the analysis
of (54) is much more difficult: the characteristic multiplier μ cannot be introduced since the infinitely many characteristic
exponents are not arranged along vertical lines in the presence of damping.

Due to boundary condition (5), the characteristic exponent λ¼ 0 of (54) corresponds to the trivial solution uðx; tÞ � 0 only.
Then the critical parameter domains where further pure imaginary characteristic exponents occur can be obtained by
substituting λcr ¼ iω, ωZ0 in (54). The separation of the real and imaginary parts of DðiωÞ presents two equations similar to
(30) and (31), but in a more complicated form. Still, the parameters τ and K can be expressed explicitly:

K2
cr ¼ sinh2 ωTffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ω2þ1

p
�1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ω2þ1

p
0
@

1
Aþ cos 2 ωTffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ω2þ1

p
þ1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ω2þ1

p
0
@

1
A; (57)

tan ωτcrð Þ ¼ �tanh
ωTffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ω2þ1

p
�1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ω2þ1

p
0
@

1
A tan

ωTffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2ω2 þ1
p

þ1
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

η2ω2 þ1
p

� �
: (58)

These expressions are used to construct the stability chart of the damped controlled beam in the plane of the delay com-
ponents ratio τ=t and the gain K: the dimensionless frequency parameter ~ω ¼ωT is swept in ð0;1Þ for selected (small)
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values of the dimensionless damping coefficient ~η ¼ η=T in (57) and (58) with the careful selection of the two-parameter arc
tangent values and the corresponding signs of Kcr. The critical parameter values are located on tangled curves in the
parameter plane as presented in Fig. 7 for dimensionless damping factor ~η ¼ 0:001.

The diagram also presents the stable regions (lines) for the undamped case, which fit perfectly among these curves.
Clearly, a correct mathematical proof for the exact stability chart of the damped controlled beam requires further

extensive algebraic work that can be carried out by computer algebra only following the procedure developed for the
undamped case: along each curve, the root tendency has to be calculated. The critical characteristic exponents all move to
the right of the complex plane either for increasing positive gains or for decreasing negative gains. The stable regions are
shaded in gray in Fig. 7 accordingly. Alternatively, the continuity of the spectrum has to be proven for the damped beam in
the presence of delayed feedback, which is not true for the undamped case.

For a further increased dimensionless damping ratio ~η ¼ 0:01, the stability chart is presented in Fig. 8 where the gray
regions refer to exponentially asymptotically stable systems, even for the uncontrolled case of K¼0. Note that apart from the
widening regions of stability around the stability lines of the undamped system, there are ‘peaks' of enlarged stable domains
around the even delay ratios τ=T ¼ 2;4;… where the undamped system gets close to being marginally stable with char-
acteristic multipliers grazing the unit circle from outside.
7. Concluding remarks

It is known from recent mathematical results of the literature that

� linear neutral delay systems with rationally independent delays are always unstable if the sum of the moduli of the
corresponding coefficients is larger than 1 [28];

� the spectrum of these systems is not continuous with respect to the delay parameters [25];
� there exist commensurable delays where the above systems are exponentially asymptotically stable even if the sum of the

moduli of the corresponding coefficients is larger than 1 [9,25].

We have shown that

(i) there are realistic physical models that lead to the above described critical mathematical cases, like the governing
equations of the elastic beam subjected to delayed feedback at its ends;

(ii) the exact stability chart constructed from explicit calculations in the plane of the control gain and the delay ratio
consists of discrete, uniformly spaced zero-measure lines at odd delay ratios where the system is exponentially stable
while the slightest perturbation of the delay parameters result exponentially unstable systems;

(iii) these physically irrelevant stable domains become relevant as they open up to finite regions of exponential stability in
the presence of internal damping, while the stability boundaries form fractal-like structures.

The stability of the wave equation with delayed boundary condition serves as a paradigm for a class of dynamical sta-
bility problems often leading to intricate self-excited vibrations. While the squeal phenomenon in public address systems is
an obvious element of this class, many advanced models of elastic structures under retarded follower forces [34,7], direc-
tional drilling tasks [35,36] and machine tool chatter suppression [37,38] belong there, too. The results and the applied
methodology could also serve as a basis for system parameter identification of continuum beams and shells by means of
self-excited vibrations induced with the help of delayed feedback loops.

The dynamical properties of these systems are still unexplored in spite of the large computational efforts based on finite
DoF approximations like finite element analysis and experimental modal analysis. Our closed form analytical results also
explain why the finite DoF approximations do not converge, or why they do converge very slowly during the numerical
treatment of these problems. This way, our results also provide an effective numerical challenge for testing the limits of
current dynamics software.
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Appendix A. Proof of instabilities in Section 5.3.1

When p is odd and the coprime qa1 then calculate the product of the signs by means of formula (41):

S j�1ð ÞS jð Þ ¼ �sign sin
2j�1
2

p
q
π

� �
sin

2jþ1
2

p
q
π

� �� �
¼ �sign

1
2

cos
p
q
π

� �
� cos 2j

p
q
π

� �� �� �
(A.1)

We show in four steps that there always exist a certain j such that the above product is �1, that is, there exists j such that

cos 2j
p
q
π

� �
o cos

p
q
π

� �
: (A.2)

(i) If ð0oÞpoq then choose j according to

p
2ðq�pÞo jo 2q�p

2ðq�pÞ 32jπ�p
q
π42j

p
q
π4 2j�1ð Þπþp

q
π3 cos 2j

p
q
π

� �
o cos 2jπ�p

q
π

� �
¼ cos 2j�1ð Þπþp

q
π

� �
¼ cos

p
q
π

� �
:

Such a j always exists since the difference of its upper and lower limits is

2q�p
2ðq�pÞ�

p
2ðq�pÞ ¼ 1

and neither of them is an integer since the nominators are odd and the denominators are even.
(ii) If qopo2q then choose j according to

2q�p
2ðq�pÞo jo p

2ðq�pÞ:

The same algebraic and trigonometric manipulation as above leads to the same result (A.2).
(iii) If 2nqopo ð2nþ1Þq for some n¼ 1;2;… then define

~p ¼ p�2nq ) cos
~p
q
π

� �
¼ cos

p
q
π

� �
:

Now, j can be chosen with the help of ~p in the same way as in case i:

~p
2ðq� ~pÞo jo 2q� ~p

2ðq� ~pÞ;

which leads to (A.2), again.
(iv) Finally, if ð2nþ1Þqopoð2nþ2Þq for some n¼ 1;2;… then define ~p and choose j in the following way:

~p ¼ p� 2nþ1ð Þq; 2q� ~p
2ðq� ~pÞo jo

~p
2ðq� ~pÞ:

With this j, (A.2) is true again.
This way, for all the possible combinations of the coprimes p; q where p is odd and qa1, we proved that there exists j

such that Sðj�1ÞSðjÞ ¼ �1, that is, the system is unstable. Clearly, for odd p and q¼1, Sðj�1ÞSðjÞ ¼ þ1 in (A.1) for any j, which
is in accordance with the identified stability regions in Section 5.3.1.
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