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Abstract Although it is generally assumed that one or a few
matings are sufficient to maximize female fitness and that
mating is generally assumed to be costly to females, multiple
matings of females have been reported across a wide and
taxonomically diverse set of animals. Here, we investigated
female mating frequency and male harassment rate in
arrthenotokous 7hrips tabaci. In addition, the cost to females
of mating, multiple matings, and male harassment to females
was evaluated. We found that T fabaci females mated multi-
ple times during their lifetime and were subjected to a high
rate of male harassment at all the ages we tested. Mating was
costly to females in terms of reducing longevity and delaying
the initiation of egg laying, although mating did not affect the
survivorship and longevity of males. Furthermore, continual
exposure to males also resulted in a fitness cost to mated
females in terms of delayed egg production and reduced fe-
cundity. Virgin females of arrhenotokous thrips produce only
male progeny whereas mated females of arrhenotokous thrips
produce males from unfertilized eggs and females from fertil-
ized eggs. However, multiple matings did not allow females to
fertilize a larger proportion of their eggs to increase the female
offspring ratio. Our study demonstrates the conflicts between
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the occurrence of multiple matings and the cost of sexual
activities. This raises questions about the evolution of multiple
matings and polyandry in this species. Furthermore, these
findings suggest that such phenomena may occur in other
animal species and influence the evolution of their mating
systems.

Keywords Arrhenotokous Thrips tabaci - Female mating
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Introduction

Mating frequencies of females vary considerably with different
mating systems (Thornhill and Alcock 1983). It is generally
assumed that a single or few matings may provide females with
sufficient sperm to reach their reproductive potential (Walker
1980; Arnqgvist and Nilsson 2000). In addition, for females,
there are fitness costs associated with mating, including ener-
getic and time costs for other activities (Daly 1978; Kotiaho
et al. 1998b; Watson et al. 1998; Franklin et al. 2012), the risk
of increased predation (Wing 1988; Kotiaho et al. 1998a;
Magnhagen 1991), physical damage (Parker 1979; Leboeuf
and Mesnick 1991; Crudgington and Siva-Jothy 2000), toxic
seminal fluid (Chen 1984; Chapman et al. 1995), and immunity
corruption (Rolff and Siva-Jothy 2002). These costs may de-
crease a female’s lifespan and egg production rate (Arnqvist
and Nilsson 2000). Consequently, females usually favor a low-
er mating rate compared to males (Parker 1979) and are resis-
tant or reluctant to re-mate (Kokko et al. 2003).

Despite the cost of mating, multiple matings of females,
most often with different males but also with the same male,
have been widely reported in diverse animals (Arnqvist and
Nilsson 2000). Frequent multiple matings can be explained by
the benefits females may gain from re-mating, including

@ Springer


http://orcid.org/0000-0001-8049-5776
http://crossmark.crossref.org/dialog/?doi=10.1007/s00265-015-1970-5&domain=pdf

1586

Behav Ecol Sociobiol (2015) 69:1585-1595

increased offspring production (Arnqvist and Nilsson 2000;
Blanckenhorn et al. 2002; Ji et al. 2007; Gotoh and Tsuchiya
2008), increased genetic diversity of offspring (Jennions and
Petrie 2000), and beneficial accessory substances transferred
by males during mating (Thornhill 1976; Eberhard and
Cordero 1995; Vahed 1998). However, multiple matings
may be costly for individuals in terms of reducing fecundity
(Sirot and Brockmann 2001; Johnson and Brockmann 2010;
Oku 2010; Ronkainen et al. 2010) or longevity (Arnqvist and
Nilsson 2000). These costs may be due to the act of mating
itself and/or sexual harassment by males during multiple mat-
ings. Male harassment, defined as a male’s repeated attempts
to mate (Cluttonbrock and Parker 1995), is reported to be
costly to females in many animal species (Chilvers et al.
2005; Plath 2008; Gay et al. 2009; Rossi et al. 2010;
Helinski and Harrington 2012).

Mating frequencies of females differ between species in the
order Thysanoptera, a taxon of insects important in agricul-
ture. Multiple matings have been reported in females from
some tubuliferan species, either repeated matings with the
same males (e.g., Elaphrothrips tuberculatus (HOOD),
Hoplothrips pedicularius (HALIDAY), and H. karnyi (HOOD))
(Crespi 1986, 1988a, b) or multiple matings with different
males (e.g., Dunatothrips aneurae MOUND) (Gilbert and
Simpson 2013). However, females of some gall-forming
thrips mate once and refuse further matings (Varadarasan
and Ananthakrishnan 1982). In Frankliniella occidentalis
(PERGANDE), after an initial mating, females refused males
for more than 5 days (Terry and Schneider 1993) while in
Echinothrips americanus MORGAN, the majority of females
refused to re-mate during a 30-day period (Li et al. 2014b).

Onion thrips, Thrips tabaci LINDEMAN (Thysanoptera:
Thripidae), is a serious global insect pest because of its direct
feeding on many agricultural crops, its ability to transmit vi-
ruses, and its resistance to many insecticides (Diaz-Montano
etal. 2011). As in other thysanopteran species, arrhenotokous
T tabaci is haplodiploid: virgin females only produce haploid
male offspring while mated females can produce both diploid
female offspring and haploid male offspring. Since mating is
not a prerequisite of egg production in arrhenotokous 7. fabaci
(both virgin and mated females can produce eggs),
arrhenotokous 7. fabaci is a good model organism to investi-
gate the cost of mating on fecundity and longevity. In addition,
there is no report about female mating frequency and sexual
harassment behavior in this species.

In this study, we investigated female mating frequencies
and male harassment rate in arrhenotokous 7. fabaci. In addi-
tion, the effect of mating on the fitness of female and male
T tabaci was investigated by comparing virgin and mated
female and male 7. tabaci. Last, the fitness costs to females
by multiple matings and male harassment were investigated
by comparing individually housed mated females and mated
females exposed to males.

@ Springer

Materials and methods
Population maintenance and insect rearing

The arrhenotokous 7. tabaci population used in this study was
established in 2011 from adult 7. tabaci collected from cabbage
in a research field (GPS coordinates 42.873621, -77.029556) of
Comell University’s New York State Agricultural Experiment
Station, Geneva, New York. The population was maintained on
potted onion plants or cabbage heads in environmental growth
chambers at 20+1 °C, 60£5 % relative humidity (RH), and a
photoperiod of 16 L/8 D. Sequencing of a 706-bp COI frag-
ment of several 7. tabaci individuals identified one haplotype in
our arrhenotokous colony (Li et al. 2014a) belonging to the
leek-associated clade (Brunner et al. 2004), and it has been
proposed that the leek-associated clade of T. tabaci is
arrhenotokous (Toda and Murai 2007). To confirm arrhenotoky
in the tested individuals, the following procedure was applied:
21 females randomly selected from the stock colony were iso-
lated individually in 1.7-ml microcentrifuge tubes with cabbage
head leaf disks (5 mm in diameter) serving as a food source and
oviposition site, and their progeny was raised to adulthood also
in isolation after egg hatching. F; females and males produced
by different mothers were coupled in order to avoid inbreeding.
The F, progeny was raised similarly, and adults of this gener-
ation were used in the tests. The female/male ratio in the F,
progeny was 77:23, which is about the expected 4:1 sex ratio in
arrhenotokous thrips (Lewis 1973). The relatedness of isolated
specimens in the F; and F, progenies was recorded, and F,
sisters produced by the same F; female were allocated to all
treatments as evenly as possible (with at least one sister in any
tested F, line allocated to the virgin female alone treatment).
The exclusive male progeny of the F, sisters in the virgin fe-
male alone treatment confirmed arrhenotoky in all tested
individuals.

Female mating frequencies and male harassment rate

Mating behavior of a virgin female paired with a single male
(2-7 days old) was recorded using a video recorder (ZC105
Megapixel Camera, Zarbeco, NJ, USA) for 1 h at female ages
of2,4,6,8, 10, 15, 20, 25, and 30 days. Two treatments were
established: (1) a single virgin female (n=20) paired with a
single virgin male companion and (2) a single virgin female
(n=20) paired with a single mated male companion. A total of
20 replications was included in both mated and virgin male
treatments, but insects accidentally killed were excluded when
we calculated female mating frequency (2 in virgin male treat-
ment and 1 in mated male treatment). On each recording day,
males were removed after 1 h of recording, and females were
left individually until the next recording day. During recording
breaks, females were held in 1.7-ml microcentrifuge tubes
with cabbage head leaf disks (5 mm in diameter) that were
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changed daily under the rearing conditions described above.
Accumulated female mating frequencies in the two treatments
(virgin female paired either with a mated or virgin male) dur-
ing the first 10-day period and the entire 30-day period (which
is close to the mean longevity of mated females) were calcu-
lated, respectively. Accumulated percentages of re-mated fe-
males over time in the two treatments were also calculated.

Male harassment rates (male harassment incidences per
hour) in the two treatments at different female ages were also
determined. We considered a male harassment incident when
the male attempted mating, i.e., mounted the female’s back or
twisted his abdomen sideways under the end of the female’s
abdomen (Lewis 1973), but it was refused by the female. To
investigate if male harassment rate is equal at different ages of
a female, we calculated average male harassment rates in the
two treatments during the first 10-day period and the entire 30-
day period. The 10-day period was selected for statistical anal-
ysis because a significant drop was observed in harassment
rates for Echinothrips americanus after 10 days of age of
tested females (Li et al. 2014b) and 30 days is about the mean
lifespan of mated 7 tabaci.

Effects of mating on the fitness of females and males

Newly emerged virgin females (n=58) and mated females (n=
58, paired with a single male companion for 2 days) were
individually confined in microcentrifuge tubes and reared at
conditions as described previously. Leaf disks were changed
at 12-h intervals until the beginning of oviposition. The
preoviposition period was calculated as the time from adult
emergence to the beginning of oviposition. When females
began laying eggs, leaf disks were changed at 24-h intervals,
and the number of eggs in the leaves was counted using the
bottom light of a stereomicroscope (ZEISS, Stemi 2000, Carl
Zeiss Microscopy, Jena, Germany). Oviposition period (i.e.,
the period between the first and the last egg laid, measured in
days), longevity (i.c., the period between the emergence and
the death of the adult, measured in days), lifetime fecundity
(i.e., total number of eggs laid), and daily fecundity (lifetime
fecundity divided by oviposition period) were calculated for
each female. The survivorship (i.e., the proportion of individ-
uals surviving to a particular age) of virgin and mated females
was calculated as well.

Newly emerged virgin males (#=36) and mated males (n=
38, paired with a female for 2 days) were reared under the
same conditions as described above. Longevity and survivor-
ship of virgin and mated males were determined.

Effects of multiple matings and male harassment
on fitness of females

To test the effect of multiple matings and male harassment on
fitness of females, two treatments were established: (1) 1

mated female (n=58, paired with a single male companion
for 2 days) kept alone and (2) 1 female and 1 male kept to-
gether until the female’s death (n=56). In the second treat-
ment, in case of a male’s death before the female’s, a new
male companion (2—7 days old) was added to replace the dead
one so that each female was accompanied by a male during
her lifetime. Thrips in the two treatments were confined in
microcentrifuge tubes under the same conditions as described
above. The preoviposition period, oviposition period, longev-
ity, survivorship, lifetime fecundity, and daily fecundity were
calculated. To determine the sex ratio of offspring from fe-
males in different treatments, eggs laid by females in the mat-
ed female kept alone and mated female with a male compan-
ion treatments were kept for analysis of sex ratios when the
eggs developed into adults.

Statistical analysis

All data analyses were performed in SPSS (v20, SPSS Inc,
Chicago, IL, USA). Prior to analysis, data were checked for
normality using nonparametric Kolmogorov-Smirnov and
Shapiro-Wilk tests (P<0.05) as well as studying skewness
and kurtosis according to Tabachnick and Fidell (2007). The
four response variables in the mating behaviour study (accu-
mulated female mating frequencies in 10 and 30 days of age,
average male harassment rates in 10 and 30 days age of fe-
males) were moderately correlated (Pearson’s correlation co-
efficients and their p values are listed in Table 1); therefore, a
one-way multivariate analysis of variance (MANOVA) was
conducted to test the hypothesis that there would be mean
differences between the treatments (virgin male, mated male).
The normality of the residuals was confirmed by their skew-
ness and kurtosis because all of these absolute values were <1.
Prior to conducting a series of follow-up ¢ tests, the homoge-
neity of variance assumption was tested for all response vari-
ables. Mean harassment rates in every female age tested were
calculated, and the treatments (virgin or mated male) were
compared by using a ¢ test. The accumulated percentage of
females re-mating with a male (virgin or mated) was also
calculated. Since the response variables (longevity, fecundity,
daily fecundity, preoviposition, and oviposition period) in the
female fitness study were also dependent ones (Pearson’s cor-
relation coefficients and their p values are listed in Table 2), a
MANOVA was conducted with treatment (virgin female, mat-
ed female kept alone, and mated female accompanied by a
male) as a fixed factor and maternal grandmother (the female
randomly selected from our stock colony) as a random factor.
We calculated the partial Eta squared value to detect the effect
sizes as well as the observed power which gives the probabil-
ity of correct detection of significant differences. The normal-
ity of the residuals was confirmed by their skewness and kur-
tosis: all of these absolute values were <1. Prior to conducting
a series of follow-up ANOVAs, the homogeneity of variance
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Table 1 Bivariate Pearson’s
correlation matrix of male

Male harassment rate Female mating frequency

harassment rates and female

mating frequencies Male harassment rate

First 10 days Pearson’s r
P

Entire 30 days Pearson’s r
P

Female mating frequency

First 10 days Pearson’s r
P

Entire 30 days Pearson’s
P

First 10 days Entire 30 days First 10 days Entire 30 days

1 0.944 —0.565 —0.243

0.001 0.001 0.147
0.944 1 —0.587 —0.290
0.001 0.001 0.082
—0.565 —0.587 1 0.652
0.001 0.001 0.001
—0.243 —0.290 0.652 1
0.147 0.082 0.001

Number of tested individuals N=37

assumption was tested and confirmed for all five variables
(longevity, fecundity, daily fecundity, preoviposition, and ovi-
position period). Post hoc comparisons were done using a
Dunnett ¢ test with the mated female kept alone treatment
chosen as the reference. Because there was no variation in
the last response variable (female ratio in progeny) in the
virgin female treatment (100 % male progeny), this response
variable was analyzed in a univariate GLM only at two treat-
ment levels (and excluded from the MANOVA test) with treat-
ment (mated female kept alone and mated female accompa-
nied by a male) as a fixed factor and maternal grandmother as
a random factor. Male longevity was also analyzed in a uni-
variate GLM with treatment (virgin or mated) as a fixed factor
and maternal grandmother as a random factor. To normalize
distributions, the percentage data of the female ratio in prog-
eny was arcsine transformed, male longevity was log

transformed, and preoviposition period was inverse trans-
formed prior to analysis, but untransformed means and their
95 % confidence intervals (CI) are presented for all variables.
For survival analysis, a log-rank test was performed in the
Kaplan-Meier survival analysis procedure to compare the sur-
vival distributions of female and male adults between different
treatments (virgin and mated male; virgin female; mated fe-
male kept alone or with a male).

Results
Female mating frequency

In both mated male and virgin male treatments, female re-
mating behavior occurred. During the first 10 days, an equal

Table 2 Bivariate Pearson’s

correlation matrix of oviposition, Oviposition ~ Longevity ~ Fecundity — Daily fecundity =~ Preoviposition
longevity, fecundity, daily period®
fecundity, and preoviposition
period of Thrips tabaci females in Oviposition Pearson’s 0.946 0.832 0.008 0.251
3 treatments (virgin, mated kept P 0.001 0.001 0.924 0.002
alone, mated with a male N 149 149 149 149 149
companion) .
Longevity Pearson’s »  0.946 1 0.781 —0.108 0.012
P 0.001 0.001 0.190 0.880
N 149 160 160 149 149
Fecundity Pearson’s »  0.832 0.781 1 0.477 0.351
P 0.001 0.001 0.001 0.001
N 149 160 160 149 149
Daily fecundity =~ Pearson’s »  0.008 —0.108 0.477 1 0317
P 0.924 0.190 0.001 0.001
N 149 149 149 149 149
Preoviposition Pearson’s »  0.251 0.012 0.351 0317 1
period” P 0.002 0.880 0.001 0.001
N 149 149 149 149 169

# Statistical analysis was carried out following inverse transformation

N number of replications
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proportion of the females (41+£0.6 %) re-mated with virgin
and mated males (Fig. 1). During the entire 30-day period,
78+0.6 % of females re-mated with mated males while 67+
0.7 % of females re-mated with virgin males (Fig. 1). The
experience of the male did not have a significant model effect
on female mating frequencies (Wilks’ A=0.923; F(4, 32)=
0.665; p=0.621), and there were no significant differences
detected by the follow-up univariate tests in the accumulated
mating frequency between females paired with mated and
virgin males during the first 10 days (F(1, 35)=0.586; p=
0.449) and the entire 30 days (F(1, 35)=0.001; p=0.971) pe-
riod (Table 3).

Male harassment rate

Regardless of being paired with virgin or mated males, fe-
males at different ages suffered high rates of male harassment
(Fig. 2). In general, there was no model effect of male harass-
ment frequency (Wilks’ A=0.923; F(4, 32)=0.665; p=0.621)
between mated males and virgin males, and average male
harassment rates were equal between females paired with mat-
ed or virgin males during the first 10-day (F(1, 35)=2.713; p=
0.108) and the entire 30-day (F(1, 35)=2.528; p=0.121) peri-
od (Table 3). Subsequent ¢ tests yielded no significant differ-
ences between virgin and mated males at any female age

(Fig. 2).
Effects of mating on the fitness of female and male adults
Female fitness was affected by treatment (Wilks’ A=0.604;

F(10, 244)=6.999; p<0.001; partial n>=0.223; observed
power=0.999) and maternal lineage (Wilks” A=0.314;

Fig. 1 Accumulated percentage
of re-mated females paired with a

- . 100 ~
mated orvirgin male in Thrips
tabaci 90 -
80
£ 70 -
o
S 60 A
5]
&
g 50 A
o
2 40 A
=
o
= 30 A
=]
g
g 20 1
<
10 A
0

F(100, 600)=1.607; p<0.001; partial n>=0.207; observed
power=0.999). A series of one-way ANOVA’s on each of
the five dependent variables revealed a significant effect of
maternal lineage on preoviposition period only (£(20, 126)=
3.463; p<0.001; partial n*=0.355; observed power=0.999).
Maternal lineage had no effect on the other response variables.

The result of follow-up univariate tests on each of the five
dependent variables in our MANOVA model revealed statis-
tically insignificant treatment effect on daily fecundity (F(2,
126)=2.151; p=0.121), and statistically significant effect on
longevity (F(2, 126)=4.579; p=0.012; partial n>=0.068; ob-
served power=0.768), preoviposition (F(2, 126)=22.975; p-
<0.001;partial 1°=0.355; observed power=0.999) and ovipo-
sition period (F(2, 126)=11.512; p<0.001; partial n*=0.154;
observed power=0.993), and fecundity (F(2, 126)=9.597,;
p<0.001; partial n°=0.132; observed power=0.979).

The results of the post hoc analyses are presented in
Table 4. Compared to the reference treatment (mated female
kept alone), virgin females had a significantly shorter
preoviposition period. The oviposition period and longevity
of virgin females were longer than that of mated females kept
alone. There were no differences in the daily and lifetime
fecundity between virgin females and mated females kept
alone. Mating also affected the survivorship of females.
Compared with virgin females, the survival rate of mated fe-
males was significantly lower (Fig. 3a; log-rank test: x* =
5.30; p=0.021).

Male longevity was unaffected by treatment (F(1, 53)=
0.002; p=0.964) and maternal lineage (F(19, 53)=0.919; p=
0.564) (Table 4). In addition, the survival distributions of vir-
gin and mated males were not significantly different (Fig. 3b;
log-rank test: x*;=0.48; p=0.489).

—— Mated male = ===-- Virgin male

Female age (days)
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Table 3 Accumulated female
mating frequency and male

Female mating frequency

Male harassment rate

harassment rate of a female paired
with a single mated or virgin male

during the first 10-day period and  With virgin male 1.44+0.34
entire 30-day period (18)
With mated male 1.26+0.33
19)
P 0.449

First 10 days

Entire 30 days First 10 days Entire 30 days

2.33+0.68 21.6+3.32 21.7+2.70
(18) (18) (18)
2.32+0.67 25.4+3.24 24.6+2.63
(19) (19) (19)

0971 0.108 0.121

Estimated means (£95 % CI) calculated by a general linear model within a column were compared by ¢ tests.
Number of tested individuals is in brackets

Effects of multiple matings and male harassment
on fitness of females

The cumulated number of male companions a given female
was housed with had no effect on the response variables
(Wilks” A=0.304; F(20, 64)=1.379; p<0.166; partial n°=
0.257; observed power=0.708). The model effects in the
MANOVA were reported above. The follow-up Dunnett 7 tests
revealed significant effects of treatment on three response var-
iables. Specifically, although the presence of companion
males had no significant effect on the longevity and daily
fecundity of mated females (Table 5), mated females with a
male companion had a significantly longer preoviposition pe-
riod and shorter oviposition period compared to mated fe-
males housed individually (Table 5). Consequently, females
with a male companion had significantly lower total fecundity
(Table 5). Although the univariate test revealed a significant
effect of maternal lineage (F(18, 69)=2.202; p=0.010; partial
1?=0.365; observed power=0.970) on the overall sex ratio of
the progeny, no significant effect of treatment (F(1, 69)=
2.379; p=0.128) was found. The overall sex ratio in the prog-
eny produced by mated females housed alone and females
with a male companion was not statistically different

Fig. 2 Harassment rate of mated

and virgin males toward Thrips 457
tabaci females at different ages. 40
Different letters indicate
significant difference (¢ test, 35
p<0.05)

30 A a

3}
W
1

0

Harassment rate
e}
S
!

(Table 5). Survivorship of mated females was affected when
males were kept with females. The survival curve of females
housed with a single male were significantly lower than that of
females housed alone (Fig. 3a; log-rank test x*;=4.00; p=
0.046).

Discussion
Multiple matings and polyandry in 7. tabaci females

The phenomena of multiple matings by females has been re-
ported in a wide range of animal groups (Birkhead and Meller
1998), despite presumably large fitness costs to the female. In
this study, we report that 7. fabaci females can mate multiple
times, both with the same male and with different males,
which demonstrates polyandry in this species. This finding
is different from a similar thrips species, Echinothrips
americanus, in which most females mate only once during
their lifespan (Li et al. 2014b). The diverse mating systems
in related species and broader taxa (Thornhill and Alcock
1983) raise questions about the evolution of female mating
behaviors. Several potential explanations have been proposed

OMated male B Virgin male

®

)
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Table4 Female and male longevity, female preoviposition period, oviposition period, fecundity, and daily fecundity of virgin and mated Thrips tabaci

Female longevity Male longevity® Preoviposition period® Oviposition period Fecundity(eggs/female) Daily fecundity”(eggs/female/day)

(days) (days) (days) (days)

Virgin 40.1+4.64 27.847.43 3.4+1.16 35.2+4.60 115.7+18.2 3.54+0.35
(52) (36) (52) (52) (52) (52)

Mated 36.5+4.33 23.844.51 5.5+1.09 29.8+4.29 101.1+£17.0 3.54+0.33
(52) (38) (52) (52) (52) (52)

P 0.043 0.964 0.00007 0.018 0317 0.185

Estimated means (+95 % CI) calculated by a general linear model within a column were compared by Dunnett # tests. Number of tested individuals is in
brackets

*Means (£95 % CI) calculated from original data but statistical analysis was carried out following transformation, means were compared by  test
b Lifetime fecundity divided by oviposition period

Fig. 3 Survivorship of Thrips a ) T
tabaci females and males in —a— Mated female with a male —e— Mated female alone —o— Virgin female alone

different treatments. a Females, b
males 100 4

90 - O .
80 -
70 -

60 -

Survival rate (%)

—, SO N O DA~ O N0 A 0~ <t
— = AN AN NN NN NN n OO0

Female age (days)

b —¥—Mated male —&— Virgin male
100
90

80

70
60
50

40

Survival rate (%)

30
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— N N> = NN
— = A A AN

Male age (days)
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Table5 Longevity, preoviposition period, oviposition period, fecundity, daily fecundity, and total offspring sex ratios of mated Trips tabaci with and

without a male companion

Longevity  Preoviposition Oviposition period  Fecundity(eggs/female)

Daily fecundity’(eggs/female/day) ~ Female offspring

(days) period” (days)  (days) ratio® (%)

Without male 36.5+4.33 5.5+1.09 29.8+4.29 101.1+£17.0 3.5+0.33 75.3+4.55
(52) (52) (52) (52) (52) (50)

With male 30.7£4.71 8.5+1.11 20.4+4.66 63.9+18.5 3.1+0.35 69.0+£6.86
(45) (45) (45) (45) (45) 39)

P 0.123 0.015 0.005 0.005 0.073 0.128

Estimated means (£95 % CI) calculated by a general linear model within a column were compared by Dunnett ¢ tests. Number of tested individuals is in

brackets

#Means (£95 % CI) calculated from original data but statistical analysis was carried out following transformation, means were compared by  test

® Lifetime fecundity divided by oviposition period

to understand the evolution of multiple matings and polyandry
from a non-genetic view (Walker 1980; Ridley 1989; Vahed
1998; Gillott 2003) and genetic view (Yasui 1998; Jennions
and Petrie 2000). Because Thysanoptera have such diverse
sexual reproductive behaviors, they are a suitable group of
animals in which to explore the effects of multiple matings
and harassment on fitness costs to females and the evolution-
ary implications of such behaviors.

There is well-documented evidence that repeated mating
attempts by males can lead to harassment to females which
is costly to females (Arnqvist and Rowe 2005). In our study,
mated females were subjected to a high harassment rate by
males during all the ages we tested. The average harassment
rate was over 20 times per hour, much higher than that of the
observed rates (below 10 times per hour) in a similar study for
Echinothrips americanus (Li et al. 2014b). However, contrary
to E. americanus, there was no drop in male harassment rates
when T, tabaci females became older than 10 days. These
results suggested that post-mating interactions between fe-
males and males in 7. fabaci include re-mating and male
harassment.

Asymmetrical fitness costs of mating to females and males

Mating is generally assumed to be costly, both for males and
particularly for females. Mating is costly to females in many
organisms in terms of decreased lifespan and/or reproductive
output (Arnqvist and Nilsson 2000; Jormalainen et al. 2001;
Macke et al. 2012). Costs of mating to males in terms of
reduced longevity have also been reported in many animal
species (Kotiaho and Simmons 2003; Martin and Hosken
2004; Burton-Chellew et al. 2007; Li et al. 2014b).
However, asymmetrical fitness costs of mating to females
and males were reported in 7. tabaci, where mating is costly
to females, but no fitness costs were found in males. In fe-
males, mating is costly in terms of reducing longevity and
delaying the onset of reproduction. Mated females have a
shorter lifespan and a significantly steeper decline in their

@ Springer

survival curve than virgin females despite producing equal
number of eggs. By contrast, in males, both the longevity
and the survivorship curves were similar in mated males com-
pared to virgin males. These results agree with studies in the
butterfly Lethe Diana BUTLER and moth Mnesampela private
GUENEE (Walker and Allen 2010; Takeuchi 2012).

We propose that the reduced longevity in mated females is
due to the trade-off for higher investment in female than male
eggs. In arrhenotokous arthropods, mated females produce
both female and male eggs, while virgin females only produce
male eggs. In spider mites, it has been reported that mated
females produce larger eggs than virgin females (Macke
et al. 2012) and female eggs are larger than male eggs
(Macke et al. 2011). Although the fecundity of mated females
is about equal to that of virgin females in T. tabaci, their
overall cost of investment in their progeny is still greater if
male eggs have a significantly lower investment cost than
female eggs, similar to spider mites (Macke et al. 2012),
which may be responsible for their shorter longevity through
a physiological trade-off.

Continual exposures to males entail a cost for mated
females

Results from our study indicated that multiple matings are
costly to 7. tabaci females in terms of quantitative reproduc-
tive output. Mated females kept alone had similar longevity to
mated females with a male companion throughout her lifetime
but higher reproductive output. A similar study reported re-
duced longevity of females from continuous exposure to
males in the fly Drosophila simulans STURTEVANT (Taylor
et al. 2008); in contrast to this report, the fitness cost of poly-
andry on 7. tabaci females was only detected by the survival
analysis. Notably, continuous exposure to a male dramatically
delayed the onset of reproduction and shortened the oviposi-
tion period. Male harassment might be responsible for the
negatively affected survivorship and the decrease in overall
fecundity, as reported in beetles and bees (Gay et al. 2009;
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Rossi et al. 2010). Repeated harassment by males could dis-
turb feeding and lead to lower egg production of females. In
addition, any energy expenditure by female resistance to male
harassment could reduce the total investment females other-
wise could spare for reproduction (Watson et al. 1998).

The delay of the onset of oviposition because of mating,
multiple matings, and male harassment

In our study, multiple matings and/or the repeated disturbance
from a high rate of male harassment could delay the onset of
oviposition. It has been reported that receiving the beneficial
seminal accessory fluid transferred by males during mating
was necessary to initiate oviposition (Barth and Lester 1973;
Leopold 1976). A shorter pre-oviposition period in mated
females compared to virgin females has been reported in
many species (Bergh et al. 1992; Spencer and Miller 2002;
Zhao and Zhu 2011; Li et al. 2012; Varikou et al. 2012).
However, there are few reports about an increased pre-
oviposition period in females after mating. The delay of re-
production might be due to the costly mating behavior itself
or there might be some seminal accessory fluid compounds
that could delay the initiation of oviposition. Continual male
harassment in the first period of an adult female’s life could
hinder the female’s preparation for the onset of egg
production.

Sperm competition, which is a consequence of polyandry,
is present in some species (Simmons 2001). The delayed
oviposition might be a mechanism of mate choice.
Delaying oviposition could increase the potential opportuni-
ties for sperm competition and enable females to modify
their original choice of a mate by preferentially using the
sperm from the most preferred male, as suggested for verte-
brates (Birkhead and Moller 1993) and many other organ-
isms including insects (Eberhard 1996; Simmons 2001). In
addition, adjusting the time of oviposition might result from
intersexual conflicts during post-mating interactions. In this
study, the daily fecundity seemed to be unaffected by high
harassment rate, and the cause of lower overall fecundity
was a shortened oviposition period following a much longer
preoviposition period in the continuous presence of a mate.
We think that females responding to the possibility of mul-
tiple matings with the delay of oviposition are under positive
selection if the possible benefit of increasing genetic diver-
sity in progeny outweighs the cost of delayed and reduced
fecundity. In other words, we think females under such con-
ditions might be maximizing their quantitative reproductive
output. This leads us to the question whether 7. tabaci fe-
males can distinguish a previous mate from a new one and
respond to multiple matings accordingly, but this remains to
be examined. A similar behavior was reported for the hide
beetle, Dermestes maculates DEGEER (Archer and Elgar
1999), and the Mediterranean flour moth, Ephestia

kuehniella zELLER (Xu and Wang 2009): polyandrous fe-
males did not start laying eggs until they mated with several
different males. The delayed oviposition could also be due
to the cost of male harassment. Resistance to male harass-
ment requires time and energy by females which would
delay egg maturation. In addition, a high rate of male ha-
rassment toward females might seriously disrupt the initia-
tion of egg laying. It is currently unclear which of the above
mentioned factors cause the delay in oviposition in mated
T tabaci.

Why do females mate multiple times?

The conflicts between the occurrence of multiple matings and
the cost of sexual activities in this species raise the question of
why females re-mate. One possible explanation for multiple
matings is that, although there is no fitness benefit, females
may use the sperm from different males to fertilize the eggs
which could increase their offspring’s genetic diversity
(Jennions and Petrie 2000). Another explanation is that fe-
males re-mate just because the avoidance of re-mating may
be more costly than the cost of mating (Gavrilets et al. 2001).
Mating is reported to be costly to females, and females may be
reluctant to re-mate (Kokko et al. 2003). However, the avoid-
ance of re-mating has also been reported to be costly for fe-
males (Rowe et al. 1994; Watson et al. 1998). If male harass-
ment rates are high, resistance may be even more costly than
mating itself (Rowe et al. 1994). Thus, females might accept
re-mating simply to minimize the costs imposed by harassing
males.

In conclusion, we found 7. tabaci females mated multiple
times and were subjected to high rates of male harassment
during their lifetime. However, mating was costly to females
in terms of reducing longevity and delaying the initiation of
egg laying, although mating did not affect the survivorship
and longevity of males. Furthermore, continual exposure to
males also exerted fitness costs to mated females in terms of
delaying egg production and reducing fecundity. These costs
might result from multiple matings and/or a high rate of male
harassment. Our results raise questions about why females in
this species mate multiple times and what mechanisms cause
the delay in oviposition that results from mating and exposure
to males. Furthermore, we suggest that our findings in
T tabaci not only raise questions about the evolution of mul-
tiple matings and polyandry in this species, but that such phe-
nomena may occur in other animal species and influence the
evolution of their mating systems.
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