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Abstract 

Two biocompatible PDMS-SiO2-TiO2-CaO porous hybrid materials were 

prepared using the same base composition, precursors, and solvents, but 

following two different sol-gel procedures, based on the authors’ previous works 

where for the first time, in this hybrid system, calcium acetate was used as 

calcium source. The two different procedures resulted in monolithic materials 

with different structures, microstructures, and surface wettability. Even though 

both are highly hydrophobic (contact angles of 127.2° and 150.6°), and present 

different filling regimes due to different surface topographies, they have 

demonstrated to be biocompatible when tested with human osteoblastic cells, 

against the accepted idea that high-hydrophobic surfaces are not suitable to cell 

adhesion and proliferation. At the nanoscale, the existence of hydrophilic silica 

domains containing calcium, where water molecules are physisorbed, is 

assumed to support this capability, as discussed.  

 

1. Introduction 

The search for a material with mechanical properties close to those of human 

bone produced a new family of hybrid materials that take advantage of the 

synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive 

glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, 
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domains. After the first attempt to produce a potential osteoinductive ormosil 

(organically modified silicate) [1], several studies have been reported in the 

literature [2–7] on PDMS-SiO2 compositions containing calcium, showing the 

correlations between the microstructural evolution and the experimental 

conditions of synthesis (water and acid content, PDMS molecular weight, etc.). 

A surface calcium-phosphate forming ability was accepted as an indicator of 

potential bioactivity [8].   

 High PDMS amounts may however hinder the incorporation of Ca2+ ions into 

the silica substructure, decreasing the potential for bioactivity, as observed by 

Salinas et al. [6] that reported an optimum Ca2+:TEOS (tetraethyl orthosilicate) 

molar ratio of 0.1:1.  

Titanium was first added to the PDMS-SiO2-CaO system by Chen et al. [9] in 

order to change its mechanical properties, while also having in mind that the 

presence of titanium could increase the bioactivity, due to surface Ti-OH groups 

[10]. The authors observed that the bioactivity of hybrids increased with 

decreasing PDMS content and increasing TiO2 content, and that the strain at 

failure increased with increasing PDMS content and decreasing TiO2 content, 

respectively.  

Besides its importance as an inducing agent for the precipitation of surface 

calcium phosphates, titanium can have an effect on the condensation of the 

siloxane units leading to the formation of longer PDMS chains together with 

oxide based particles [11] and also influencing the final morphology of PDMS-

SiO2-TiO2 xerogels [12]. 

In the last years one of the major drawbacks pointed to these osteoinductive 

hybrid materials [8] has been the use of calcium nitrate as the calcium source in 

sol-gel processing, since nitrates are potentially harmful due to the toxicity 

associated with the formation of nitrate derived by-products [13,14]. In order to 

prevent this, a thermal step using temperatures above 400º C is essential, 

which may lead to thermal degradation of the materials prepared [15]. Other 

calcium sources were tried, such as calcium chloride or calcium 

methoxyethoxide, but some processing related problems still persisted [8]. In a 

previous work our group used calcium acetate as an alternative calcium source 

for PDMS-SiO2 based hybrids and produced a potential bioactive material [16], 



as suggested from immersion tests in a synthetic physiological fluid. Although 

the PDMS-SiO2-CaO hybrid system has been appointed as a potentially 

promising system for biomedical applications in bone substitutes, no information 

exists in the literature about its cytocompatibility in the presence of osteoblastic 

cells.  

In the present work, the authors intend to give some clues on the ways of 

modulating the microstructure and some surface features (roughness and 

wettability) of these materials and assess its cytocompatibility. For this, two 

PDMS-SiO2-TiO2-CaO porous hybrid materials were prepared with the same 

amounts of precursors and solvents, but using two different approaches for the 

sol-gel procedure based on the authors’ previous works [12,16,17]. The 

materials’ structures and microstructures were analyzed by Fourier Transform 

Infrared Spectrometry (FT-IR), solid state Nuclear Magnetic Resonance (NMR) 

techniques, Small-angle X-ray Scattering (SAXS), nitrogen adsorption and 

Scanning Transmission Electron Microscopy (STEM). Surface roughness and 

wettability were studied by 3D optical profilometry and by contact angle 

measurements respectively. Bioactivity was evaluated in vitro by immersion of 

the materials in Kokubos’s [18] simulated body fluid (SBF) and posterior surface 

analysis by different techniques as well as supernatant liquid analysis by 

Inductively Coupled Plasma  spectroscopy (ICP). Cytocompatibility was 

assessed from the response of MG63 osteoblastic cells characterized in terms 

of cell proliferation, alkaline phosphatase activity and morphology, observed by 

Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy 

(CLSM).  

 

 2. Materials and methods 

2.1. Sample preparation 

The following reagents were used for samples preparation: tetraethyl 

orthosilicate (TEOS), polydimethylsiloxane (PDMS) silanol terminated (550 g 

mol-1 average molecular weight), isopropanol (IPA), calcium acetate 

monohydrate (Ca(CH3CO2)2.H2O), titanium isopropoxide (TiPr), all from Sigma-

Aldrich, and ethyl acetoacetate (EtAcAc) from Merck. The composition of the 



materials, in molar ratio, is shown in Table 1 for two types of samples 

designated by I and K.  

Two different preparation procedures were used: procedure I and procedure K 

(Figure 1). In procedure I, already discussed in previous works [12,19], an 

aqueous solution of Ca(CH3CO2)2.H2O (the amount of water used was only the 

required to dissolve the acetate) was added to a mixture of TEOS, PDMS and 

the remaining H2O. Afterwards, isopropanol was added and the medium was 

acidified with HCl. The prepared solutions were then stirred for 2 hours. After 

that TiPr, previously chelated with EtAcAc using a 1:2 propoxide/chelating agent 

molar ratio, was added to the solution. The final mixture was then stirred for 

another 3 hours at room temperature and then poured into 15 mm diameter 

polyethylene cylindrical containers.   

 

Table 1: Samples composition 

Notation    Composition (molar ratio/TEOS) 

  
TEOS PDMS H2O HCl Ca Ti 

Sample I 

Sample K  
1 0.18 5 0.22 0.1 0.05 

[Note from the authors: the letter “I” was used in a previous work and maintained to facilitate comparison with prior 

results; the letter “K” comes from the word különbözö that mean “different” in Hungarian.] 

 

In procedure K PDMS was first put to react with TiPr (previously chelated as in 

procedure I) in an IPA medium [17]. A second solution was prepared by adding 

an aqueous solution of calcium acetate to TEOS, previously dissolved in IPA, 

and finally acidified with HCl. Then this solution was mixed with the first one and 

stirred for 60 minutes, after which it was poured into the 15 mm diameter 

polyethylene cylindrical containers.  

For both procedures, the mixtures were kept for a week at room temperature for 

gelation and then placed in an oven at 60 ºC for another week for aging. After 

this the gels were dried at 150 ºC for 24h. Monolithic samples with the shape of 

cylinders were obtained without visible cracks. Cylinders were cut into disks 



with a diameter of ca. 15 mm and thickness of ca. 1.5 mm using a Struers 

Secotom-10 cutting machine.  

 

 

Figure 1: Experimental procedures used: procedure I (left) and procedure K 

(right). 

 

2.2. FT-IR and solid-state NMR spectroscopy 

Samples were first crushed in a mortar in order to create fine powders and were 

analysed by FT-IR spectroscopy, 1H MAS (magical angle spinning), 29Si MAS 

and 29Si-{1H} CP-MAS (cross-polarization magical angle spinning) NMR, using 

the experimental conditions described in a previous work [12]. The CP-MAS 

spectra were simulated using DMFIT [20] and data available from the literature 

[21–24] was used for the peaks assigned to (CH3)2.SiO2 difunctional Dn (n=1,2) 

structural units, SiO4 tetrafunctional Qn (n=3,4) structural units, where n is the 

number of bridging oxygen atoms surrounding Si, and  crosslinked D(Q) 



structural groups.  A quantitative analysis of the structural units was obtained by 

fitting the MAS-NMR spectra, using the set of signals extracted from CP 

experiments, and calculating the relative percentage from the area of each fitted 

signal. For each structural group, D and Q, the value of relative intensity (%IR) 

of its component structural units was determined.  

 

2.3. Small angle X-ray scattering (SAXS) 

SAXS measurements were carried out at the CREDO instrument [25] of the 

Research Centre for Natural Sciences (Budapest, Hungary) using photons of 

1.5418 Å wavelength (Cu Kα characteristic radiation). Scattering patterns 

recorded at two sample-to-detector distances: 456.769 and 1217.81 mm were 

corrected and calibrated using the standard on-line data reduction procedures 

implemented in the instrument control software. Azimuthal averaging of the 

scattering patterns was applied to produce the scattering curves. The curves 

obtained at different sample-to-detector distances were merged in order to 

produce a single curve for each sample, covering the whole attainable range of 

q (the magnitude of the scattering variable, defined as q=4π sin(θ/λ), where 2θ 

is the scattering angle and λ is the wavelength).  

 

2.4. Surface area (BET) 

For each composition, the surface area was characterized by nitrogen 

adsorption using a Micromeritics - Gemini equipment. Samples were degassed 

at 150 °C for 12 hours and cooled to room temperature. At least 30 points were 

acquired with an equilibration time set of 5 seconds. Specific surface areas 

were obtained from the nitrogen isotherms, using the Brunauer–Emmet–Teller 

(BET) method [26]. Micropore surface areas were obtained using the t-plot 

method [27].  

 

2.5. Surface topography analysis 

Surface topography of cut discs was evaluated using a 3D optical variation 

system IFM G4 (Alcona). Line and area measurements were done according to 



the recommendations described by the ISO standards 4287, 4288 and 25178.  

The parameters required for the studies on cell adhesion and proliferation were 

measured: arithmetic mean deviation of the surface (Ra), root-mean-square 

deviation of the surface (Rq), maximum height of summits (Rp), maximum depth 

of valleys (Rv), and total height of the surface (Rt). In addition, the fractal 

dimension (Df) and the developed area ratio (Sdr, ratio between the interfacial 

and the projected area) were also calculated.  

 

2.6. Static contact angle 

Contact angle measurements were performed using the sessile drop method in 

a contact angle meter OCA15+ (DataPhysics Instruments) with high-

performance image processing system. Drops of distilled water, with a volume 

of 2 µL and 10 µL were added by a motor driven syringe, at room temperature. 

Five measurements were taken in different regions of 3 cut discs for each 

composition and an averaged value was calculated.  

According to Wenzel model [28,29] roughness increases the surface area of a 

solid, enhancing its hydrophobicity. Moreover, air can remain trapped below the 

drop, leading to a super hydrophobic behavior, in which the drop sits partially on 

air creating a non-filling regime where the liquid does not penetrate into surface 

grooves (Cassie-Baxter model) [28]. Depending on the applied model (filling or 

non-filling regime) Young contact angle (θY) values can be calculated using the 

Wenzel equation [29] described by  

cos θm = Rw cos θY           (1) 

where Rw symbolizes the surface area ratio, also referred to as Wenzel factor 

and calculated by  

 Rw = 1 + Sdr/100           (2) 

and θm is the measured (also called apparent) contact angle, or using the 

Cassie-Baxter equation [29] described by    

 cos θm = -1 + φS(1 + cos θY)         (3) 

where φS is the fraction of solid in contact with the liquid.  



 

 

 

2.7. In vitro evaluation 

2.7.1 Bioactivity studies 

The ability of the materials to precipitate calcium-phosphate on its surface was 

evaluated in vitro by immersion of the samples in Kokubos’s [18] simulated 

body fluid (SBF) for 3, 7 and 14 days. The surface of the dried samples after 

soaking was observed by Scanning Transmission Electron Microscopy (STEM) 

(Hitachi SU-70) using an accelerating voltage of 25 kV, equipped with an 

Electron Dispersive Spectroscopy (EDS) apparatus (Bruker QUANTAX 400). 

Grazing Incidence X-Ray Diffraction (GIXRD) analysis of surfaces was 

performed using a PanAlytical X’Pert Pro instrument (Cu-Kα radiation = 

1.5418Å) configured with a parallel mirror in the incident beam and a parallel 

plate collimator in the diffracted beam path to allow a constant low-angle angle 

incidence (2º) glancing the sample surface. The X-ray measurements were 

taken at 45kV, 40 mA in a 2 range from 3º to 50º, with 0.026º step size. The 

concentrations of Ca and P in the supernatant liquid were determined by 

inductively coupled plasma (ICP) (Jobin–Yvon JY70 Plus spectrometer).  

 

2.7.2. Osteoblastic cytocompatibility 

Sample discs were sterilized using gamma irradiation dose of 25 kGy, the dose 

usually recommended [30,31] to achieve a Sterility Assurance Level (SAL) of 

10-6 and a procedure already described [19]. 

Human osteoblastic-like MG63 cells (ATCC number CRL-1427™), of passage 

25 were cultured in α-MEM, supplemented with 10% fetal bovine serum, 50 

g.ml-1 ascorbic acid, 50 g.ml-1 gentamicin and 2.5 g.ml-1 fungizone, at 37 ºC, 

in a humidified atmosphere of 5% CO2 in air. For sub-culturing, the cell layer (at 

around 70-80% confluence) was detached with trypsin – EDTA solution (0.05% 

trypsin, 0.25% EDTA; 5 minutes, 37ºC). The cell suspension was used in the 

experiments. 



Cells were seeded over the materials’ samples, at a density of 2x104 cells.cm-2, 

and were cultured for 8 days. Cell behavior was characterized throughout the 

culture time for cell proliferation, alkaline phosphatase (ALP) activity, cell 

morphology and F-actin cytoskeleton immunostaining. 

DNA content. Cell proliferation was evaluated by analyzing the DNA content, 

using the PicoGreen DNA quantification assay (Quant-iT™ PicoGreenR dsDNA 

Assay Kit, Molecular Probes Inc., Eugene). At each time-point, culture medium 

was removed and the cultures were treated with Triton X-100 (Sigma, 0.1%, 5 

min) to lyse the cell layer. DNA was assessed in the cellular lysates, according 

to manufacturer´s instructions. Fluorescence was measured on an ELISA 

reader (Synergy HT, Biotek) at wavelengths of 480 and 520 nm, excitation and 

emission respectively, and corrected for fluorescence of reagent blanks. The 

amount of DNA was calculated by extrapolating a standard curve obtained by 

running the assay with the given DNA standard. 

ALP activity.  ALP activity was evaluated in cell lysates (0.1% Triton X-100, 5 

min) by the hydrolysis of p-nitrophenyl phosphate in alkaline buffer solution 

(pH~10.3; 30 min, 37 ºC) and colorimetric determination of the product (p-

nitrophenol) at 400 nm in an ELISA plate reader (Synergy HT, Biotek). ALP 

activity was normalized to total protein content (quantified by Bradford’s 

method) and was expressed as nmol/min.µgprotein-1. 

F-actin cytoskeleton. Seeded material samples were fixed (3.7% 

paraformaldehyde, 15 min), and were stained for the cell cytoskeleton 

filamentous actin (F-actin). Cultures were treated with Alexa Fluor 488 

Phalloidin (1:20 dilution in PBS, 1 h) and counterstaining with propidium iodide 

(1 μg.ml-1, 10 min) for cell nuclei labelling. Labelled cultures were mounted in 

Vectashield® and examined under Confocal Laser Scanning Microscopy 

(CLSM; Leica SP2 AOBS, Leica Microsystems).  

SEM observation. Seeded material samples were fixed (1.5% glutaraldehyde in 

0.14 M sodium cacodylate buffer, pH=7.3, 10 min), dehydrated in graded 

alcohols, critical-point dried, sputter-coated with an Au/Pd thin film (SPI Module 

Sputter Coater equipment), and observed under a high resolution (Schottky) 

environmental scanning electron microscope (Quanta 400 FEG ESEM). 



Statistical analysis: Three independent experiments were performed; in each 

experiment, three replicas were accomplished for the biochemical assays and 

two replicas for the qualitative assays. Results are presented as mean ± 

standard deviation (SD). One-way analysis of variance (ANOVA) was used in 

combination with Bonferroni’s post-hoc test to data evaluation. Values of p ≤ 

0.05 were considered significant. 

 

3. Results and discussion 

3.1. FT-IR analysis 

Figure 2 shows the FT-IR spectra obtained for both I and K samples, which 

exhibit bands in the 400-3600 cm-1 region, previously reported as characteristic 

of PDMS-SiO2-TiO2 and PDMS-SiO2-CaO [16,15,17] hybrid materials. 

 

Figure 2: FT-IR spectra of sample I and sample K 

 

Bands attributed to the presence of hybrid cross-linked SiO2 (Q units) – PDMS 

(D units) structures [32,33] are observed at ca. 430 cm-1 and  850 cm-1. The first 

frequency value has been reported to be related with the continuous interruption 

of silica network with hybrid SiO4–(CH3)2.SiO2  or oxo-metal linkages, once it is  

downshifted when compared to values obtained for pure silica gel (usually near 

460 cm-1). In a similar way, the presence of D-Q hybrid bonds explains the 

downshift of the frequency assigned to the symmetrical vibration of CH3 groups, 



once pure PDMS chains exhibit a weak band at 860 cm-1, assigned to the 

symmetrical rocking of CH3 groups.  

Some differences are also observed in the configuration of the region between 

1000 and 1250 cm-1, assigned to asymmetric stretching of Si-O-Si bonds in 

both D and Q groups. According to the literature, those differences indicate 

some variations in the geometry and size of the siloxane condensed species 

[34,35], which are dependent on the sol-gel experimental parameters [36] and 

on  the type of metal introduced into the system [35]. 

The existence of adsorbed water is confirmed in all compositions by the 

presence of bands at ca. 3450 cm-1 and 1640 cm-1, corresponding to the 

deformation and bending vibrational modes of O-H bonds, respectively [34]. A 

weak signal at ca. 950 cm-1 is assigned to the symmetrical stretching of Si-OH 

bonds [37].  

Probably due to the relatively small quantities of Ti used, the bands assigned to 

the Si-O-Ti at ca. 930 cm-1 [38,39] were not observed.  

No C-O vibrational modes, from calcium acetate were detected due to the fact 

that during the sol-gel preparation the acetic acid (produced by the protonation 

of the carboxylic group of calcium acetate in the highly acidic medium used in 

the synthesis) reacts with the excess of 2-propanol present originating an ester 

(2-propyl ethanoate), which has a boiling point lower than the temperatures 

used here to produce the samples [40]. 

  

 

3.2. Solid-State 1H NMR MAS, 29Si NMR MAS and 29Si-{1H} NMR CP-MAS 

analysis 

The samples I and K were analyzed by 1H MAS NMR and the results are 

presented in Figure 3. The spectra present a peak between 0.08 and 0.13 ppm 

assigned to CH3 groups. Its broadness is explained by changes in the mobility 

of CH3 groups due to the vicinity of Q (or other metal-oxide) units, in a more 

rigid cross-linked D-Q structure [21,41]. A shoulder near 1.2 ppm, usually 

assigned to isolated, water-inaccessible silanols [41,42] is observed in both. A 



sharp peak at ca. 4.8 ppm is assigned to physisorbed water molecules [41,43], 

probably related to the inclusion of Ca into the composition of the hybrids. No 

physisorbed water was detected in our previous studies [12] were the structure 

of PDMS-SiO2 hybrids without Ca was also analysed by 1H MAS-NMR. 

Leonova et al. [43] and Gunawidjaja et al. [44] reported the presence of 

physisorbed water due to the presence of Ca in bioglass compositions. 

Gunawidjaja et al. [44] emphasized that the higher the Ca content, the stronger 

and broader will be the signal around 5 ppm also accompanied by a downfield 

of the chemical shift. Because both compositions have the same overall Ca 

content, the observed differences in the broadness of those peaks in Figure 3 

can be related to the Ca2+ concentration in the surface.  

 

Figure 3: 1H MAS NMR spectra for both type of samples. 

 

29Si MAS-NMR studies were performed on both types of samples and the 

results are shown in Figure 4a. Two distinct groups of Si structural units are 

observed, one with chemical shifts between -15 to -23 ppm, assigned to 

dimethylsiloxane D structural units ((CH3)2.SiO2), and another with chemical 

shifts between -80 to -110 ppm, assigned to Q structural units (SiO4) [22]. A 

quantitative analysis (Table 2) of the different structural units was obtained for 

both samples by fitting the 29Si MAS NMR spectra, using the set of signals 

extracted from 29Si-{1H} cross-polarization MAS-NMR experiments (Figure 4b) 

as explained in section 2.2. The fitting was obtained using four or five signals to 

simulate the D region and four signals to simulate the Q region.  



The first three signals in the D region, Da, Db and Dc, with values of chemical 

shift between -17.0 ppm and -20.4 ppm, have been assigned in the literature to 

D units cross-linked to oxide-based structures in PDMS-SiO2 [21,23,24,41,45], 

and PDMS-TiO2 [35,46] systems. The deviation of the chemical shift arising 

from pure D units of PDMS (near -23 ppm) is due to the nature of the first, and 

even of the second, neighboring atom. The downfield (and the respective 

broadness of the peak) is explained by the lower mobility of dimethylsiloxane 

units at the end of PDMS chains close to metal-oxo nanoparticles [21,35]. The 

higher chemical shift is assigned to the presence of “short” siloxane chains 

isolated between those nanoparticles. Thus, Da signals are due to a monomer D 

unit linking two Q units, in QDQ arrangement. Db signals are due to a 

dimethylsiloxane dimer, or trimer, linked to Q units in a QDDQ, or QDDDQ 

arrangement, respectively. Dc signals are due to a D unit located between a Q 

unit and a longer (more than 3 units) PDMS chain [21]. The two other signals, 

Dd and De (narrower than the other signals) are assigned to D units located in 

different positions inside the PDMS chains, in a less constrained environment in 

short PDMS chains containing about 5 dimethylsiloxane units [21]. The signal 

from those higher mobile structural units, like De, is not present in the 29Si-{1H} 

CP-MAS spectra due to the lack of efficiency of the cross-polarization (CP) 

sequence [47].  

Table 2 shows some differences in the distribution of the siloxane structures of 

the different hybrids. Sample I presents more Q units linked by a D monomer, in 

a Q-D-Q configuration, while sample K does not shows any, but a clear 

predominance of Db structural units. Recalling the different preparation 

procedures of both, in the case of sample K titanium alkoxide was first reacted 

with the hydroxyl terminated PDMS without the presence of water and HCl. It is 

known from our previous work [12] that some dimethylsiloxane monomers 

resulted from the cleavage of hydroxyl terminated PDMS dimers in highly acidic 

aqueous medium [48]. In the case of K preparation, those DOH
1 − DOH

1  dimers, 

using the notation defined by Glaser et al. [22], will react first with the TiPr 

propoxide being not cleaved when they are subsequently added to an acidic 

medium.  

 



 

Figure 4: (a)  29Si MAS NMR and  (b)  29Si-{1H} CP-MAS NMR spectra for both 

type of samples. 

 

When analysing the distribution of silica based structures the predominance of 

full condensed Q4 structures can be observed in all compositions, which is in 

line with the authors previous works [15]. Brus [41] reported in a structural study 

of hybrid materials prepared from dimethyldiethoxysilane (DMDES) and TEOS 

that using an increased DMDEOS/TEOS molar ratio produced more cross-

linked D-Q bonds and resulted in a decrease in the Q3/Q4 ratio. Consequently, 

the total condensation rate of siloxane network increased. Comparing in Table 2 

the distribution of structural units, it is observed that a higher number of very 

short hybrid structures (DA) (I sample) is not followed by a corresponding lower 

number of Q3 or Q1 structures. These differences can be explained by the 

authors’ previous findings [15], namely that some of the less condensed Q 

structures, Q3 and Q1, are not only associated with hydroxyl groups, but also 

with titanium and calcium.  

 

 

 

 

 

 



Table 2: Chemical shift δ (ppm), relative intensities (%I) and full width at high 

maximum (FWHM (ppm)) of the different structural units after simulations of the 

29Si NMR MAS data. 

structural 

units 

     Sample I   Sample K   

    %I 
δ/[FWHM] 

(ppm) 
  %I 

δ/[FWHM] 

(ppm) 
  

Da 
  

21.8   -17.0 [8.5] 
 

  

 

Db 
  

23.3   -18.9 [5.0] 
 

42.8   -18.4 [8.3] 
 

Dc 
  

3.6   -20.3 [2.1] 
 

7.6   -20.4 [3.8] 
 

Dd 
  

7.0   -22.3 [2.4] 
 

4.3   -22.3 [1.9] 
 

De 
  

0.7   -22.6 [0.6] 
 

0.6   -22.4 [0.9] 
 

Q
1
 

  

3.6   -82.3 [8.2] 
 

2.3   -80.3 [9.3] 
 

Q
3
a 

 

 

1.5   -99.7 [2.3] 

 

3.7   -99.7 [6.3] 

 Q
3
b 

 

 

2.2 -102.9 [3.4] 

 

2.0 -102.7 [4.0] 

 Q
4
     37.4 -109.5 [5.8]   36.8 -109.2 [6.4]   

 

 

In order to obtain a better understanding of the nature of the Q3 groups, 29Si-

{1H} CP-MAS NMR spectroscopy was performed. This technique has been 

used as a valuable technique to study PDMS-SiO2 based hybrid systems, 

taking advantage of the magnetization transfer between abundant 1H and rare 

29Si spins due to the presence of protonated groups directly bonded to some Si 

structural units [49]. From the observation of MAS and CP-MAS spectra (Figure 

4a and 4b) it is clear that there are two different peaks in the zone normally 

assigned to Q3 structures, denoted by Q3
a and Q3

b. When comparing the 

relative intensities of these peaks in the MAS and in the CP-MAS spectra it is 

obvious that Q3
a becomes more intense in the cross-polarization mode and Q3

b 

almost disappears. The values of the Q3
a and Q3

b chemical shifts are shown in 

Table 2. Brus [41] observed that, for hybrid samples prepared from TEOS and 

DMDEOS (dimethyldiethoxysilane), an increase of the DMDEOS:TEOS ratio 

from 0 to 2 resulted in a clear downfield of the Q3 signals. Other important 



information from the comparison between MAS and CP-MAS spectra is the 

maintenance of the Q4 signal as the dominant one in the Q region. In addition to 

the evidence of the existence of a homogeneous structure, it is also a good 

indication that the size of the primary silica domains is not much bigger than 10 

Å [22]. Thus Q3
a structures are probably near the surface of the silica domains 

where hybrid bonds are located. Considering that both Q3
a and Q3

b can be a 

sum of different moieties linked to a Q3 structure (OH, Ca or Ti), it can be 

assumed that the loss of Q3
b signal in the CP mode is due to the existence of 

Ca and/or Ti in silica surfaces.  

In the preparation of K samples, TEOS was first hydrolysed using an aqueous 

solution of calcium acetate. As in the case of sample I, when comparing the 

NMR spectra of sample K in the single pulse mode (Figure 4a) with the 

corresponding spectra obtained in the cross-polarization mode (Figure 4b), the 

Q3
b peak almost disappears, indicating that the Q3

b signal may also be related 

with calcium and/or titanium. In both I and K samples the CP mode evidenced a 

peak at ca. -12 ppm assigned [35] to D units linked to transition metal domains, 

which is not observed in the single pulse spectra. The relatively higher intensity 

of this peak in sample K can be an indication that a higher number of Ti-oxo 

domains are linked to D units when compared with sample I.  

  

3.3. Small angle X-ray scattering 

Small angle scattering techniques have been used to obtain valuable 

information about the structures of hybrid materials at nano and micro scales, 

giving a better understanding of the sol-gel process [36].  

Sol-gel derived nanostructures can be described by fractal geometry, insofar as 

they exhibit similar morphology at different scales (self-similarity). When 

aggregates or polymeric structures are formed they can be described by a mass 

fractal dimension Dm, which is defined as the exponent that relates the mass M 

of an object to its linear size R: 

 𝑀~𝑅𝐷𝑚            (4) 

When a structure is uniformly dense (non-polymeric or colloidal) it can be 

described by a surface fractal: 



  𝑆~𝑅𝐷𝑠             (5) 

S  being the surface area of the structure and Ds  its surface fractal dimension. 

For fractal surfaces Ds vary between 2 and 3, thus it is a measure of roughness. 

In the limit of a smooth object, the surface can be approximate by a plane (bi-

dimensional), therefore Ds = 2.   

Small angle X-ray scattering (SAXS) was performed for the two different 

samples, I and K, and the results are presented in Figure 5 and Table 3. As 

powder samples are generally very strong scatters, scattering signals with good 

statistics were easily obtained, with three different regions in the log-log plot of 

scattering intensities I(q) versus q, the modulus of the scattering vector. At low 

values of q the scattering plots present a region where the intensity can be 

described by a simple power-law equation  

I(q) = A/qd+background           (6) 

where d is related to the fractal dimension (for mass fractals d < 3, for surface 

fractals 3 < d < 4, and for diffuse interfaces d > 4) and a pre-factor A. For mass 

fractals, d is simply the mass fractal dimension. In the case of surface fractals, A 

is proportional to the amount of the surfaces per unit volume and the surface 

fractal dimension Ds can be calculated by Ds = 6 – d  [50]. 

 

 

Figure 5: SAXS spectra of sample I and sample K. 



 

The values obtained for the exponent d (Table 3) show that at this scale sample 

K presents a relatively smooth fractal surface (d = 3.8; Ds = 2.2), while sample I, 

shows a fractal dimension value (d = 2.8), indicative of a dense mass fractal.  

At intermediate values of q the scattering plots show a region that can be 

defined by a Guinier regime [53] followed by a power law, which can be 

modeled by the unified equation from Beaucage [54,55] 

 I(q) = I0 exp(-q2Rg2/3) + B(1/q*)β + background      (7) 

where I0  is the Guinier pre-factor, B  is the power-law pre-factor and β its 

exponent. Rg is the radius of gyration, related to the size of the largest 

heterogeneities, and q* is a value defined by  

 q* = q/[erf(kqRg/√6)]3          (8) 

where k is an empirical constant [55]. A least squares fitting of I(q) was done 

and values of Rg and β were calculated (Table 3). Heterogeneities were 

assumed to have a spherical geometry and their diameter D was calculated 

using the relation between the radius of gyration and the diameter of a 

homogeneous sphere:  

D = 2(5/3)1/2 Rg           (9) 

From the results in Table 3 it can be observed that in both cases the diameters 

of heterogeneities are near 100 Å. Due to their size, these heterogeneities can 

be considered to be secondary silica particles with additives (calcium and 

titanium) on their surfaces as mentioned in the previous section. The β  

exponents of the power law regime corresponding to those heterogeneities 

indicate that they can be described by mass fractals (β < 3). The value of β 

obtained for the sample K (β ≈ 2) indicates that the growth of the mass fractal 

heterogeneities follows a reaction-limited cluster-cluster kinetic model, while in 

the case of sample I (β ≈ 3) a reaction-limited monomer-cluster model is more 

appropriate [56]. While the kinetic growth model presented by the former has 

also been observed for the SiO2 gel formation in an acid-catalyzed system 

[36,57], the later model is consistent with the authors’ previous assumptions: (a) 

titanium alkoxide being less reactive (when compared to other transition metals 



alkoxides) interacts in a later stage of the process, making the location of 

titanium preferably on the surface of secondary particles, thus influencing the 

value of the fractal dimension; (b) Ti-O-Si bonds are not as stable in an acidic 

solution [11,58,59] as Ti-O-Ti or Si-O-Si bonds, and hydrolyzed titanium atoms 

may act as “poisoned” growth sites on the secondary particles, generating a 

fractal structure similar to the poisoned-Eden model developed by Keefer [60]. 

The different preparation procedures I and K influence the obtained structures, 

inasmuch as titanium is not available in the case of K to be present in the 

surface of the silica secondary particles.  

For sample I the SAXS plot at high q shows a well-defined peak corresponding 

to correlations between similar neighboring structures in a lattice, the height of 

the peak being related to the number of coordinated neighbors at a 

characteristic distance a defined by a = 2π/q [61]. This characteristic distance 

was found to be ca. 13 Å. The same was also obtained for the Guinier 

crossover of sample K at high q. This value has been reported as the distance 

between metal-oxo domains embedded in the siloxane network [62–64], which 

is in agreement with the results of 29Si MAS NMR, that indicated the 

maintenance of the full coordinated Q4 signal in cross-polarization mode.  

 

Table 3: values of power-law exponent d, radius of gyration Rg, the equivalent 

diameter D, power-low exponent β, all determined from the SAXS plots, and 

values of surface area and micropore area calculated from the nitrogen 

adsorption isotherms, for both type of samples. 

  Sample I Sample K 

power-law exponent d 2.8 3.8 

radius of gyration Rg (Å) 38 47 

heterogeneities diameter D (Å) 98 121 

power-law exponent β 2.9 1.9 

BET surface area (m2.g-1) 36 273 

micropore surface area (m2.g-1) n.d. 23 



 

 

3.4. Surface area determination by nitrogen adsorption 

Specific surface areas of samples were obtained from the nitrogen adsorption-

desorption isotherms (Figure 6), using the Brunauer–Emmet–Teller (BET) 

method [26] and micropore surface areas were obtained using the t-plot method 

[27]. The results are shown in Table 3. Both I and K samples are characterized 

by type II isotherms which are usually related to macroporous materials (pore 

diameter > 50 nm) with a type H3 hysteresis loop, which extends to low 

pressures, revealing the existence of some mesopores (2 nm < pore diameter < 

50 nm). This type of low pressure hysteresis is associated with the swelling of a 

non-rigid porous structure [26].  

Procedure K produced a sample with a surface area almost seven times higher 

than the one presented by sample I. This result is consistent with the difference 

between the growth kinetics of the two samples, already observed in the 

previous section, noting that the reaction limited cluster-cluster kinetic model is 

usually associated with high specific surface area samples [36].  

 

 

Figure 6: Nitrogen adsorption–desorption isotherms for both samples. 

 



 

 

3.5. Surface topography analysis 

Surface topography of cut discs of I and K samples was evaluated using a 3D 

optical variation system (Figure 7). Five parameters that are commonly used on 

cell adhesion and proliferation studies were measured: arithmetic mean 

deviation of the surface (Ra), root-mean-square deviation of the surface (Rq), 

maximum height of summits (Rp), maximum depth of valleys (Rv), and total 

height of the surface (Rt). The surface fractal dimension (Df) and the developed 

area ratio (Sdr) were also calculated and the results are presented in Table 4. 

 It is clear that the surface morphology of the two samples is completely 

different, sample I being rougher than K. Although in totally different length 

scales, it is interesting to compare these surface fractal values Df (Table 4) with 

the values of the power-law exponent d observed in the SAXS tests (Table 3) 

and see how these structures evolve from the nano scale to the macroscopic 

scale. 

 

 

 

Table 4: Surface topography related values and contact angle values of 

samples discs (standard deviation values in brackets).  

  Sample I Sample K 

Ra (µm) 35.58 (0.08) 0.76 (0.00) 

Rq (µm) 49.98 (0.12) 0.96 (0.00) 

Rp (µm) 116.68 (0.02) 3.77 (0.00) 

Rv (µm) 476.36 (0.10) 3.57 (0.00) 

Rt (µm) 593.04 (0.02) 7.34 (0.00) 

Df 2.3 2.01 



Sdr (%) 2782.4 3.64 

θm (°) 127.2 (3.8) 150.6 (2.5) 

θY (°) 91.2 91<θY<110 

 

 

 

 

 

Figure 7: 3D topography of sample K (top) and sample I (bottom) discs.  

 

3.6. Static contact angle 

Static contact angle θm values were measured using the sessile drop method 

and results are depicted in Table 4 for samples I and K. For both samples their 

surfaces are hydrophobic (θm > 90°) (Figure 8). 

Values were measured from the video frames obtained by a CCD camera after 

the stabilization of the drop. It was observed that in the case of sample I, after 

some time, the drop was absorbed by the material. Applying Wenzel equation 

(Eq. 1) the Young contact angle θY was found to be 91.2°. This result is in 

agreement with the ones reported in the literature [52], considering the amount 



of PDMS used in the present work in the preparation of the samples and the 

values of contact angle referred for PDMS itself, 100° < θY < 110° [52,65].  

In contrast, no absorption effect was detected in the case of sample K, 

indicating a non-filling regime [65]. In fact, it was necessary to increase the drop 

volume from 2 µL to 10 µL in order to have a static situation for taking the 

measurements. Even so, the material surface showed a roll-off characteristic 

(low adhesive force between the liquid drop and the solid substrate) recalling a 

non-wetting regime known as a Cassie-Baxter state [28]. In this state the liquid 

cannot penetrate into the surface texture due to entrapped air which results in a 

decrease of the effective contact area between the surface and the drop and in 

the adhesive force. According to the literature this regime designated by super 

hydrophobic is attained due to the surface morphology as demonstrated by 

Jopp et al. for PDMS [65]. In the present case, the measured value θm is 150.6°, 

is well above the values known for PDMS flat surfaces. Assuming that sample K 

surface energy is higher than a pure PDMS one, due to the presence of 

hydrophilic oxide domains (physisorbed water was detected as shown by FT-IR 

and 1H NMR MAS spectra results), it is possible to use the Cassie-Baxter 

equation (Eq. 3) to calculate the fraction of the sample K which is effectively in 

contact with water. For sample K θY  varies between 91° and 110°,  the upper 

limit being the value for PDMS itself and the lower limit the value observed for 

sample I. The fraction of area in contact with the liquid φS was calculated to lie in 

the interval 0.13 < φS  < 0.20. This is slightly higher than the fraction of the 

surface which consists of hills above the core material (calculated from the 3D 

surface topography analysis), which for sample K is 0.10. 

These results agree with the assumption that longer PDMS chains link silica 

domains, creating a hydrophobic surface as confirmed by NMR and SAXS 

measurements, also in agreement with a structural model proposed by Zhang et 

al. [52,51] where PDMS chains act as bridges between the surface of silica 

nano particles.  

 

 



 

Figure 8: Values measured for the static contact angle of cut disc surfaces for 

sample I (Wenzel regime) and sample K (Cassie-Baxter regime).  

 

3.7. In vitro evaluation 

3.7.1 Bioactivity studies 

The surfaces of cut discs from both samples I and K, were observed by SEM 

and analysed by EDS after immersing in SBF for 3, 7 and 14 days. SEM images 

and the corresponding EDS spectra obtained before and after immersion (3 

days) are shown in Figure 9 and 10, respectively. The presence of surface 

precipitates is evident  after soaking in SBF for 3 days and the EDS spectra 

suggest calcium phosphate aggregates, confirmed as apatite-like by grazing 

incidence X-ray diffraction (GIXRD) analysis (Figure 10) [66]. The EDS spectra 

also show the presence of Cl probably due to the HCl used in the samples 

preparation.  

 



 

Figure 9: SEM images for before (a and d) and after (b, c, e and f) immersion in 

SBF for 3 days. Photos from first and second column: 1000 x magnification. 

Photos from third column: 10.000 x magnification. 

 

ICP results in Figure 11 show the Ca and P concentration in the supernatant 

liquids in relation to their initial concentrations in SBF. This results show that 

while in the sample I the release of calcium is gradual, in sample K there is a 

fast initial release (day 3), followed by deposition and a balance 

dissolution/deposition on days 7 and 14. In sample K, the initial release of Ca 

appears to be associated with a significant deposition of phosphates (a marked 

decrease of P concentration on day 3), followed by dissolution (increase of P on 

days 7 and 14). As in the case of calcium, the concentration of phosphorous on 

days 7 and 14 are similar which also suggests the existence of a dynamic 

equilibrium between events dissolution/deposition or the displacement of the 

apatite layer. This result suggest that the formation of the apatite layer is faster 

in sample K, but their stability is smaller, as observed in SEM/EDS (Figure 9), 

being the kinetics of these events slower in sample I.  

This fast release of calcium observed for sample K is in agreement with its 

higher surface area. Also, from the observation of 1H MAS NMR spectra (Figure 

3), and as explained in section 3.2, sample K presents a higher amount of 

physisorbed water than sample I. As reported by other authors for bioglass 

compositions [43,44] this difference in the amount of physisorbed water are 



related to the Ca2+ concentration in the surface. Thus, one can conclude that 

sample K presents a higher concentration of calcium ions at its surface when 

compared to sample I, in agreement with the ICP results.  

 

Figure 10: EDS spectra (left) obtained for discs surface after immersion in SBF 

for 3 days. GIXRD spectra (right) of discs surface before (0 day) and after 

immersion in SBF (3 and 7 days).   Apatite related peaks [66]. 

 

Despite the overall highly hydrophobic nature of the surfaces, a surface layer of 

apatite precipitated in both samples after 3 days on SBF, revealing that 

hydrophilic domains are present. This observation agrees with the results from 

SAXS and NMR analysis which show the existence of nano domains with a 

mass fractal structure, probably silica secondary particles with some calcium in 

their surfaces. The existence of a heterogeneous surface, with hydrophilic and 

hydrophobic domains, in both I and K explains why the development of apatite-

like precipitates is observed despite the high value of contact angle. Using the 

model proposed by Checco et al. [67] who explore the change in contact angle 

with decreasing drop size (tiny drops appear preferentially on the most wettable 

spots, acting as initiator sites for the condensation) it is possible to imagine the 

hydrophilic domains acting as nucleation spots for the apatite-like precipitates. 

As these precipitates grow they reach the hydrophobic domains where they 

spread even without the contribution of any type of bonding.    



It was also observed by SEM and GIXRD (Figure 10) that no precipitated layer 

is present in the surfaces of sample K discs after soaked in SBF for 7 and 14 

days.  Probably, after being precipitated in the first days, the apatite-like layer 

detaches due to the super hydrophobic character of the surface, and dissolves 

in the SBF as proposed above. 

 

 

Figure 11: Ca and P relative ion concentration of supernatant liquids obtained 

after immersion in SBF. 

 

3.7.2. Biocompatibility studies 

Samples I and K were seeded with MG63 osteoblastic cells, cultured for 8 days, 

and evaluated for cell proliferation, ALP activity, cell morphology and F-actin 

cytoskeleton staining.  

Cell proliferation, measured by the DNA content increased throughout the 

culture time in both materials. Values were lower on samples K, particularly for 

longer culture times, ~30% at day 8. ALP activity followed a similar pattern, with 

a reduction of ~25% at day 8. Results are shown in Figure 12. 

 



 

Figure 12: Cell proliferation (left) and alkaline phosphatase activity (right) for 

samples I and K. * statiscally different from Sample I. 

 

CLSM images of the colonized materials, labelled for the F-actin cytoskeleton, 

are presented in Figure 13a. Cell adhesion occurred on both materials, as 

shown on day 1 images, followed by an active process of proliferation, as noted 

at days 5 and 8, and in line with the DNA results. However, evident differences 

on the cell morphology and pattern of cell growth were observed. On samples I, 

cells presented a round morphology at day 1, but the nucleus was already 

visible and the cytoplasm expansion was in progress. During the growth phase, 

cells were randomly distributed over the surface, showing an oval/elongated 

morphology with variable cell spreading. Additionally, images strongly 

suggested that cells were present at different levels on the material surface, 

most probably adapting/filling the rough topography of this material. Instead, on 

samples K, at day 1, a better definition of the nucleus and a higher cell 

spreading were noted. Afterwards, cells formed well-defined clusters, 

regardless the low density over the material’s surface; also, within these 

clusters, cells were well-spread, flattened and elongated, with visible and 

prominent nucleus, presenting a relatively identical morphology and size. This 

behavior is suggestive of cells growing on a flat surface, which is expected 

considering the very low surface roughness of samples K compared to that of 

samples I. SEM images, shown at day 5, Figure 7.13b, corroborate CLSM 

observations. Samples I display cells with a globular appearance and different 

sizes growing towards the cavities of the rough topography, whereas on 

samples K cells appeared well spread and flat. 



Surface features of samples I and K, as to the roughness/topography and the 

hydrophobic wetting/non-wetting behavior, have a significant influence on the 

cell response observed over the two materials.  

Sample I, with a rough surface, presents a filling wetting behavior, as explained 

before. Upon cell seeding, the culture medium would follow a similar trend, 

filling the rough topography with its summits and valleys, allowing for the 

adsorption of cell-adhesion mediating proteins in the all irregular surface. On 

wettable surfaces these adhesion molecules appear to be adsorbed in a flexible 

form, being reorganized by the cells to provide privileged access for cell 

adhesion receptors, leading to a customized cell adhesion and spreading 

process, a phase that has a crucial role on cell proliferation and differentiation 

[68]. Cell colonization appears identical in the whole surface of sample I, as 

made evident by the CLSM and SEM images, showing that cells are able to 

adhere and grow towards and inside the surface irregularities, suggesting that 

all the rough surface is available for the cell/material interactions, which is 

expected on surfaces following the Wenzel regime [69].  

Comparatively, sample K presents a very low surface roughness, and its 

hydrophobic surface exhibits a non-filling wetting behavior. Accordingly, the 

culture medium containing the cell suspension does not penetrate the surface 

texture, and adsorption of adhesion molecules and cells occur only onto the 

peaks of the low surface roughness of this material, greatly reducing the 

available contact area for biological interactions, in accordance with that 

described for the Cassie-Baxter regime [69]. Thus, once cell adhesion occurs 

on the hydrophilic domains of sample K, cells would spread over the tiny 

surface summits, acquiring a flattened and elongated morphology, resembling 

the one occurring on a flat surface. Additionally, cells tend to proliferate in 

clusters of stacked cells, suggesting that they encounter a more favorable 

microenvironment for adhesion and the subsequent proliferation stage in the 

multi-layer cluster organization, rather than establishing contact adhesions with 

the highly hydrophobic materials’ surface. However, as it was observed with the 

formation of the apatite layer, cell clusters grew with the culture time and, 

eventually, the whole surface is colonized. Figure 14 present a schematic 



representation of these cell/materials surface interactions for both sample I and 

sample K. 

 

 

Figure 13: (a) Confocal Laser Scanning Microscopy (CLSM) and (b) SEM 

observation of the colonized materials. Scale bar on confocal images 

corresponds to 100 µm. 

 

As mentioned above, differences on the cell response over samples I and K 

were observed early on the cell/material interactions, namely regarding the 

degree of cell spreading, resulting in different morphologies. Cell spreading is a 

determinant event on the subsequent cell behavior, as it stimulates cell 

proliferation by biochemical and mechanical pathways. Binding of specific 

proteins in the material surface with the cell-adhesion receptors is linked to a 



complex cascade of intracellular signaling pathways which activates cell cycle 

progression hastening cell proliferation [70]. Mechanical pathways also play a 

relevant role. F-actin fibers anchor to the structural components of the adhesion 

sites, but they are also associated with the membranes of the cellular 

organelles, including the nucleus. The increasing tension of the F-actin 

cytoskeleton during cell spreading can stimulate cell proliferation by nuclear 

expansion that activates the replication machinery by several mechanisms [71].  

However, the dependence of cell spreading and cell proliferation is not linear 

and it occurs only to a certain degree [70]. Besides, material surface properties 

such as roughness, topography and wettability are known to greatly influence 

the cell spreading/proliferation dependency, and an increased cell spreading 

does not correlate with a higher cell proliferation in a variety of contexts [68], as 

might happen in samples I and K.  

 

 

 

Figure 14: Schematic representation of cell/materials surface interactions. 

 

Anchorage-dependent cells are inherently sensitive to the surface 

microtopography. MG63 cells have sizes usually in the range 20 to 60 µm and, 

apparently, were able to attach and to grow towards and inside the cavities of 

sample I, as it was expected considering the wettability of this material. As seen 



in CLSM and SEM images, the surface topography affected the cell spreading 

area and morphology, reflected by the observed variability in these parameters, 

in order to conciliate with the irregular surface features. Microroughness is a 

controversial factor affecting cell behavior and the involved mechanisms are not 

easily clarified, due to the great variability of protocols and concomitant factors 

that also affect cell response. Nevertheless, a variety of studies addressing 

different materials, report positive effects on cell adhesion, growth and 

differentiation, within certain range values, dependent on other surface 

parameters [72]. A relevant issue appears to be related with a higher strength of 

cell adhesion in this type of topography, which has a decisive role on the 

subsequent cell proliferation and differentiation, contributing to the 

establishment of stable cell layers interacting with the material surface. In 

material I, the eventual positive effects of the topography might also act 

synergistically with the wettability behavior, due to the possibility of increased 

protein/cell/material surface interactions. Instead, sample K, with a 

comparatively lower surface roughness, higher hydrophobicity and non-filling 

wetting behavior substantiate a poor cell adhesion and proliferation, according 

to that reported in this context [68]. However, in material K, this is apparently 

compensated by the presence of hydrophilic domains by keeping the adsorbed 

protein adhesion molecules in an appropriate conformation for binding with the 

cell adhesion receptors [73], rendering this surface also suitable for the 

adhesion and proliferation of the osteoblastic cells. However, the different 

combination of surface roughness/wetting regime of samples I and K might 

explain, at least partially, the distinct cell growth pattern observed in the two 

samples, reflected by, respectively, an homogeneous and a clustering-type cell 

colonization. Additionally, the lower effective surface area of sample K might 

contribute to the lower DNA values observed in this material, especially noticed 

at longer incubation times, which allowed for a greater extent of colonization on 

the high effective area of sample I. Additionally, activity of ALP, an early 

markers of osteoblastic differentiation with a key role in the onset of the matrix 

mineralization, was also higher on sample I. This suggests that the surface 

features of this material seem more favorable for osteogenic differentiation,   

which appears very likely considering the roughness /wetting profile of the two 

samples.  



 

 

4. Conclusions 

Based on authors’ prior knowledge about the role of titanium on the sol-gel 

processing of PMDS-SiO2 based hybrids, two different PDMS-SiO2-TiO2-CaO 

monolithic materials were prepared following different sol-gel routes, but using 

the same base composition and calcium acetate as calcium source. The two 

different routes produced monolithic materials with different structures, 

microstructures, and surface wettability, being both highly hydrophobic (water 

contact angles of 127.2° and 150.6°) and presenting different filling regimes 

(Wenzel and Cassie-Baxter, respectively) due to different surface topographies. 

Even though, they have demonstrated to be cytocompatible when tested with 

human osteoblastic cells, against the accepted idea that high-hydrophobic 

surfaces are not suitable for cell adhesion and proliferation. This capability is 

assumed to be supported by the existence of hydrophilic silica domains 

containing calcium at the nanoscale, where water molecules are physisorbed 

and where the proteins adhere, starting the biological interaction with the 

surface. 

The material with a rougher surface, that presented a Wenzel wetting regime, 

possess a synergetic combination of surface roughness/wettability that 

appeared to be more favorable for osteogenic differentiation.  

The present study showed that the knowledge of the structural and 

microstructural features, developed in the sol-gel process can be strategically 

used to make the tailoring of inorganic-organic hybrid materials with 

applications in tissue regeneration or in other emerging research areas. 
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