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Abstract

We examine the connections between the classes of cuts in the title. We show
that lift-and-project (L&P) cuts from a given disjunction are equivalent to generalized
intersection cuts (GICs) from the family of polyhedra obtained by taking positive com-
binations of the complements of the inequalities of each term of the disjunction. While
L&P cuts from split disjunctions are known to be equivalent to standard intersection
cuts (SICs) from the strip obtained by complementing the terms of the split, we show
that L&P cuts from more general disjunctions may not be equivalent to any SIC. In
particular, we give easily verifiable necessary and sufficient conditions for a L&P cut
from a given disjunction D to be equivalent to a SIC from the polyhedral counterpart
of D. Irregular L&P cuts, i.e. those that violate these conditions, have interesting
properties. For instance, unlike the regular ones, they may cut off part of the corner
polyhedron associated with the LP solution from which they are derived. Furthermore,
they are not exceptional: their frequency exceeds that of regular cuts. A numerical
example illustrates some of the above properties.

Keywords: integer programming, intersection cuts, lift-and-project cuts, generalized
intersection cuts, corner polyhedra

1 Introduction

Consider a mixed integer program

min{cx : x ∈ PI} (MIP)
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and its linear programming relaxation

min{cx : x ∈ P}, (LP)

where
P := {x ∈ R

N : Ax ≥ b, x ≥ 0}

= {x ∈ R
N : Ãx ≥ b̃}, N = {1, . . . , n},

A is m× n and

PI := P ∩ {x ∈ R
N : xj ∈ Z, j ∈ N ′ ⊆ N}.

All data are assumed to be rational.

The integer hull of P is convPI . Next we extend the vector x by m new components

representing the surplus variables, i.e. xn+i =
∑

j∈N aijxj − bi. If x̄ ∈ R
n+m is an optimal

solution of (LP) with basic and nonbasic index sets I and J , respectively, then the optimal

simplex tableau can be written as

xi = āi0 −
∑

j∈J

āijxj , i ∈ I

xj ≥ 0 j ∈ I ∪ J.

When it is not clear from the context, we will denote by xN the set of variables x1, . . . , xn,

and by xJ the set of nonbasic variables among those from x1 through xn+m.

The LP cone C(J) is the projection onto the space of structural variables xN of the

pointed polyhedral cone in R
n+m with apex x̄ and n extreme rays with direction vectors rj,

j ∈ J , where rji = −āij for i ∈ I, rji = 0 for i ∈ J \ {j}, and rjj = 1. The convex hull

of integer points in C(J) is known as the corner polyhedron, denoted corner(J) [18]. The

relationship between the various relaxations of PI introduced above can be summarized by

C(J) ⊃ P ⊃ convPI and C(J) ⊃ corner (J) ⊃ convPI .

One well known way of generating valid cutting planes for (MIP) is to intersect the n

extreme rays of C(J) with the boundary of some convex set S whose interior contains x̄

but no feasible integer point. We will call such a set PI-free. If the extreme rays x̄ + rjλj ,

λj ≥ 0, j ∈ J , intersect the boundary of S at the points defined by λj = λ∗
j , j ∈ J , then the
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hyperplane through these n points defines the intersection cut

∑

j∈J

1

λ∗
j

xj ≥ 1 (1)

in terms of the nonbasic variables J , shortly denoted by πJxJ ≥ 1, valid for PI [3]. When

expressed in terms of the structural variables, the same cut will be denoted πNxN ≥ π0.

Intersection cuts defined as above, i.e. as cuts obtained by intersecting the extreme rays of

the cone C(J) with the boundary of some PI-free set S, were introduced in the early 1970’s

[3, 4]. More recently, intersection cuts became the focus of renewed interest in the context

of cut generation from multiple rows of the simplex tableau (see [1], [16], [14]). However,

this more recent literature uses a narrower definition of intersection cuts, namely as cuts

obtained by intersecting the extreme rays of C(J) with the boundary of some convex set S ′

whose interior contains no integer point (feasible or not). Such a set is called lattice-free.

This definition is narrower than the original one, as it excludes cuts from PI-free sets that

are not lattice-free. In the sequel, we will call intersection cuts from PI-free sets standard

intersection cuts (SIC’s), and those from lattice-free sets, restricted intersection cuts (RIC’s).

From a geometric perspective, a SIC or a RIC is the unique facet of conv (C(J)\ int S) which

is not a facet of C(J) for some PI-free or lattice-free set S. See [8] for a discussion of the

relationship between the two. If S and S ′ are two lattice-free convex sets and S ⊂ S ′, then

the intersection cut from S ′ will dominate the one from S. Furthermore, it is well known

that any inclusion-maximal lattice-free set is polyhedral [20]. In the sequel, we will consider

only polyhedral PI-free or lattice free sets.

When the set S used to generate the intersection cuts is a strip of the form S := {x ∈

R
N : ⌊āk0⌋ ≤ xk ≤ ⌈āk0⌉} for some fractional āk0, where k ∈ N1 ⊆ I, then (1) is the mixed

integer Gomory cut (when the nonbasic variables are continuous), also known as the simple

disjunctive cut γxJ ≥ γ0 from the condition xk ≤ ⌊āk0⌋ ∨ xk ≥ ⌈āk0⌉, whose coefficients are

γj = max

{

ākj
fk0

,
−ākj
1− fk0

}

, j ∈ J,

where fk0 = āk0 − ⌊āk0⌋.
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More generally, an intersection cut from a polyhedral set

S := {x ∈ R
N : dtx ≤ dt0, t ∈ T} (2)

whose interior contains no feasible integer point, is equivalent to a disjunctive cut, i.e. one

from a disjunction

{x ∈ R
N : ∨t∈T (d

tx ≥ dt0)} (3)

whose terms are the weak complements of the inequalities defining S. Conversely, cuts from a

disjunction of the type (3), i.e. with a single inequality in each term, called simple disjunctive

cuts, can be viewed as (are equivalent to) intersection cuts from the polyhedron (2) defined

by the weak complements of the inequalities in (3). This straightforward connection between

intersection cuts and disjunctive cuts, however, breaks down in the case of cuts from more

general disjunctions, like

{x ∈ R
N : ∨t∈T (D

tx ≥ dt0)} (4)

where the disjunctive set is a union of polyhedra that together contain PI , and that are more

general than the single halfspaces: a cut from (4) cannot be obtained as an intersection cut

by complementing the inequalities of (4). However, every cut obtained from (4) can also be

obtained from some simple disjunction of the form

{x ∈ R
N : ∨t∈T (δ

tx ≥ δt0)} (5)

where for each t ∈ T , δtx ≥ δt0 is a nonnegative linear combination of the inequalities

Dtx ≥ dt0; and so the collection of disjunctive cuts from (4) is equivalent to the collection of

intersection cuts from all members of the family of polyhedra obtainable by taking nonneg-

ative combinations of the inequalities of each term of (4) and complementing the resulting

inequalities. Such a family of polyhedra may be thought of as a parametric polyhedron,

where the parameters are the weights assigned to the inequalities of each Dtx ≥ dt0.

Returning now to the simple disjunction (3), its application to the linear program with
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feasible set P gives rise to the condition

{x ∈ P : ∨t∈T (d
tx ≥ dt0)} =

{

x ∈ R
N : ∨t∈T

(

Ãx ≥ b̃

dtx ≥ dt0

)}

, (6)

and while (6) is clearly valid for all x ∈ P satisfying (3), introducing the constraints of P

into each term of the disjunction (3) yields a stronger condition: the disjunctive cuts derived

from (6) dominate those from (3). Cuts derived from a disjunction of the type (6), i.e. a

disjunction amended by introducing into each term the set of constraints valid for each of

them, are known as lift-and-project (L&P) cuts [6]. This term was originally introduced for

the case of 0-1 programs, where the inequalities dtx ≥ dt0 of the disjunction are of the form

xt ≤ 0 or xt ≥ 1, but here we use the term for the more general case of disjunctions of the

form (6). The name reflects the fact that members of such a family of cuts can be obtained

as projected solutions of a higher-dimensional linear program describing the convex hull of

the union of polyhedra defined by (6) [5].

In particular, each facet αx ≥ β of this convex hull is given by the (α, β)-component of

a basic feasible solution to a system of the form

α− utÃ − ut
0d

t = 0

−β + utb̃ + ut
0dt0 = 0

t ∈ T

∑

t∈T

(ute + ut
0) = 1

ut, ut
0 ≥ 0, t ∈ T

(7)

where e = (1, . . . , 1)T and the last equation is a normalization constraint. Minimizing some

linear form pα − β over (7), i.e. solving a cut generating linear program (CGLP) yields an

inequality αx ≥ β that cuts off p by a maximum amount.

In the case when the constraint (3) underlying (6) is a 2-term split disjunction, i.e. one of

the form πx ≤ π0 ∨ πx ≥ π0 +1, where π ∈ R
n with πj ∈ Z, j ∈ N ′, πj = 0, j ∈ N \N ′, and

π0 ∈ Z, the family of L&P cuts is known to be equivalent to the family of intersection cuts

(or simple disjunctive cuts, or Gomory mixed-integer cuts). More precisely, there is a many-

to-one correspondence between basic feasible solutions to the CGLP and basic (feasible or
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infeasible) solutions to the LP (cf. [10]). The establishment of this equivalence has made it

possible to solve the CGLP indirectly, without explicitly stating it, by mimicking its pivot

sequences through pivots in the original LP tableau, which paved the way to the practical

use of L&P cuts in commercial codes like XPRESS and CPLEX. However, this equivalence

does not carry over to cuts derived from non-split disjunctions. As we will show and discuss

in detail in this paper, in the case of cuts from multiple-term disjunctions, or non-split two-

term disjunctions, the above correspondence breaks down: there are basic feasible solutions

to the CGLP that have no counterpart in any feasible or infeasible basic solution to LP. This

fact has far reaching consequences with regard to the nature of cuts from these more general

disjunctions. For one thing, intersection cuts derived from an LP cone and a lattice-free

convex set have been shown [13] to always be valid for the associated corner polyhedron;

hence they can never cut off any part of the latter. This of course is also true for their L&P

counterparts. By contrast, as we will show, L&P cuts from disjunctions corresponding to

lattice-free convex sets may cut off parts of the associated corner polyhedron, i.e. may have

no intersection cut counterpart.

The last class of cuts that we will discuss is that of generalized intersection cuts (GIC’s),

introduced in [9]. These are all cuts valid for P \ intS for some maximal PI-free set S.

They are called GIC’s because they can be obtained by intersecting the boundary of S with

appropriate subsets of edges of P , in a way analogous to intersection cuts.

Let ÃK be a matrix consisting of rows of Ã indexed by K, |K| > n, such that rank

ÃK = rank Ã and let CK := {x ∈ R
n : ÃKx ≥ b̃K}. Further, let E be the set of edges

Ej := (v, w) of CK with v ∈ intS, w 6∈ intS, and let Q be the set of intersection points

pj := Ej ∩ bdS. Then any solution to either of the systems

αpj ≥ β, pj ∈ Q, (8)

for β ∈ {1,−1, 0} such that αz < β for some vertex z of CK yields a valid cut for convPI ,

called a GIC (see [9] for a proof and details).

There are rules for generating proper sets Q short of producing all the intersection points,
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based on starting with the edges of some LP cone C(J) and obtaining additional edges by

successively activating the hyperplanes defining P . It is easy to see that if CK = P , i.e. K

is the row index set of Ã, then every GIC from S defines a facet of conv (P \ intS); and

conversely, every facet of conv (P \ intS) that is not a facet of P is defined by a GIC from

S.

It then follows that the set of all GIC’s from a PI-free set S defines all the facets of

conv (P \ intS) that are not facets of P .

*

In the next section we discuss the relationship of GIC’s to L&P cuts and show that the

two classes are equivalent. Section 3 deals with the relationship of SIC’s and L&P cuts and

it shows that the correspondence established in [10] between SIC’s of a special type, namely

split cuts, and L&P cuts from an associated higher dimensional CGLP (cut generating

linear program), does not carry over to SIC’s that are not split cuts. Theorem 7 establishes

a correspondence between SIC’s (whether split or not) for the LP relaxation, on the one

hand, and L&P cuts from a particular class of basic feasible solutions to the corresponding

CGLP, on the other. Theorem 9 and 10 establish sufficient conditions for a L&P cut from a

general disjunction to have as a counterpart a SIC from some LP basis, while Theorems 11

and 12 define the situations in which these sufficient conditions are also necessary. The

upshot of these results is that L&P cuts that do not meet the above necessary and sufficient

conditions, called irregular (as opposed to those that meet them, called regular), have some

highly desirable properties. In particular, they cut off the optimal LP solution by more

than any of the SIC’s. Furthermore, as discussed in section 4, the irregular L&P cuts

from disjunctions representing multiple (as opposed to simple) splits cut off parts of the

corner polyhedron associated with the optimal LP basis. The following section 5 deals with

the frequency of irregular cuts, while the concluding section 6 gives a numerical example

illustrating the properties of irregular cuts.
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2 GIC’s and L&P cuts

Given a disjunction of the form (6), the family of L&P cuts αx ≥ β from (6) is given by the

solution set to the system (7). In particular, we have the following

Proposition 1. In any basic feasible solution to (7) that yields an inequality αx ≥ β not

dominated by the constraints of (LP), ut
0 > 0 for all t ∈ T .

Proof. If ut
0 = 0 for some t ∈ T , then α = utÃ, β = utb̃; i.e., αx ≥ β is a nonnegative linear

combination of the inequalities of Ãx ≥ b̃.

It follows from Proposition 1 that the only basic feasible solutions to the CGLP associated

with a disjunction of type (6) that yield actual cuts, i.e. inequalities that cut off some part

of P , are those with ut
0 > 0 for all t ∈ T .

Theorem 2. Let

S := {x ∈ R
N : dtx ≤ dt0, t ∈ T}

be a maximal polyhedron such that PI ∩ intS = ∅. The family of GIC’s from S is equivalent

to the family of those L&P cuts associated with basic feasible solutions to (7) such that ut
0 > 0

for all t ∈ T .

Proof. The family of L&P cuts from (7) is known to define the convex hull of the correspond-

ing union of polyhedra; and the family of L&P cuts coming from basic feasible solutions to

(7) such that ut
0 > 0 for all t ∈ T is known to define all the facets of this convex hull that do

not belong to the constraints defining P (those cuts determined by bases of (7) with ut
0 = 0

for some t ∈ T are valid for P by Proposition 1). Since the collection of these facets defines

conv (P \ intS), it implies all GIC’s.

Conversely, by the definition of GIC’s, they are all the valid inequalities for conv (P \intS)

which cut off some part of P .

Consider now a disjunction of type (4) and its L&P counterpart
{

x ∈ R
N : ∨t∈T

(

Ãx ≥ b̃

Dtx ≥ dt0

)}

. (9)
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The inequalities αx ≥ β defining the convex hull of the union of polyhedra (9) are given

by the (α, β)-components of basic feasible solutions to the system

α− utÃ − vtDt = 0

−β + utb̃ + vtdt0 = 0
t ∈ T

∑

t∈T

(ute + vte) = 1

ut, vt ≥ 0, t ∈ T

(10)

where e is the summation vector with the required number of components.

A generalization of Proposition 1 for this case reads

Proposition 3. In any basic feasible solution to (10) that yields an inequality αx ≥ β not

dominated by the constraints of (LP), vt has at least one positive component for each t ∈ T .

Proof. Same as for Proposition 1.

Theorem 4. Let ᾱx ≥ β̄ be the L&P cut associated with the basic feasible solution (ᾱ, β̄, {ūt, v̄t}t∈T )

to (10), where v̄te > 0 for all t ∈ T . Then ᾱx ≥ β̄ is a GIC from the PI-free polyhedron

S(v̄) := {x ∈ R
N : (v̄tDt)x ≤ v̄tdt0, t ∈ T}.

Proof. Clearly, intS(v̄) contains no point satisfying the disjunction (9). Now denote δt :=

v̄tDt, δt0 := v̄tdt0, t ∈ T . Then S(v̄) becomes

S(v̄) = {x ∈ R
N : δtx ≤ δt0, t ∈ T},

and (10) becomes

α − utÃ − vt0δ
t = 0

−β + utb̃ + vt0δt0 = 0
t ∈ T

∑

t∈T

(ute + vt0) = 1

ut, vt0 ≥ 0, t ∈ T

(10′)

which is of the form (7). From Theorem 2, the family of GIC’s from S(v̄) is equivalent to the

family of those L&P cuts associated with basic feasible solutions to (10′) such that vt0 > 0

for all t ∈ T . Theorem 4 then follows.
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In Theorem 4 we do not assume that S(v̄) is a maximal PI-free set, since the statement is

valid for any non-negative multipliers v̄, provided that the disjunction satisfies the condition

right after (4).

Note that while in the case of a simple disjunction of the form (6), a L&P inequality

from (7) (based on (6)) corresponds to a GIC from the PI-free polyhedron S obtained

by complementing the inequalities of (6), in the case of a disjunction (9) with multiple

inequalities per term, a L&P inequality from (10) (based on (9))corresponds to a GIC from

a PI-free polyhedron obtained by complementing a particular nonnegative combination of

the inequalities of each term of the disjunction, where the weights of the combination are

given by the particular solution of (10) which yields the L&P cut. Thus a single disjunction

gives rise in this case to a multitude of PI-free polyhedra, one for each basic solution to (10).

An important special case of (9) is the one where the disjunction (4) is simply the

disjunctive normal form of a set of simultaneously applied split disjunctions like xj ≤ ⌊x̄j⌋

or xj ≥ ⌈x̄j⌉. If such a condition is applied to a mixed 0-1 program (MIP)0−1 with p 0-1

variables, then (9) is just a restatement in another form of the constraint set of (MIP)0−1;

hence the set of L&P cuts from (10) is the set of GIC’s from all maximal lattice-free convex

sets.

The family of GIC’s that is the object of Theorems 2 and 4 is that of valid cuts obtainable

from intersecting all edges of the LP relaxation P with the boundary of S. However, GIC’s

can be generated from a small fraction of such intersection points. Starting with the LP

cone C(J) = ∩i∈JH
+
i with apex at a basic solution x̄ and facets H+

i , i ∈ J , corresponding

to the inequalities tight at x̄, one can successively activate additional boundary-hyperplanes

Hi of P [9]. At any stage of the procedure, GIC’s can be generated by intersecting with bdS

(respectively bdS(v̄)) edges of a relaxation of P of the form PK := ∩i∈KH
+
i = {x ∈ R

N :

ÃKx ≥ b̃K}, where K ⊃ J , and the matrix ÃK , consisting of the rows of Ã indexed by K,

contains the n× n nonsingular submatrix ÃJ . Then we have

Corollary 5. Let S (or S(v̄)) be as in Theorem 2 (or 4). Then the family of GIC’s from
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S (or S(v̄)) and PK := ∩i∈KH
+
i is equivalent to the family of L&P cuts associated with

basic feasible solutions to the system (7 ′) (or 10 ′) obtained from (7) (respectively (10)) by

substituting (ÃK , b̃K) for (Ã, b̃), such that ut
0 > 0 (or vte > 0) for all t ∈ T .

Proof. Obvious, by applying Theorem 2 (or 4) to PK instead of P .

The above Theorems and Corollary fall short of establishing the precise correspondence

between a given GIC and some equivalent L&P cut, and vice-versa, as done in [10] for simple

disjunctive cuts (equivalent to SIC’s) and L&P cuts. This task is made difficult by the fact

that, unlike in the case of SIC’s, GIC’s are generated from the intersection points with the

boundary of S (or S(v̄)) of rays of the form rij = vi − ājxj originating at several vertices vi

instead of just one. So a typical GIC is a basic solution to a system of the form (8), where

the points p ∈ Q do not have the simple structure they have in the case of SIC’s. However,

the following connection to L&P cuts can be proved.

Proposition 6. A GIC defined by a basic solution to a system of the form (8) is equivalent

to a L&P cut defined by a basic feasible solution to the corresponding system (7) (or (10))

such that ut
0 > 0 (respectively vte > 0) for all t ∈ T and vice-versa.

Proof. Let (ᾱ, β̄) be a basic solution to (8), with ᾱpj = β̄ for n intersection points pj ∈ Q,

let their set be Q′. From Theorem 2 (or 4), the cut ᾱx ≥ β̄ is implied by some positive

combination of L&P cuts coming from basic feasible solutions to (7) (or (10)) such that

ut
o > 0 (or vte > 0) for all t ∈ T . Let such a positive combination be (

∑

i γ
iλi)x ≥

∑

i βiλi

with
∑

i γ
iλi ≤ ᾱ and

∑

i βiλi = β̄, λi > 0, for all i, γi1 6= γi2 for all i1 6= i2. But then

at least one of the inequalities γix ≥ βi cuts off one of the n intersection points pj ∈ Q′,

contrary to Theorem 2 (or 4) which states that the two families are equivalent. Hence there

can be only one inequality γx ≥ β̄ implying ᾱx ≥ β̄. A similar argument shows that a L&P

cut defined by a basic feasible solution to (7) (or (10)) such that ut
0 > 0 (or vte > 0) for all

t ∈ T is implied by a unique GIC defined by a basic solution to (8).
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3 SIC and L&P cuts

As mentioned in Section 1, in the case of split cuts, standard intersection cuts are equivalent

to lift-and-project cuts. More specifically, every intersection cut from an LP basis and a PI-

free convex set S is equivalent to a lift-and-project cut from a basic feasible solution to the

CGLP associated with the disjunction corresponding to S, and every L&P cut from a basic

feasible solution to such a CGLP is equivalent to a standard intersection cut from a (feasible

or infeasible) basis of (LP) and the convex set S [10]. However, this equivalence does not

extend beyond the realm of cuts from two-term disjunctions of the form πx ≤ π0∨πx ≥ π0+1.

In this section we examine the general case. First we show that any standard intersection

cut from a convex polyhedral set S can be represented as a solution of the CGLP (7)

corresponding to S, and then we give a sufficient condition for an L&P cut to correspond to

an intersection cut (1) for some LP basis (I, J).

First, we derive the intersection cut (1) as a simple disjunctive cut. Recall the definition

of set S. For j ∈ J , let λ∗
tj be the value of λ for which the ray ρj := ā0 − λāj hits the

hyperplane defined by dtxN = dt0, and let λ∗
tj = ∞ if ρj does not cross this hyperplane.

Now we can derive the intersection cut (1) by the following formula: πj := maxt∈T πt
j, where

πt
j := 1/λ∗

tj , and then
∑

j∈J

πjxj ≥ 1. (11)

We can compute λ∗
tj by substituting rj into dtxN = dt0:

dt(ā0 − λāj) = dt0.

Rearranging terms gives

λ∗
tj =

dt0 − dtā0
−dtāj

=
d̄t0
d̄tj

, (12)

where the second equation follows from Proposition 1 in [19]. Since ā0 is an interior point

of S = {x ∈ R
N | dtx ≤ dt0, t ∈ T}, we see that the numerator in (12) is strictly positive.

However, the denominator is non-positive if the angle between the ray rj and the hyperplane

dtx = dt0 is between 90◦ and 270◦.
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In order to simplify notation, we define Â := ÃJ , and b̂ := b̃J as the rows of Ã and b̃,

respectively, indexed by the nonbasic variables J .

Theorem 7. Let J be the set of nonbasic variables in some basis of the LP relaxation of

(MIP), and suppose x̄ = ā0 is an interior point of set S defined by (2). Then the intersection

cut πxJ ≥ 1 derived from S and the corresponding simplex tableau is equivalent to the L&P

cut αxN ≥ β from a basic feasible solution to (7) in which, for each t ∈ T , all but one of the

variables ut
j with j ∈ J are basic, and all the variables ut

j with j 6∈ J are non-basic, except

the ut
0, which are all basic and positive. The solution of (7) is given by

θα := πÂ

θβ := πb̂+ 1

θut
J := π − πt, t ∈ T

θut
0 := 1/(−d̄t0), t ∈ T,

where θ > 0 is a scaling factor.

Proof. First we verify that α = ut
JÂ + ut

0d
t. That is,

θ(α− ut
JÂ− ut

0d
t) = πÂ− (π − πt)Â+

1

d̄t0
dt = πtÂ+

1

d̄t0
dt =

∑

j∈J

dtāj
d̄t0

Âj +
1

d̄t0
dt

=
1

d̄t0

(

∑

j∈J,i∈N

dti(āij)Âj + dt

)

=
1

d̄t0

(

∑

i∈N

dti
∑

j∈J

(−eTi Â
−1)jÂj + dt

)

= 0,

where we used the fact that −(eTi Â
−1)j = āij [10], and

∑

j∈J(e
T
i Â

−1)jÂj = eTi . Here θ is

well defined, as both sides of the equation are of the same sign. Since ā0 ∈ intS, each ut
0

is positive. One may similarly verify that β = ut
J b̂ + ut

0dt0. The scaling factor θ is used to

ensure that
∑

t∈T (u
t
0 +

∑

j∈J u
t
j) = 1.

Now we show that the two cuts are equivalent. That is, using the equations already

proved, and the fact that ÂxN − b̂ = xJ [10], we have

θ(αxN − β) = πÂxN − (πb̂+ 1) = πxJ − 1.
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Finally, we prove that the solution of CGLP constructed above is basic. First, we remove

from (7) the variables ut
j corresponding to j 6∈ J , and eliminate the α and β variables to

obtain
u1
JÂ − ut

JÂ + u1
0d

1 − ut
0d

t = 0

u1
J b̂ − ut

J b̂ + u1
0d10 − ut

0dt0 = 0
t ∈ T \ {1}

∑

t∈T

(ute + ut
0) = 1

ut, ut
0 ≥ 0, t ∈ T.

(13)

Now we construct a basis of (13). Let M ′
t = {j ∈ J : (π − πt)j > 0}. Notice that no

j ∈ J may belong to all the sets M ′
t , t ∈ T , since πj = maxt∈T πt

j, and thus for each j ∈ J

there exists t ∈ T with (π − πt)j = 0. Now if some j ∈ J belongs to less than |T | − 1 of

the sets M ′
t (which may occur if πj = πt

j for more than one t ∈ T ), then we assign each such

j arbitrarily to some of the sets M ′
t so that finally we obtain the sets Mt, t ∈ T , and each

j ∈ J occurs exactly in |T | − 1 of these sets.

After these preparations, we claim that the variablesG = {ut
0 : t ∈ T}∪

(
⋃

t∈T {u
t
j : j ∈ Mt}

)

constitute a basis of (13). To prove our claim, we derive a new system of equations from

(13) as follows. Since Â is nonsingular, we can multiply the first equation by Â−1 from the

right to get

u1
J − ut

J − u1
0d̄

1 + ut
0d̄

t = 0, t ∈ T \ {1}, (14)

where d̄1 = −d1Â−1 and d̄t = −dtÂ−1 as shown in [7, 19]. By substituting this into the

second equation of (13), we obtain

0 = (u1
0d̄

1 − ut
0d̄

t)b̂+ u1
0d10 − ut

0dt0 = −u1
0d̄10 + ut

0d̄t0, t ∈ T \ {1} (15)

where we used d̄t0 = dtÂ−1b̂− dt0 from [7, 19]. Now, the set of variables G does not contain

any of the ut
j with j ∈ J \Mt, t ∈ T . Consequently, (14) can be rewritten as

u1
M1

− ut
Mt

− u1
0d̄

1 + ut
0d̄

t = 0, t ∈ T \ {1}.

This implies

uk
Mk

− ut
Mt

− uk
0d̄

k + ut
0d̄

t = 0, k 6= t ∈ T. (16)
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By using (16) we can express ut
Mt

as a combination of the vectors d̄t and d̄k as follows. Since

each j ∈ J occurs in exactly |T | − 1 sets Mt, for each t ∈ T and for each j ∈ Mt there exists

a unique k ∈ T with j 6∈ Mk. Hence, we have

ut
Mt

=
∑

k∈T\{t}

(ut
0d̄

t
Mt\Mk

− uk
0d̄

k
Mt\Mk

), t ∈ T.

Therefore, using the last equation of (13), we obtain

1 =
∑

t∈T

(ut
0 + ut

Mt
e) =

∑

t∈T

ut
0(1 +

∑

k∈T\{t}

(d̄tMt\Mk
− d̄tMk\Mt

)e). (17)

Observe that the system consisting of the equation (17) and the equations

−u1
0d̄10 + ut

0d̄t0 = 0, t ∈ T \ {1} (18)

involves only the variables ut
0, t ∈ T . It suffices to show that it has a unique solution,

because then the value of the variables ut
Mt

is uniquely defined. To prove this, suppose that

the coefficient matrix of (17)-(18) is singular. Using (18) this implies

(1 +
∑

k∈T\{1}

(d̄1M1\Mk
− d̄1Mk\M1

)e) +
∑

t∈T\{1}

d̄10
d̄t0

(1 +
∑

k∈T\{t}

(d̄tMt\Mk
− d̄tMk\Mt

)e) = 0.

Since d̄10 < 0 by assumption, we can divide through the last equation by it, and after

rearranging terms we get

∑

t∈T





1

d̄t0
+

∑

k∈T\{t}

(

1

d̄t0
d̄tMt\Mk

−
1

d̄k0
d̄kMt\Mk

)

e



 = 0

However, this last expression is nothing else but −1 times

∑

t∈T

(1/(−d̄t0) + (π − πt)e).

But this number is positive, so we have encountered a contradiction.

Note that Theorem 7 is valid for either of the two definitions of an intersection cut, as

long as the convex set S used to derive the intersection cut is the same (whether PI-free or

lattice-free) as the one used in the definition of the CGLP.
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Next we turn to the converse direction, and provide a sufficient condition for a L&P cut

to represent an intersection cut (1). Notice that in the proof of Theorem 7, all the CGLP

variables with positive values have subscripts indexed by the set J , where J corresponds to

the nonbasic variables in a simplex tableau of the LP relaxation of (MIP). Moreover, for

each j ∈ J , there exists t ∈ T with ut
j = 0. We will prove that the second one of these

conditions holds for all basic solutions to (7), whereas the first one is sufficient for a L&P

cut to correspond to an intersection cut (1).

Let M denote the row index set of Ã.

Proposition 8. In any basic solution to (7), for every i ∈ M there exists t ∈ T such that

ut
i = 0.

Proof. By contradiction. Let w = (α, β, {ut, ut
0}t∈T ) be a basic feasible solution to (7), and

suppose there exists some i ∈ M such that ut
i > 0 for all t ∈ T . Let

ut∗

i = min
t∈T

ut
i

and define a new solution w̄ by setting

ūt
h =

{

ut
h − ut∗

i h = i

ut
h h ∈ M \ {i}

t ∈ T

ūt
0 = ut

0, t ∈ T

ᾱ = α− ut∗

i ãi (where ãi denotes row i of Ã)

β̄ = β − ut∗

i b̃i

Clearly w̄ satisfies all constraints of (7) except for the normalization constraint. We

remedy this by rescaling w̄ so that in the resulting solution w̃ the sum of the variables ũt
h

and ũt
0 for all h and t is 1. Now w̃ has one less nonzero component than w, which contradicts

the fact that w is a basic solution.

Theorem 9. Let (α, β, {ut, ut
0}t∈T ) be a basic feasible solution to (7) such that ut

0 > 0, t ∈ T .

If there exists a nonsingular n × n submatrix ÃJ of Ã such that ut
j = 0 for all j 6∈ J and
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t ∈ T , then the L&P cut αx ≥ β is equivalent to the intersection cut πxJ ≥ 1 from S defined

by (2) and the LP simplex tableau with nonbasic set J .

Proof. Suppose the condition of the Theorem is satisfied. Recall the first set of constraints

of (7): α − utÃ − ut
0d

t = 0 for t ∈ T . Since there exists a nonsingular ÃJ such that ut
j = 0

for all j 6∈ J , we can restrict the set of variables to ut
J , t ∈ T . Therefore, we can infer that

the solution of (7) satisfies the following set of equations:

α− ut
JÂ− ut

0d
t = 0, t ∈ T,

where Â = ÃJ . Since Â is invertible, we can multiply this equation from the right by Â−1

to obtain

αÂ−1 = ut
J + ut

0d
tÂ−1, t ∈ T.

Since for each j ∈ J there exists tj ∈ T with u
tj
j = 0 by Proposition 8, we have

(αÂ−1)j = u
tj
0 (d

tj Â−1)j = u
tj
0

∑

i∈J

d
tj
i (e

T
i Â

−1)j = u
tj
0

∑

i∈J

d
tj
i (−āij) = u

tj
0 d

tj (−āj).

We introduce a scaling factor θ > 0 to be chosen later. Let πj := 1
θ
(αÂ−1)j, and πt

j :=

1
θ
ut
0d

t(−āj) for t ∈ T . Then the above derivation, and ut
j ≥ 0 imply that πj = maxt∈T πt

j .

Now we use the second equation of (7): β − utb̃− ut
0dt0 = 0, t ∈ T . Again, since ut

j = 0

for j 6∈ J we can rewrite this equation as

β = ut
J b̂+ ut

0dt0, t ∈ T.

Next we substitute for ut
J the expression αÂ−1 − ut

0d
tÂ−1 to obtain

β = (αÂ−1 − ut
0d

tÂ−1)b̂+ ut
0dt0 = αÂ−1b̂+ ut

0(dt0 − dtÂ−1b̂), t ∈ T. (19)

Since Â−1b̂ = ā0, we deduce

β − αā0 = ut
0dt0 − ut

0d
tā0, t ∈ T.
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Here, the left hand side is positive since αx ≥ β cuts off ā0, and the right hand side is

positive since ā0 ∈ intS. Now we choose θ as β − αā0, hence

ut
0 = θ/(dt0 − dtā0), t ∈ T.

However, this implies that

πt
j =

1

θ
ut
0d

t(−āj) =
dt(−āj)

dt0 − dtā0
, t ∈ T, j ∈ J.

This agrees with our former definition of πt
j := 1/λ∗

tj by (12). Consequently, πxJ ≥ 1 is the

intersection cut from S and the basic solution corresponding to the nonbasic set J .

Finally, using the definition of π, we see that 1
θ
α = πÂ, and 1

θ
β = πb̂ + 1 from (19).

Hence, we have

1

θ
(αxN − β) = πxJ − 1,

that is, the two cuts are equivalent.

Now suppose that instead of (7), we have a CGLP of the form (10), corresponding to

a disjunction (9) with multiple inequalities per term. Then Theorem 9 generalizes to the

following.

Theorem 10. Let (ᾱ, β̄, {ūt, v̄t}t∈T ) be a basic feasible solution to (10) such that v̄te > 0 for

all t ∈ T . If there exists a nonsingular n × n submatrix ÃJ of Ã such that ūt
j = 0 for all

j 6∈ J and t ∈ T , then the lift-and-project cut ᾱx ≥ β̄ is equivalent to the intersection cut

πxJ ≥ 1 from the set

S(v̄) := {x ∈ R
N : (v̄tDt)x ≤ v̄tdt0, t ∈ T}

and the LP simplex tableau with nonbasic set J .

Proof. Analogous to that of Theorem 9.

Theorems 9 and 10 give sufficient conditions for a lift-and-project cut from a certain

disjunction to correspond to an equivalent intersection cut from a convex polyhedron S
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“complementary” to that disjunction in a well-defined sense. We recall that in this context

it does not matter whether the intersection cut in question is from a PI-free S or just a

lattice-free S, as long as the same S is used in the definition of the CGLP as in that of the

intersection cut. In the case of Theorem 9, i.e. of a simple disjunction of the form (6), S is

the polyhedron obtained by complementing (reversing) each of the inequalities of (6) other

than those of P ; hence S is the same for any solution of the CGLP (7). On the contrary, in

the case of Theorem 10, i.e. of a disjunction of the form (9) with multiple inequalities per

term, S(v̄) is different for different solutions of the CGLP (10). To be more specific, S(v̄)

is the polyhedron obtained by complementing (reversing) each of the combined inequalities

(v̄tDt) ≥ v̄tdt0, t ∈ T , where the weights of the combination are part of the CGLP solution.

In other words, the intersection cut that corresponds to a given solution of (10), comes from

a set S(v̄) that is itself a function of that solution. Another way of looking at this is to say

that the family of intersection cuts corresponding to the family of CGLP solutions comes

from a parametric polyhedron S whose parameters are set by the given CGLP solution.

While the cuts are valid for any nonnegative parameter values, they are facet defining only

for parameter values corresponding to basic feasible solutions of the CGLP.

Given a L&P cut αxN ≥ β obtained from a basic feasible solution to the CGLP system

(7) (or (10)), Theorem 9 (respectively 10) gives a sufficient condition for the existence of an

intersection cut πxJ ≥ 1 equivalent to αxN ≥ β. Next we examine the conditions under

which this sufficient condition is also necessary.

An inequality γ1x ≥ γ1
10 is said to dominate the inequality γ2x ≥ γ20 on P if every x ∈ P

that satisfies γ1x ≥ γ10 also satisfies γ2x ≥ γ20.

Theorem 11. Let w̄ := (ᾱ, β̄, {ūt, ūt
0}t∈T ) be a basic feasible solution to (7) such that ūt

0 > 0,

t ∈ T .

If w̄ does not satisfy the (sufficient) condition of Theorem 9, and there is no basic feasible

solution w̃ to (7) with (α̃, β̃) = µ(ᾱ, β̄) for some µ > 0 that satisfies the condition of The-

orem 9, then there exists no intersection cut from S equivalent to ᾱxN ≥ β̄. Furthermore,
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if (ᾱ, β̄) uniquely minimizes αx̄N − β over (7), then ᾱx̄N − β̄ < α̃x̄N − β̃ for any L&P cut

α̃x ≥ β̃ equivalent to an intersection cut from S and there exists no intersection cut from S

whose L&P equivalent dominates ᾱx ≥ β̄ on P .

Proof. Suppose LP admits a basis with nonbasic variables J such that the intersection cut

πxJ ≥ 1 derived from S is equivalent to ᾱxN ≥ β̄, i.e., there is a scaling factor µ such

that µ(ᾱxN − β̄) = πxJ − 1. Then by Theorem 7 there exists a basic feasible solution

(α̃, β̃, {ũt, ũt
0}t∈T ) of CGLP which gives rise to a L&P cut α̃xN ≥ β̃ equivalent to πxJ ≥ 1,

i.e., θ(α̃xN − β̃) = πxJ − 1. But then (α̃xN − β̃) = (µ/θ)(ᾱxN ≥ β̄), i.e., the two cuts

are equivalent. However, (α̃, β̃, {ũt, ũt
0}t∈T ) satisfies the conditions of Theorem 9, which

contradicts the assumption of the theorem.

As for the last statement, if (ᾱ, β̄) uniquely minimizes αx̄ − β over (7), then it is a

vertex of W 0, the projection onto the (α, β)-subspace of the feasible set of (7) without the

normalization constraint, see page 28 of [5], in particular condition (ii). Therefore, from

Theorem 4.5 of [5], ᾱx ≥ β̄ defines a facet of convPD(x̄), the convex hull of the disjunctive

set (6). But a facet of a polyhedron cannot be dominated by any other valid inequality

for the polyhedron, hence ᾱx ≥ β̄ cannot be dominated by any L&P cut equivalent to an

intersection cut from S, as any such cut is valid for convPD(x̄).

An analogous theorem holds for the sufficient condition of Theorem 10.

Theorem 12. Let w̄ = (ᾱ, β̄, {ūt, v̄t}t∈T ) be a basic feasible solution to (10) such that v̄te > 0,

t ∈ T .

If w̄ does not satisfy the (sufficient) condition of Theorem 10, and there is no basic

feasible solution w̃ to (10) with (α̃, β̃) = µ(ᾱ, β̄) for some µ > 0 that satisfies the condition

of Theorem 10, then there exists no intersection cut from any member of the family of

polyhedra

S(v) := {x ∈ R
N : (vtDt)x ≤ vtdt0, t ∈ T},

where v ≥ 0, v 6= 0, equivalent to ᾱx̄N ≥ β̄. Furthermore, if (ᾱ, β̄) uniquely minimizes
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αx̄N − β over (10), then ᾱx̄N − β̄ < α̃x̄N − β̃ for any L&P cut α̃x ≥ β̃ equivalent to

an intersection cut from S(v) and there exists no intersection cut from S(v) whose L&P

equivalent dominates ᾱx ≥ β̄ on P .

Proof. The statement follows from the same argument as in the proof of Theorem 11.

A feasible basis for the CGLP system (7) (or (10)) and the associated solution will be

called regular if the cut that it defines is equivalent to an intersection cut, i.e. if it satisfies

the condition of Theorem 9 (respectively 10), irregular otherwise. In the sequel we discuss

the properties of irregular CGLP bases and solutions. A cut defined by an irregular solution

w is irregular, unless there exists a regular solution w′ with the same (α, β)-component as

that of w, in which case the cut is regular.

4 L&P cuts, disjunctive hulls and corner polyhedra

At this point we would like to mention some connection with earlier work. K. Andersen,

G. Cornuéjols and Y. Li [2], in extending the results of [10] from split disjunctions of the

form xk ≤ 0 or xk ≥ 1 to more general split disjunctions, have used the relationship (in our

notation)

conv (P \ intS) = ∩J∈N conv (C(J) \ intS)

where N is the collection of all J corresponding to feasible bases, to prove that the split clo-

sure is polyhedral. They then explored the question of whether this relationship generalizes

to cuts from split disjunctions to cuts from non-split disjunctions (with the corresponding

set S), and reached the negative conclusion that cases where the equality in the above equa-

tion is replaced by strict inclusion cannot be excluded. They illustrate their finding with

a 2-dimensional counterexample. An analogous conclusion was reached and exemplified for

non-split two-term disjunctions in [19].

Our results in section 3 amplify this conclusion and make it more specific, by using

the lift-and-project representation to pinpoint the gap between the two sides of the above
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equation. More specifically, these results characterize those facets of conv (P \ intS) that

are not facets of conv (C(J) \ intS) for any J ∈ N .

The same paper [2] then explores the possibility of filling the gap that arises between the

two sides of the above equation in the case of cuts from non-split disjunctions by intersecting

the expression on the righthand side with sets of the form conv (C \ intS), where C is some

relaxation of P consisting of subsets of inequalities other than those defining bases. This

direction of investigation is further pursued in [15].

Another connection with previous results has to do with the difference between SIC’s

and RIC’s as they relate to corner polyhedra. Restricted intersection cuts have recently been

shown [13, 14] to dominate all valid inequalities for corner polyhedra. More specifically, every

nontrivial minimal valid inequality for a nonempty corner polyhedron is an intersection cut

from some lattice-free set (Theorem 1 of [13]). In particular, every nontrivial facet defining

inequality of a corner polyhedron is an intersection cut from a lattice-free set. As pointed out

in [8], this property is not shared by SIC’s, i.e. intersection cuts according to their original

definition, generated from PI-free as opposed to lattice-free convex sets. Indeed, SIC’s from

C(J) and some PI-free convex set can cut off parts of corner(J).

Furthermore, they have a much stronger property.

Theorem 13. [8] Every facet of convPI that cuts off some vertex of P is defined by a

standard intersection cut.

Proof. Let F be a facet of convPI defined by the inequality ϕx ≥ ϕ0 satisfied by all x ∈ PI ,

but violated by some x ∈ P . Then F contains dim convPI affinely independent integer

points of convPI , and

{x ∈ R
n : ϕx < ϕ0} ∩ PI = ∅.

Hence the interior of the set S := {x ∈ R : ϕx ≤ ϕ0} contains no point of PI , i.e. S is a

PI-free convex set. On the other hand, intS contains some vertex v of P with associated

nonbasic index set J(v) cut off by F . Hence the standard intersection cut from C(J(v)), the
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cone associated with the basis B defining the vertex v, is precisely ϕx ≥ ϕ0.

It then follows that every vertex of the corner polyhedron that is not a vertex of convPI

is cut off by some SIC.

Thus regular L&P cuts from a CGLP based on a disjunction corresponding to a PI-free

convex set S may cut off some parts of corner(J), whereas regular cuts from a CGLP based

on a disjunction corresponding to a lattice-free convex set S are valid for the corresponding

corner polyhedron.

Next we address and answer a related question. As convPI is contained in every corner

polyhedron, we have

convPI ⊆ ∩J∈N corner(J), (20)

where N denotes the set of co-bases (whether feasible or not) of the LP. But are there cases

when equality holds?

Theorem 14. Suppose convPI is an n-dimensional polyhedron. Then the inclusion (20)

holds at equality if and only if every facet defining inequality for convPI is facet defining for

corner(J) for some J ∈ N .

Proof. Sufficiency. Let fx ≤ f0 be a facet defining inequality for convPI . If fx ≤ f0 for

all x ∈ corner(J) for some J ∈ N , then fx ≤ f0 for all x ∈ ∩J∈N corner(J), since the

latter is a subset of the former. But if every facet defining inequality for convPI is valid for

∩j∈N corner(J), then (20) holds at equality.

Necessity. Suppose equality holds in (20), and let fx ≤ f0 be a facet defining inequality

for convPI . We will show that it is facet defining for corner(J) for some J ∈ N . Let

F := {x ∈ R
n : fx = f0} ∩ convPI be the facet of convPI induced by fx ≤ f0. Then

F ⊂ corner(J), F 6= corner(J) for all J ∈ N , since each corner polyhedron is n-dimensional,

and F is (n − 1)-dimensional. Since each corner(J) is convex, if F is not contained in a

facet of any corner polyhedron, then fx ≤ f0 is not valid for any corner polyhedron. Let

v be a point in the relative interior of F . Since F is not contained in a facet of any corner
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polyhedron, v is an interior point of each corner polyhedron. But then there exists a ball

B around v contained in every corner polyhedron. Clearly, there exists y ∈ B cut off by

fx ≤ f0. Since y ∈ B ⊂ corner(J) for all J ∈ N , fx ≤ f0 is not valid for ∩j∈N corner(J),

which contradicts our assumption that equality holds in (20).

So suppose F is contained in a facet of corner(J) for some J ∈ N . Since F is (n − 1)-

dimensional, and every facet of any corner polyhedron is also (n− 1)-dimensional, fx ≤ f0

is facet defining for corner(J).

If convPI is of dimension d < n, we can generalize Theorem 14 as follows. Suppose H is

the (unique) d-dimensional affine subspace containing convPI . We define corner∗(J) as the

convex hull of integer points in C(J) ∩H .

Corollary 15. Suppose convPI is of dimension d < n. Then convPI = ∩J∈N corner∗(J)

if and only if every facet defining inequality for convPI is facet defining for corner∗(J) for

some J ∈ N .

In the sequel we address the question of when do irregular solutions to a CGLP based on

a disjunction corresponding to a lattice-free convex set S cut off part of the corresponding

corner polyhedron.

In Section 1 we defined PI as PI = {x ∈ P : xj ∈ Z for j ∈ Q ⊂ N}, where Q = N ′.

In this section we will specialize the disjunction (4) to the disjunctive normal form of the

expression {x ∈ R
n : xj ≤ ⌊x̄j⌋ or xj ≥ ⌈x̄j⌉, j ∈ Q}, which is

{

x ∈ R
n :
∨

t∈T

(

xj ≤ ⌊x̄j⌋ j ∈ Q−
t

xj ≥ ⌈x̄j⌉ j ∈ Q+
t

)

}

(4)

where Q+
t ∪Q−

t = Q and T indexes the set of 2|Q| bipartitions of Q. To simplify things, we

will preserve the notation (4) with the proviso that in this section (4) is specialized to (4).

Also, we will denote by (9) and (10) the expressions (9) and (10) in which (4) is specialized

to (4).

The corner polyhedron [18] is a relaxation of convPI associated with every basis of P .

In this section we will also consider a different relaxation of convPI associated with every
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basic feasible solution x̄ of P , namely, the disjunctive hull of P at x̄, convPD(x̄), where

PD(x̄) := {x ∈ P : x satisfies (4)}.

At this point it will be useful to introduce the concept of the parametric cross-polytope

[11] associated with (4). Let K(x̄) be the |Q| = q-dimensional unit hypercube centered at

xj = ⌊x̄j⌋ +
1
2
, j ∈ Q, i.e. K(x̄) := {x ∈ R

Q : ⌊x̄j⌋ ≤ xj ≤ ⌈x̄j⌉, j ∈ Q}. For the sake

of simplicity, we will move the origin of the coordinate system to ⌊x̄⌋, i.e. we will take

K(x̄) to be {x ∈ R
Q : 0 ≤ xj ≤ 1, j ∈ Q}. Let K∗(x̄) be the q-dimensional cross-polytope

(octahedron) circumscribing K(x̄), which can be written as

K∗(x̄) := {x ∈ R
Q :

∑

k∈Q+
t

xk −
∑

k∈Q−

t

xk ≤ |Q+
t |, t = 1, . . . , 2q}

where (Q+
t , Q

−
t ) is one of the 2q bipartitions of Q.

While K∗(x̄) circumscribes K(x̄), i.e. contains in its boundary every vertex of K(x̄), it is

just one of all possible convex polyhedra with this property. In order to get an adequate rep-

resentation of the entire family, we need to parametrize K∗(x̄). Introducing the parameters

vtk, t = 1, . . . , 2q, k = 1, . . . , q, we obtain the system

∑

k∈Q+
t

vtkxk −
∑

k∈Q−

t

vtkxk ≤
∑

k∈Q+
t

vtk, t = 1, . . . , 2q (21)

where vtk ≥ 0 for all t, k. Since the inequalities of (21) are homogeneous, the system can be

normalized (see [11] for a convenient way of doing this).

Let K̃∗(v) denote the parametric cross-polytope defined by (21). Clearly, for any fixed

set of vtk, K̃
∗(v) is a convex polyhedron that contains in its boundary all x with integer

components xj for j ∈ Q, hence it is suitable for generating intersection cuts. While K̃∗(v)

is defined in the subspace RQ, the corresponding set in R
N is the parametric cylinder K̃∗(v)×

R
N−Q. Clearly, this cylinder is a lattice-free set.

Theorem 16. convPD(x̄) is defined by the family of all L&P cuts from (10). The family

of (restricted) intersection cuts from K̃∗(v) is equivalent to the family of regular L&P cuts

from (10).
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Proof. The first statement follows from the basic theorem of disjunctive programming [5].

The second one follows from Theorem 12 of section 3 above.

Proposition 17. Those facets of convPD(x̄) which contain n vertices of the hypercube cen-

tered at x̄+ 1
2
e are facets of convPI .

Proof. Suppose γxN = γ0 defines a facet of convPD(x̄) which contains n vertices of the

hypercube centered at x̄ + 1
2
e. Since all these n points belong to PI , γxN = γ0 is a facet of

convPI as well.

We now turn to the relationship between irregular L&P cuts and the corner polyhedron.

Since regular L&P cuts from (10) are equivalent to restricted intersection cuts from K̃∗(x̄),

they cannot cut off any point of corner(J), where J indexes the nonbasic components of x̄.

Theorem 18. Let x̄ be a basic feasible solution of the LP relaxation with J the index set of

nonbasic variables, and (ᾱ, β̄, {ūt, v̄t}t∈T ) a basic feasible solution of (10) such that ᾱx ≥ β̄

cuts off x̄. Suppose there exist a point ȳ ∈ corner(J) \ P , and a t∗ ∈ T such that v̄t
∗

Dt∗ ȳ =

v̄t
∗

dt
∗

and the set of indices {i | ūt∗

i > 0} can be partitioned into two subsets (F+, F−) with

F− nonempty and F+ possibly empty, such that

• ȳ satisfies all the inequalities Ãix ≥ b̃i with i ∈ F+ at equality and

• ȳ violates all the inequalities Ãix ≥ b̃i with i ∈ F−.

Then ᾱx ≥ β̄ is an irregular L&P cut and ȳ is a point in corner(J) which is cut off by

ᾱx ≥ β̄.

Proof. Since (ᾱ, β̄, {ūt, v̄t}t∈T ) is a basic feasible solution of (10), we have ᾱ =
∑

i ū
t∗

i Ãi +

v̄t
∗

Dt∗ , and β̄ =
∑

i ū
t∗

i b̃i + v̄t
∗

dt
∗

, where ū, v̄ ≥ 0. Therefore, we deduce that ᾱȳ < β̄, since

ᾱȳ = (
∑

i

ūt∗

i Ãi+v̄t
∗

Dt∗)ȳ =
∑

i∈F+

ūt∗

i Ãiȳ+
∑

i∈F−

ūt∗

i Ãiȳ+v̄t
∗

Dt∗ ȳ <
∑

i∈F+

ūt∗

i b̃i+
∑

i∈F−

ūt∗

i b̃i+v̄t
∗

dt
∗

= β̄,

where the inequality follows from the conditions of the theorem.
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Finally, since ᾱx ≥ β̄ is not valid for corner(J), and v̄t
∗

6= 0 since ᾱx ≥ β̄ is not valid for

P , it is an irregular L&P cut.

The conditions of this theorem are easy to meet. Suppose, e.g., that C(J) admits an

extreme ray containing a point y ∈ K(x̄) × R
N−Q such that y 6∈ P and yi ∈ {⌊x̄i⌋, ⌈x̄i⌉}

for all i ∈ Q. Then y ∈ corner(J) \ P , and if CGLP (10) admits a basic feasible solution

(ᾱ, β̄, {ūt, v̄t}t∈T ) such that v̄t 6= 0 and ūt
i > 0 for some of the inequalities determining

the extreme ray, and also for an inequality separating y from P , then the conditions of

Theorem 18 are met, and the cut ᾱx ≥ β̄ is an irregular L&P cut not valid for corner(J).

The example in Section 6 gives a simple illustration of this theorem.

Recall that ᾱx ≥ β̄ is the irregular L&P cut associated with the solution to (10) that

minimizes αx̄− β, and that C(J) is the LP cone defined in section 1.

Theorem 19. If there is an extreme ray of the LP cone C(J) with direction vector r such

that ᾱr < 0, then ᾱx ≥ β̄ cuts off some point of corner(J).

Proof. Suppose x̄+ rλ, λ ≥ 0 is an extreme ray of C(J) such that ᾱr < 0. Since ᾱx̄ < β̄, it

follows that ᾱ(x̄ + rλ) < β̄ for all λ ≥ 0, i.e. the hyperplane ᾱx = β̄ does not intersect the

ray x̄+ rλ. This means that C ′ := C(J) ∩ {x : ᾱx < β̄} is unbounded. Clearly, C ′ contains

integer points, and they all belong to corner(J) and are cut off by ᾱx ≥ β̄.

Now suppose no such extreme ray of C(J) exists, i.e. ᾱrj ≥ 0 for all n extreme rays of

C(J). Let H+ := {x ∈ R
N : ᾱx ≥ β̄}, H− the weak complement of H+. Then ᾱx ≥ β̄ cuts

off a part of corner(J) if and only if (C(J) ∩H−) \ P contains some integer point. In fact,

C(J) ∩H− \ P is precisely the part of C(J) \ P cut off by ᾱx ≥ β̄.

The above results make L&P cuts from irregular CGLP solutions look very attractive. If

the CGLP optimum is attained for an irregular solution w, then not only does the inequality

αxN ≥ β cut off the LP optimum x̄N by a maximum amount, but in many cases it also cuts

off part of the corner polyhedron. In section 6 we give an example in which an irregular
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L&P inequality cuts off part of every corner polyhedron corresponding to the basis cone for

any basis (feasible or infeasible) of LP.

In the light of the results of this section, the main strength of GICs (or L&P cuts) is that

for a fixed PI-free or lattice free set S, GICs (or L&P cuts) can cut off more from the LP

relaxation than SICs from the same S. Therefore, one may have to repeat cut generation less

times by using GICs instead of SICs. This will be demonstrated by an example in Section 6.

5 The frequency of irregular L&P cuts

From Theorems 9-10 and 11-12 it follows that there are two types of basic feasible solutions

to the CGLP that have no corresponding SIC in any basic (feasible or infeasible) solution

to LP, i.e., that are irregular. Let B be a feasible basis matrix of CGLP, and let ÃK be the

submatrix of Ã consisting of those rows that are contained in columns j of B such that ut
j

is basic for some t ∈ T . Then the two types of irregular basic solutions are:

Type 1. The matrix ÃK contains a n×n nonsingular submatrix ÃJ , butK\J is nonempty.

Type 2. The matrix ÃK contains no n× n nonsingular submatrix

For both of these types we will show that they do occur (type 1 only for CGLP from

multiple-term disjunctions). In fact, their occurrence is not exceptional, and is no less

frequent than that of regular solutions. The results of the previous section show that irregular

CGLP solutions have characteristics that make the cutting planes they yield particularly

attractive.

We illustrate the above by showing how to construct from a regular CGLP basis irregular

bases of both types.

Consider a MIP with constraint set Ax ≥ b, xj ≥ 0, j ∈ N , represented as Ãx ≥ b̃,

and xj ∈ Z for j ∈ N ′ ⊆ N , and suppose we want to generate L&P cuts from the 4-term

disjunction

(

xk ≤ 0

xℓ ≤ 0

)

∨

(

xk ≥ 1

xℓ ≤ 0

)

∨

(

xk ≤ 0

xℓ ≥ 1

)

∨

(

xk ≥ 1

xℓ ≥ 1

)
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or
(

σ1
kxk ≥ ρ1k

σ1
ℓxℓ ≥ ρ1ℓ

)

∨

(

σ2
kxk ≥ ρ2k

σ2
kxℓ ≥ ρ2ℓ

)

∨

(

σ3
kxk ≥ ρ3k

σ3
ℓxℓ ≥ ρ3ℓ

)

∨

(

σ4
kxk ≥ ρ4k

σ4
ℓxℓ ≥ ρ4ℓ

)

where each term contains, in addition to the above pair of inequalities, the constraint set

Ãx ≥ b̃. The constraint set of the CGLP is then

α − ÃTut − σt
kekvt − σt

ℓeℓwt = 0

β − b̃Tut − ρtkvt − ρtℓwt = 0 t = 1, . . . , 4

4
∑

t=1

eut +
4
∑

t=1

(vt + wt) = 1

ut, vt, wt ≥ 0, t = 1, . . . , 4

or, after eliminating α and β by using the n+ 1 equations corresponding to t = 1,

ÃTu1 − ÃTut + σ1
kekv1 − σt

kekvt + σ1
ℓ eℓw1 − σt

ℓeℓwt = 0

b̃Tu1 − b̃Tut + ρ1kv1 − σt
kvt + ρ1ℓw1 − ρtℓwt = 0 t = 2, . . . , 4

4
∑

t=1

eut +
4
∑

t=1

(vt + wt) = 1 t = 1, . . . , 4

ut, vt, wt ≥ 0.

(22)

This system has 3n+4 equations and 4(m+n)+ 8 variables, where m+n is the number

of rows of Ã.

A basis for the system (22) is a nonsingular (3n+4)× (3n+4) matrix which can be, for

instance, of the form

B =

(

R U

V Z

)

where R is 3n× 3n, V is 4× 3n, U is 3n× 4 and Z is 4× 4.

In order for B to be nonsingular, it suffices for the 3n×3n matrix S and the 4×4 matrix

W := Z − V R−1U to be nonsingular. For instance, R may be of the form

R =









A1 −A2

A1 −A3

A1 −A4









where each Ai is the transpose of a matrix consisting of some subset of the rows of Ã such that

R is nonsingular. One possible way of satisfying this requirement is to have R derived from a

29



nonsingular n×n submatrix ÃJ of Ã, namely by setting A3 = A4 = ÃT
J and (−A1, A2) = ÃT

J ,

i.e. having −A1 and A2 be transposes of two matrices formed by a bipartition of the row set

of ÃJ . It is then easy to see that R is nonsingular, since each of the three n × n matrices

(A1,−A2), −A3 and −A4 is nonsingular. Note that in this case the columns of R correspond

to 3n of the 4m variables ut
j, t = 1, . . . , 4, j = 1, . . . , m, but since the only rows of Ã that

appear in the columns of R are those indexed by J , we have the condition ut
j = 0, j 6∈ J

satisfied.

The matrix U may consist of the first 3n entries of 4 of the 8 columns corresponding to

the variables (vt, wt), t = 1, . . . , 4, in which case the 3n×4 matrix U is of the form (assuming

w.l.o.g. that the 4 basic components of (vt, wt) are vt, t = 1, . . . , 4)

U =









σ1ek −σ2ek

σ1ek −σ3ek

σ1ek −σ4ek









.

Finally, V is the 4× 3n matrix

V =

















bT1 −bT2

bT1 −bT3

bT1 −bT4

1 1 1 · · · 1

















where the bTi , i = 1, . . . , 4, are the subvectors of b̃T associated with the row indices of ÃJ

defining the corresponding components Ai, i = 1, . . . , 4; and Z is the 4× 4 matrix

Z =

















ρ1k −ρ2k

ρ1k −ρ3k

ρ1k −ρ4k

1 1 · · · 1

















.

As mentioned above, a matrix B of the above form is nonsingular if R is nonsingular and

W := Z − V S−1U is nonsingular. Our matrix R is nonsingular by construction, and the

4× 4 matrix W could be singular only for some very specific values of the components of b̃.
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In conclusion, given any n × n nonsingular submatrix ÃJ of J , it is straightforward to

construct from it a basis of the system (22) that has ut
j = 0 for all j 6∈ J . If such a basis is also

feasible, i.e. such that (ut, vt, wt) ≥ 0 for t = 1, . . . , 4, then it satisfies the regularity condition

of Theorem 10. Although B is feasible if and only if the last column of B−1 is nonnegative

(since the condition of feasibility is B−1





0...
0
1



 ≥ 0), there is no simple way to guarantee

that B satisfies this condition. Nevertheless, we will show that if B is feasible, hence regular,

then its neighborhood (in terms of pivoting sequences) contains several irregular relatives,

mostly of type 1, but also of type 2.

(a) Irregular matrices of type 1. Given a regular basis B of the above form, all that is

needed to make it irregular is to replace one of the submatrices A3 or A4 of R with a n× n

nonsingular submatrix ÃK of Ã such that K 6= J . Then the resulting basis B′ will contain

variables ut
j for j ∈ J ∪ K, and if any of those ut

j with j ∈ K \ J are positive, then B′ is

irregular. It is easy to see that for any regular basis B, there are multiple irregular bases of

type 1 obtainable from B by a few pivots.

More generally, given any regular basic feasible solution to CGLP whose basis contains a

set of columns associated with the rows of a n× n nonsingular matrix ÃJ , there are |T | ·m

nonbasic variables ut
j, j 6∈ J , such that if any of them is pivoted into the basis, the solution

becomes irregular of type 1. Note that the number of such variables increases linearly with

the number of terms of the disjunction underlying the CGLP.

(b) Irregular bases of type 2. Starting from a regular basis B, we can construct an

irregular one of type 2 as follows. Let ÃJ be a singular n× n submatrix of Ã of rank n− 1,

and such that the rank of (ÃJ , b̃J) is n. Such submatrices ÃJ always exist and they are

quite numerous, since Ã contains for every 0-1 variable xj the rows ej and −ej . Let B
′ be a

(3n+ 4)× (3n+ 4) matrix of the form

B′ =

(

R′ U ′

V ′ Z ′

)
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where R′ is the (3n+ 3)× (3n+ 3) matrix

R′ =









A′
1 −A′

2

A′
1 −A′

3

A′
1 −A′

4









,

with

A′
3 =

(

ÃJ b̃J

−σ3ek −ρ3k

)T

, A′
4 =

(

ÃJ b̃J

−σ4ek −ρ4k

)T

, and (A′
1,−A′

2) =

(

ÃJ b̃J

−σ2ek −ρ2

)T

,

each of the 3 matrices A′
3, A

′
4 and (A′

1,−A′
2) being (n + 1) × (n + 1), nonsingular. Fur-

ther, let V ′ be the 1 × (3n + 3) matrix (1, . . . , 1), let U ′ be the (3n + 3) × 1 matrix

(σ1eTk , ρ
1
k, σ

1eTk , ρ
1
k, σ

1eTk , ρ
1
k)

T , and let Z ′ = (1). Then B′ is nonsingular (i.e. a basis)

if R′ and Z ′ − V ′(R′)−1U ′ are nonsingular. Now R′ is nonsingular since each of its 3

blocks A′
3, A

′
4 and (A′

1,−A′
2) is nonsingular, and Z ′ − V ′(R′)−1U ′ is nonsingular whenever

(1, . . . , 1)(R′)−1U ′ 6= 1.

It follows that B′ can be a basis of (22) even though the submatrix ÃJ of Ã whose rows

correspond to the ut
i represented in B′ is singular, i.e. even though it is irregular of type 2.

The above construction suggests that for every regular CGLP basis one can construct

multiple irregular bases. In fact, the number of such (irregular) bases grows with m and

with |T |, the number of terms in the disjunction underlying the CGLP.

Preliminary results of a computational study in progress [12] indicate that the vast ma-

jority of feasible CGLP bases are the irregular ones of type 1. In fact, there are classes of

problems for which all the feasible bases seem to be irregular. Thus, in the above mentioned

study all the L&P cuts corresponding to intersection cuts from the k-dimensional simplices

S := {x ∈ R
n : xj ≥ 0, j ∈ K,

∑

j∈K

xj ≤ |K|}

for |K| = 2, 3, 4, were generated for each of the instances stein9, stein15, stein27 and

stein45 of the well known Steiner triple problems. These are well known hard-to-solve set

covering problems representing certain block design configurations described in Ryser [21]
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and popularized in the combinatorial optimization community by Fulkerson et al [17]. For

stein9 and stein15, all the cuts were irregular of type 1, whereas for stein27 and stein45

over 90% of the cuts were irregular of type 1, with the rest irregular of type 2.

6 Numerical Example

Next we give a numerical example that illustrates the occurrence of irregular optimal solu-

tions to the CGLP, resulting in a cut that is violated by the optimal LP solution by more

than any SIC from any basis. Furthermore, this irregular cut cuts off part of every corner

polyhedron associated with PI .

Consider the MIP

min y (23)

such that

y − 1.1x1 + x2 ≥ −0.15 (24)

y + x1 − 1.1x2 ≥ −0.2 (25)

y + x1 + x2 ≥ 0.6 (26)

x1, x2 ∈ {0, 1}, y ≥ 0 (27)

The convex body of the feasible solutions is depicted in Figure 1. The optimal solution of

the LP relaxation is x∗
1 = 23/105, x∗

2 = 8/21, y∗ = 0. The LP in standard form (with surplus

variables) is:

min y (28)

such that

y − 1.1x1 + x2 − s1 = −0.15 (29)

y + x1 − 1.1x2 − s2 = −0.2 (30)

y + x1 + x2 − s3 = 0.6 (31)

x1, x2 ∈ [0, 1], s1, s2, s3, y ≥ 0 (32)
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Figure 1: The convex body of feasible points of the LP relaxation. The optimum LP solution
is marked by a red dot.

The simplex tableau for one of the optimal solutions is

s1 x1 x2 y s2 s3 RHS
1 21/10 1 1/10 29/100

1 1 −10/21 −11/21 23/105
1 0 10/21 −10/21 8/21

(33)

We will formulate a CGLP with respect to the 3-term disjunction

−x1 ≥ 0 ∨ −x2 ≥ 0 ∨ x1 + x2 ≥ 2

corresponding to the lattice-free polyhedron S in R
3 defined by triangle {x ∈ R

3 : x1 ≥
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0, x2 ≥ 0, x1 + x2 ≤ 2}. Using this, the CGLP is

min
29

100
u1
1 +

23

105
u1
5 +

82

105
u1
6 +

8

21
u1
7 +

13

21
u1
8 −

23

105
v1 (34)













ÃT

b̃T

ÃT

b̃T

eT













u1 +













−ÃT

−b̃T

0
0
eT













u2 +













0
0

−ÃT

−b̃T

eT













u3 +













−ex1

0
−ex1

0
1













u1
0+ (35)













ex2

0
0
0
1













u2
0 +













0
0

−ex1,x2

−2
1













u3
0 =













0
0
0
0
1













(36)

where Ã and b̃ are defined by

Ã =

























1 −1.1 1
1 1 −1.1
1 1 1
1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

























and b̃ =

























−0.15
−0.20
0.60
0
0
−1
0
−1

























,

and exi
is a unit vector with 1 in the row corresponding to variable xi (c.f. Ã

T ), i = 1, 2,

and ex1,x2 has two 1’s, in the respective rows. Notice that ut
j corresponds to row j of Ã,

j = 1, . . . , 8, the first 3 rows represent the inequalities (24)-(26), the fourth row corresponds

to y ≥ 0, the fifth and sixth to x1 ≥ 0 and −x1 ≥ −1, and the last two to x2 ≥ 0 and

−x2 ≥ −1, respectively.
The optimal basis of CGLP consists of the variables {u1

0, u
2
0, u

3
0, u

1
2, u

1
3, u

2
1, u

2
3, u

3
2, u

3
4}, and

the basic solution is

v1 u12 u13 v2 u21 u23 v3 u31 u34
0.182156 0.0813197 0.124497 0.170771 0.086741 0.119075 0.0296236 0.00542131 0.200395

As can be seen, the basic variables among the uℓj correspond to 4 distinct constraints of the
LP relaxation, whereas the latter has only three nonbasic variables in any basis. The L&P cut
corresponding to the optimal CGLP solution is

0.205816y + 0.0236602x1 + 0.0350449x2 ≥ 0.0584339 (37)

The violation of this cut is −0.0399009, and one may verify that as stated in Theorem 11, no
intersection cut from any basis of the LP relaxation of MIP has the same violation when represented
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Figure 2: Cut (37).

as a solution of CGLP. Notice that the optimal CGLP basis is irregular, and this inequality cuts
into all the corner polyhedra coming from any basis of the LP relaxation, which has been verified
case by case. For instance, consider the corner polyhedron defined with respect to the optimal
simplex tableau (33):

x1 +y −10/21s2 −11/21s3 = 23/105
x2 +10/21s2 −10/21s3 = 8/21

x1, x2 ∈ Z y ≥ 0 s2 ≥ 0 s3 ≥ 0
(38)

Proposition 20. The inequality (37) is not valid for the corner polyhedron (38)

Proof. Consider the point w̄ = (x̄1 = 1, x̄2 = 0, ȳ = 0, s̄1 = − 95
100 , s̄2 = 6

5 , s̄3 = 2
5 ). Since this point

has integral x1 and x2 coordinates, and satisfies both of the equality constraints defining the corner
polyhedron (38), and all the nonbasic variables, (y, s2, s3), are non-negative, it is in the corner
polyhedron (38).

Now, we verify that the point w̄ just defined is cut off by (37):

0.205816ȳ + 0.0236602x̄1 + 0.0350449x̄2 = 0.0236602 6≥ 0.0584339.

Finally, notice that s̄1 < 0, that is, w̄ ∈ corner(x̄) \ P .

In fact, inequality (37) defines a facet of the convex hull of feasible solutions of the MIP.
Our example is related to the one in [15] demonstrating that the main theorem of the paper

fails if its conditions are weakened. Namely, let Rq(A, b) be the family of polyhedral relaxations of
P defined by at most q inequalities of Ax ≥ b.

Theorem 21. (Theorem 1 of [15]) Let P = {x ∈ R
n | Ax ≤ b} and L be polyhedra in R

n and let
h ≥ 2 be the number of facets of L. Then

P \ L =
⋂

R∈Rn(h−1)(A,b)

R \ L, (39)
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The example in [15] shows that considering subsystems of at most n(h − 1) − 1 rows only of
Ax ≤ b instead of n(h− 1) rows, equality in (39) may no longer hold. In the example, maximality
of the chosen set L is not claimed.

On the one hand, the example in [15] shows that in order to describe conv (P \ L), one may
need irregular bases of CGLP corresponding to n(h − 1) distinct rows of Ãx ≥ b̃. That is, for
set L with h facets, define an h-term disjunction by taking the weak complement of these facet
defining inequalities, and form CGLP (7). After substituting out the α and β variables, any basis
of this CGLP has n(h − 1) + h variables, out of which h must correspond to distinct terms of the
disjunction, otherwise the L&P cut would be implied by the rows of Ãx ≥ b̃. The example in
[15] shows that the remaining n(h − 1) variables may correspond to distinct rows of the system
Ãx ≥ b̃. On the other hand, our example can be seen as another, although weaker, illustration of
the necessity of the conditions of Theorem 21, since by Theorem 7, intersection cuts from PI -free
or lattice free sets are determined by n inequalities of the system Ãx ≥ b̃.
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