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Abstract This paper investigates the stabilizing effect

of process damping at low cutting speeds for regener-

ative machine tool vibrations of milling processes. The

process damping is induced by a velocity-dependent

cutting force model, which takes into account that the

actual cutting velocity is different from the nominal one

during machine tool vibrations. The chip thickness and

the cutting force are calculated according to the di-

rection of the actual cutting velocity. This results in

an additional damping term in the governing delay-

differential equation, which is time-periodic for milling

and inversely proportional to the cutting speed. In the

literature, this term is often assumed to be constant and

is considered to improve stability properties at low spin-

dle speeds. In this paper, it is shown that the velocity-

dependent cutting force model captures the improve-

ment in the low-speed stability only for turning oper-

ations and milling with large radial immersion, while

it results in a negative process damping term for low-
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immersion milling. Consequently, an extended process

damping model is needed to explain the low-speed sta-

bility improvement for low radial immersion milling.
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chatter · Cutting force · Process damping

1 Introduction

Improving the productivity and the accuracy of metal

cutting operations is of high importance in manufactur-

ing technology. One important barrier of increasing the

achievable material removal rate and machined surface

quality is the occurrence of harmful vibrations known

as machine tool chatter. Modeling the dynamics of ma-

chine tool vibrations is therefore an active field of re-
search.

The first models that succeeded in describing the

onset of chatter appeared in the 1950’s when Tobias

[1] and Tlusty [2] introduced the theory of regenera-

tive machine tool vibrations. This concept uses delay-

differential equations to describe the regeneration of the

waviness of the machined surface during the consecu-

tive cuts. The stability analysis of the delay-differential

equations gives the so-called stability lobe diagrams (or

stability charts), which identify the chatter-free tech-

nological parameter regions in the plane of the spin-

dle speed and the depth of cut. These diagrams help

the machinist in selecting the desired technological pa-

rameters associated with optimal material removal rate

without experiencing machine tool vibrations.

According to experimental results [3–10], the stabil-

ity boundaries (or stability lobes) shift towards higher

depths of cut at low spindle speeds resulting in a larger

stable (or chatter-free) region. In this article, we re-

fer to this phenomenon as low-speed stability improve-
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ment. For the experimental data verifying the low-speed

stability improvement, the reader is referred to [3–10].

Most mechanical models of metal cutting dedicate the

low-speed stability improvement to an additional dissi-

pative force during cutting, which is inversely propor-

tional to the spindle speed. This additional term is often

called as process damping [3–15]. The process damping

is often explained by the contact between the tool’s

flank face and the wavy surface of the workpiece [3–

6, 8–12, 15] or by introducing velocity-dependent cut-

ting force models [4, 14]. Another possible explanation

for the low-speed stability improvement phenomenon

is the so-called short regenerative effect [16, 17], which

dedicates the stability improvement to the distribution

of the cutting force along the rake face.

A widely accepted model to explain the origin of

the process damping term is a velocity-dependent cut-

ting force model, which is described in [4, 14] for or-

thogonal cutting. Namely, it is taken into account that

the actual cutting velocity is different from the nom-

inal cutting velocity during machine tool vibrations.

Therefore, the thickness of the chip is calculated ac-

cording to the direction of the actual cutting velocity

instead of the nominal one. This results in a velocity-

dependent chip thickness expression, which determines

the magnitude of the cutting-force components. The

model also involves velocity-dependent projections of

the cutting force into tangential and feed components

according to the direction of the actual cutting velocity.

The velocity-dependent chip thickness expression and

the cutting force projections result in a process damp-

ing force in the model of cutting. In this paper, we refer

to this as velocity-dependent cutting force model, and

we extend this model to milling operations, especially

for low radial immersion ones. The velocity-dependent

chip thickness expression for milling has already been

derived in [18]. Hence we use the results of [18] for the

chip thickness and apply the method of [4, 14] to com-

pute the components of the cutting force for milling

operations.

The rest of the paper is organized as follows. As

a motivation, Sect. 2 demonstrates the effect of pro-

cess damping for turning operations. Section 3 intro-

duces the single-degree-of-freedom mechanical model of

milling, and gives expressions for the cutting velocity,

the chip thickness, and the cutting force in the pres-

ence of machine tool vibrations. The linearized equation

of motion is derived in Sect. 4, and the corresponding

stability lobe diagrams are computed in Sect. 5. Sec-

tion 6 gives a geometric illustration of the direction of

the arising process damping force. Finally, conclusions

are drawn in Sect. 7.
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Fig. 1 Stability lobe diagram of turning operations with
(solid line) and without (dashed line) process damping

2 Motivation

The most common way of modeling the low-speed sta-

bility improvement phenomenon is adding a damping

term (the so-called process damping) to the govern-

ing equation of the cutting process, where the damp-

ing is inversely proportional to the spindle speed. This

model is presented for turning operations in [14], see

Eqs. (4.21)-(4.22). The corresponding dimensionless equa-

tion of tool motion can be written in the form

ξ′′(t) + 2ζξ′(t) + ξ(t) = p (ξ(t− τ)− ξ(t))− pτCξ′(t) ,
(1)

where p is the dimensionless chip width, and τ is the re-

generative delay, which is inversely proportional to the

dimensionless spindle speed Ω as τ = 2π/Ω. Parameter

ζ is the damping ratio of the dominant vibration mode

of the machining system, parameter C is the dimen-

sionless process damping coefficient, and the last term

in Eq. (1) is the process damping term.

The stability boundaries of Eq. (1), which separate

the chatter-free technological parameter regions from

those with machine tool chatter, are given by [19]

Ω(ψ) =
2πω(ψ)

ψ
,

p(ψ) =− 2ζω(ψ)

Cψ + sinψ
,

ω(ψ) =− ζ 1− cosψ

Cψ + sinψ
+

√
ζ2
(

1− cosψ

Cψ + sinψ

)2

+ 1 .
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Fig. 2 Single-degree-of-freedom mechanical model of milling

(2)

Here, ω denotes the approximate angular frequency of

chatter and ωτ =: ψ ∈ [0,∞) is the regenerative phase

shift between the waves on the undulated machined sur-

face created by the tool during chatter.

The corresponding stability lobe diagram is shown

in Fig. 1 for ζ = 0.02 and C = 0.003. The stability

boundaries shift upwards at small spindle speeds in the

physically meaningful half-plane p > 0, while the sta-

ble region shrinks for p < 0. Although negative chip

width (p < 0) is physically meaningless in turning op-

erations, it becomes important for milling. The stability

boundaries of up-milling processes originate in the sta-

bility lobes of turning with positive chip width (p > 0),

whereas those of down-milling come from the lobes of

turning with negative chip width (p < 0) [20]. That is,

we get qualitatively the same lobes for up-milling with a

large number of cutting teeth as for turning with p > 0.

Similarly, the lobes of turning in the negative half-plane

p < 0 are valid for down-milling with a large number of

cutting teeth.

The phenomenon shown in Fig. 1 can be explained

by the fact that the sign of the process damping term

in Eq. (1) depends also on the sign of the chip width p.

Therefore, special care must be taken to get an exact

description of the process damping term when introduc-

ing it for milling operations. The physical explanation

of low-speed stability improvement should be associated

with a positive damping term, otherwise stability de-

creases at low speeds. Motivated by Fig. 1, hereinafter

we investigate the sign of process damping for a milling

model with velocity-dependent cutting force expression.

3 Mechanical Model of Milling

Consider the single-degree-of-freedom mechanical model

of milling shown in Fig. 2. The motion of the workpiece

relative to the cutting tool is described by the general

coordinate x as a function of time t. The motion is gov-

erned by the second-order differential equation

mẍ(t) + cẋ(t) + kx(t) = −Fx(t) , (3)

where m, c, and k are the modal mass, damping, and

stiffness parameters, respectively, corresponding to the

dominant vibration mode of the machine tool-workpiece

system. Here, Fx denotes the x-directional component

of the cutting force acting on the mill. In order to model

the cutting force on the right-hand side, first we derive

expressions for the velocity of the cutting edges and for

the chip thickness.

3.1 Velocity of the Cutting Edges

Consider an N -fluted milling tool of radius R rotating

with angular velocity Ω. The angular position of the

jth tooth of the mill is given by

ϕ̃j(t) = Ωt+ (j − 1)
2π

N
, (4)

j = 1, 2, ..., N , see Fig. 3a for rake angle αr.

In the absence of vibrations, the velocity of the jth

tooth tip is

ṽj(t) =

−RΩ cos ϕ̃j(t)

RΩ sin ϕ̃j(t)

0

 , (5)

provided that the feed velocity is negligible compared

to the nominal cutting speed ṽj(t) = |ṽj(t)| ≡ RΩ.

From this point on, tilde indicates quantities related

to the nominal cutting velocity ṽj(t). Symbols with-

out tilde are associated with the actual cutting velocity

vj(t) of the jth tooth, where the vibration velocity ẋ(t)

of the workpiece is also taken into account, cf. Fig. 3a.

The relative velocity between the tool and the work-

piece therefore becomes

vj(t) =

−RΩ cos ϕ̃j(t)− ẋ(t)

RΩ sin ϕ̃j(t)

0

 =

−vj(t) cosϕj(t)

vj(t) sinϕj(t)

0

 ,
(6)

where the feed velocity is neglected compared to RΩ.

That is, the magnitude of the velocity changes from

ṽj(t) ≡ RΩ to

vj(t) =

√
(RΩ cos ϕ̃j(t) + ẋ(t))

2
+ (RΩ sin ϕ̃j(t))

2
,

(7)
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Fig. 3 Components of the velocity of the jth tooth tip (a); relation of the chip thickness and the feed per tooth (b); projection
of the cutting force to tangential and radial directions (c)

and its instantaneous direction is given by ϕj(t) instead

of the nominal ϕ̃j(t), satisfying

cosϕj(t) =
RΩ cos ϕ̃j(t) + ẋ(t)√

(RΩ cos ϕ̃j(t) + ẋ(t))
2

+ (RΩ sin ϕ̃j(t))
2
,

sinϕj(t) =
RΩ sin ϕ̃j(t)√

(RΩ cos ϕ̃j(t) + ẋ(t))
2

+ (RΩ sin ϕ̃j(t))
2
.

(8)

A key point of this analysis is that the tangential

and the radial directions are defined based on the cut-

ting velocity. The nominal tangential and the nominal

radial directions are parallel and perpendicular to the

nominal cutting velocity ṽj(t), respectively. These di-

rections are given by the unit vectors t̃j(t) and r̃j(t).

Similarly, in the presence of machine tool vibrations,

the actual tangential and radial directions are associ-

ated with the actual cutting velocity vj(t) and are as-

signed by the unit vectors tj(t) and rj(t). The above

vectors are of form

t̃j(t) =− ṽj(t)

ṽj(t)
=

 cos ϕ̃j(t)

− sin ϕ̃j(t)

0

 ,
r̃j(t) =k× t̃j(t) =

sin ϕ̃j(t)

cos ϕ̃j(t)

0

 ,
tj(t) =− vj(t)

vj(t)
=

 cosϕj(t)

− sinϕj(t)

0

 ,
rj(t) =k× tj(t) =

sinϕj(t)

cosϕj(t)

0

 ,

(9)

where k is the z-directional unit vector and × indicates

cross product.

3.2 Chip Thickness Expression

Consider a milling operation with nominal feed per

tooth fz. According to the theory of regenerative ma-

chine tool vibrations, when chatter occurs, the actual

feed per tooth is modified by the actual position x(t) of

the workpiece and its position x(t− τ) at the previous

cut. That is, the actual feed per tooth is given by the

feed vector

f(t) =

fz + x(t)− x(t− τ)

0

0

 , (10)

where τ is the regenerative delay or, equivalently, the

tooth-passing period: τ = 2π/(NΩ).

The chip thickness is given by the radial component

of the feed vector, see Fig. 3b. If the nominal cutting

velocity is used for reference as in standard models [21–

26], then the chip thickness can be given as the projec-

tion of the feed vector to the nominal radial direction

r̃j(t) as [20]

h̃j(t) = f(t) · r̃j(t) = (fz + x(t)− x(t− τ)) sin ϕ̃j(t) ,

(11)

where · indicates scalar product. Alternatively, if the

dependence of the velocity of the jth tooth tip on the

vibration velocity ẋ(t) is taken into account [18], then

a velocity-dependent chip thickness can be defined as

hj(t) = f(t) · rj(t) = (fz + x(t)− x(t− τ)) sinϕj(t) ,

(12)

in which ϕj(t) depends on ẋ(t) through Eq. (8). Note

that it is a widely accepted concept [14] to define the

chip thickness in the direction perpendicular to the

actual cutting velocity (given by Eq. (12)) instead of
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the direction towards the center of the mill (given by

Eq. (11)). Changes in the cutting velocity modify the

cutting direction and hence the effective chip thickness.

This concept is a possible explanation of the low-speed

stability improvement for turning [14]. In this paper,

we generalized this model from turning to milling.

3.3 Projections of the Cutting Force

Let us decompose the cutting force Fj(t) acting on

the jth tooth into actual tangential and radial com-

ponents Fj,t(t) and Fj,r(t), respectively, cf. Fig. 3c.

These cutting-force components are functions of the

chip thickness hj(t) according to the cutting force char-

acteristics. In this paper, we investigate the well-known

power law characteristics, which relates the cutting force

magnitude to the qth power of the chip thickness:

Fj,t(t) =gj(t)Ktaph
q
j(t)tj(t) ,

Fj,r(t) =gj(t)Kraph
q
j(t)rj(t) ,

(13)

where Kt and Kr are tangential and radial cutting-force

coefficients, and ap is the axial depth of cut. Eq. (13)

yields a linear cutting force characteristics for q = 1 and

implies the widely-used three-quarter rule for q = 3/4.

Note that the angle between the radial cutting-force

component Fj,r(t) and the cutting force Fj(t) is as-

sumed to be constant, γ = arctan(Kt/Kr), indepen-

dently of time and of the vibration velocity ẋ(t).

In Eq. (13), the coefficient gj(t) is a screen function,

which gives 1 if the jth tooth is currently engaged in

cutting and 0 otherwise:

gj(t) =

{
1 if ϕen < (ϕ̃j(t) mod 2π) < ϕex ,

0 otherwise,
(14)

where mod is the modulo function, whereas ϕen and

ϕex denote the angular positions where the teeth enter

and exit the workpiece. Given the radial immersion ae
and the tool diameter D = 2R, these angles can be

expressed in the form

ϕen = 0 , ϕex = arccos

(
1− 2ae

D

)
for up-milling,

ϕen = arccos

(
2ae
D
− 1

)
, ϕex = π for down-milling.

(15)

We can calculate the x-directional component of the

cutting force from the tangential and the radial com-

ponents by a scalar product with the x-directional unit

vector i. Using Eqs. (9), (12) and (13), and summing

the forces on each tooth of the mill, we obtain

Fx(t) =

N∑
j=1

(Fj,t(t) · i + Fj,r(t) · i)

=

N∑
j=1

gj(t)ap

(
Kt cosϕj(t) +Kr sinϕj(t)

)
× sinq ϕj(t) (fz + x(t)− x(t− τ))

q
.

(16)

Equations (3) and (16) form a nonlinear delay-differential

equation with time-periodic coefficients. Notice that the

equation is nonlinear even for a linear cutting force

characteristics (q = 1), since the angle ϕj(t) used for

projecting the chip thickness and the cutting-force com-

ponents depends on the vibration velocity ẋ(t) accord-

ing to Eq. (8). We will analyze the effect of this velocity

dependency on the linear stability properties.

4 Linearized Equation of Motion

We assume that Eq. (3) with (16) has a τ -periodic par-

ticular solution (forced vibration) xp(t) = xp(t + τ),

which is associated with the chatter-free motion. This

solution satisfies

mẍp(t) + cẋp(t) + kxp(t) = −
N∑
j=1

gj(t)apf
q
z

×
(
Kt cosϕj(t)|ẋp

+Kr sinϕj(t)|ẋp

)
sinq ϕj(t)|ẋp

,

(17)

where ẋp in the lower index stands for the substitution

ẋ(t) = ẋp(t). Equation (17) is a nonlinear nonhomoge-

neous ODE with τ -periodic coefficients.

Machine tool vibrations correspond to the loss of

stability of the periodic solution xp(t). In what follows,

we analyze the stability of this periodic solution without

determining xp(t) itself, since we assume that in the

parameter region under investigation |ẋp(t)| � RΩ and

can be neglected. For more details about the behavior

of the periodic solution, the reader is referred to [18].

Now we linearize Eq. (3) with (16) around the periodic

solution xp(t). From Eq. (8), the trigonometric terms

in Eq. (16) and their derivatives with respect to x and
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ẋ can be obtained in the form

cosϕj(t)|ẋp
≈ cos ϕ̃j(t) , sinϕj(t)|ẋp

≈ sin ϕ̃j(t) ,

∂ cosϕj(t)

∂x

∣∣∣∣
ẋp

= 0 ,
∂ sinϕj(t)

∂x

∣∣∣∣
ẋp

= 0 ,

∂ cosϕj(t)

∂ẋ

∣∣∣∣
ẋp

≈ 1

RΩ
sin2 ϕ̃j(t) ,

∂ sinϕj(t)

∂ẋ

∣∣∣∣
ẋp

≈ − 1

RΩ
sin ϕ̃j(t) cos ϕ̃j(t) ,

∂ (cosϕj(t) sinq ϕj(t))

∂ẋ

∣∣∣∣
ẋp

≈ 1

RΩ
sin2 ϕ̃j(t) sinq ϕ̃j(t)

+ cos ϕ̃j(t)q sinq−1 ϕ̃j(t)

(
− 1

RΩ
sin ϕ̃j(t) cos ϕ̃j(t)

)
,

∂ sinq+1 ϕj(t)

∂ẋ

∣∣∣∣
ẋp

≈ (q + 1) sinq ϕ̃j(t)

×
(
− 1

RΩ
sin ϕ̃j(t) cos ϕ̃j(t)

)
,

(18)

where the vibration velocity ẋp(t) was neglected com-

pared to the nominal cutting speed componentRΩ cos ϕ̃j(t)

to simplify the analysis. From Eqs. (16) and (18), the

corresponding derivatives of the cutting force become

∂Fx(t)

∂x

∣∣∣∣
ẋp

=

N∑
j=1

gj(t)ap

(
Kt cos ϕ̃j(t) +Kr sin ϕ̃j(t)

)
× sinq ϕ̃j(t)qf

q−1
z ,

∂Fx(t)

∂ẋ

∣∣∣∣
ẋp

=

N∑
j=1

gj(t)ap

(
Kt

(
sin2 ϕ̃j(t)− q cos2 ϕ̃j(t)

)
−Kr(1 + q) sin ϕ̃j(t) cos ϕ̃j(t)

)
sinq ϕ̃j(t)

fqz
RΩ

.

(19)

Considering small perturbations ξ(t) around the pe-

riodic solution xp(t), Eq. (3) with (16) can be linearized

as

mξ̈(t) + cξ̇(t) + kξ(t)

= − ∂Fx(t)

∂x

∣∣∣∣
ẋp

(ξ(t)− ξ(t− τ))− ∂Fx(t)

∂ẋ

∣∣∣∣
ẋp

ξ̇(t) .

(20)

Using Eq. (19), and dividing by the modal mass m, one

obtains the linear equation of motion in the form

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t)

= −HG1(t)
(
ξ(t)− ξ(t− τ)

)
−H fz

RΩ
G2(t)ξ̇(t) , (21)

where ωn =
√
k/m is the natural angular frequency,

ζ = c/(2mωn) is the damping ratio, H = Krapqf
q−1
z /m

is the specific cutting-force coefficient, and G1(t) and

G2(t) are the following τ -periodic coefficients:

G1(t) =

N∑
j=1

gj(t)

(
Kt

Kr
cos ϕ̃j(t) + sin ϕ̃j(t)

)
sinq ϕ̃j(t) ,

G2(t) =

N∑
j=1

gj(t)

(
Kt

Kr

(
1

q
sin2 ϕ̃j(t)− cos2 ϕ̃j(t)

)

− 1 + q

q
sin ϕ̃j(t) cos ϕ̃j(t)

)
sinq ϕ̃j(t) .

(22)

For a linear cutting force model (q = 1), these expres-

sions simplify to

G1(t) =

N∑
j=1

gj(t)

(
Kt

Kr
cos ϕ̃j(t) + sin ϕ̃j(t)

)
sin ϕ̃j(t) ,

G2(t) =

N∑
j=1

gj(t)

(
− Kt

Kr
cos (2ϕ̃j(t))− sin (2ϕ̃j(t))

)
× sin ϕ̃j(t) .

(23)

Equation (21) is a linear delay-differential equation,

which includes a periodically varying stiffness (associ-

ated with G1(t)) and a periodically varying damping

(associated with G2(t)). The time-periodic damping is a

new term compared to standard milling models [21–26].

By omitting this term, Eq. (21) reduces to the governing

equation of milling models without velocity-dependent

projections of the chip thickness and the cutting force.

The time-periodic damping is inversely proportional to

the nominal cutting speed RΩ. If G2(t) were a positive
constant, then this term would provide an additional

damping for low spindle speeds, which is known as the

process damping effect [3–6, 10, 14]. Note that G2(t) is

actually time periodic and, as will be shown in Sect. 5,

may become negative.

In Sect. 5, we investigate the time-periodic coeffi-

cient G2(t) and its effects on the stability lobe dia-

grams of milling. We compare the results to those de-

rived for turning operations. Substituting G1(t) ≡ 1

and G2(t) ≡ Kt/(qKr) into Eq. (21) gives the case of

turning processes, for which the process damping effect

was analyzed in [4, 14] with q = 1. The case G1(t) ≡ 1,

G2(t) ≡ Kt/(qKr) occurs for N = 1, ϕ̃j(t) ≡ π/2, and

gj(t) ≡ 1. That is, the special case of turning can be

investigated by considering a single tooth permanently

in cut at 90◦ angular position.

In order to reduce the number of parameters, let us

write Eq. (21) in dimensionless form by introducing the

dimensionless time t̂ = ωnt, the dimensionless angular

velocity Ω̂ = Ω/ωn, and the dimensionless delay τ̂ =
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ωnτ = 2π/(NΩ̂). The derivative with respect to t̂ is

indicated by prime and satisfies ξ̇(t) = ωnξ
′ (t̂). After

dropping the hat, we get

ξ′′(t) + 2ζξ′(t) + ξ(t)

= −pG1(t)
(
ξ(t)− ξ(t− τ)

)
− pτρG2(t)ξ′(t) , (24)

where p = H/ω2
n is the dimensionless axial depth of

cut, and ρ = fzN/(2Rπ) is the dimensionless feed per

tooth. Note that substituting ρ = 0 reduces Eq. (24)

to the governing equation of milling models without

process damping, whereas the substitution G1(t) ≡ 1,

ρG2(t) ≡ C yields Eq. (1) of turning.

5 Process Damping Coefficient and Stability

Charts

The stability of Eq. (24) was analyzed using the semi-

discretization method (for more details, see [20]). Here

we restrict ourselves to linear stability analysis. Ana-

lyzing the global behavior of the system is out of scope

of this paper. For bifurcation and global stability anal-

ysis of milling processes, the reader is referred to [27].

Note that apart from semi-discretization, there exist

several other approaches for computing the linear sta-

bility charts of milling, see e.g. the multi frequency so-

lution [28, 29], the Chebyshev collocation [30, 31], the

homotopy perturbation method [32], or the multi-mode

approach [33].

Figure 4 presents the stability lobe diagrams for

milling with a four-fluted tool (N = 4), damping ratio

ζ = 0.02, cutting-force ratio Kr/Kt = 0.3, and cutting-

force exponent q = 3/4. During semi-discretization, the

regenerative delay was resolved by 150 intervals and

the charts were computed on a 600 × 300 grid in the

plane (Ω, p). The stability lobe diagrams are presented

for nine different radial immersion ratios: up-milling

with ae/D = 0.02, 0.2, 0.6, and 0.8, full-immersion

milling, and down-milling with ae/D = 0.7, 0.5, 0.1,

and 0.02. For each case, two stability charts were com-

puted with ρ = 0 and ρ = 0.01. When ρ = 0, the

time-periodic damping in Eq. (24) vanishes and we get

the stability lobe diagrams of standard milling models

without considering velocity-dependent chip thickness

expressions and cutting force projections. In this case,

the lower envelope of the stability lobes is a horizontal

straight line, it is independent of the angular velocity

Ω. When ρ = 0.01, we can observe the effect of the ad-

ditional time-periodic damping (the process damping)

on the stability charts. The periodic coefficients G1(t)

and G2(t) corresponding to the various radial immer-

sion ratios are also presented with blue and red lines,

respectively.

It can be observed that modeling the velocity-dependent

cutting force introduces a strong low-speed stability im-

provement in the mechanical model of milling opera-

tions with large radial immersion, see the up-milling

with ae/D = 0.8, the full immersion milling, and the

down-milling with ae/D = 0.7. In these cases, the time-

periodic damping coefficient G2(t) is mostly positive.

Accordingly, the stability lobes for ρ = 0.01 shift up-

wards at low cutting speeds compared to the case ρ = 0,

and there is a small improvement in stability at large

cutting speeds as well. Thus, the velocity-dependent

cutting force model captures the low-speed stability im-

provement for large radial immersion ratios.

However, as the radial immersion ratio is decreased

(see the up-milling with ae/D = 0.6 and the down-

milling with ae/D = 0.5), the low-speed stability im-

provement becomes less pronounced. The time-periodic

coefficient G2(t) becomes negative for a larger portion

of the period and the growth of the stable region is

smaller. Decreasing the radial immersion ratio further,

the low-speed stability improvement vanishes, see the

cases of up-milling with ae/D = 0.2 and down-milling

with ae/D = 0.1. In these cases, the time-periodic damp-

ing coefficient G2(t) is almost never positive. Corre-

spondingly, the stability lobes for ρ = 0.01 start to

shift downwards at low cutting speeds compared to the

standard models with ρ = 0. Finally, for very low radial

immersions (up-milling with ae/D = 0.02 and down-

milling with ae/D = 0.02), the coefficient G2(t) is never

positive, and the stability lobes shift towards zero depth

of cut at low cutting speeds when ρ = 0.01. This indi-

cates the presence of negative process damping at low

radial immersions.

The negative process damping contradicts exper-

imental observations [3–10] that the stable region is

larger at low cutting speeds. Therefore, the most im-

portant conclusion of this paper is that this kind of

velocity-dependent cutting force model is not always

able to capture the phenomenon of low-speed stability

improvement. Although the model results in a positive

process damping and improved low-speed stability for

turning processes and milling with large radial immer-

sion, it gives a negative process damping with a decrease

in stability for low radial immersion milling.

6 Geometric Illustration of the Process

Damping Force

In this section, we give a geometric illustration to ex-

plain why the model results in a negative process damp-

ing for milling with low radial immersion. We construct

the additional process damping force originating in the

velocity-dependent chip thickness expression and the
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cutting force projections. We demonstrate the results

for a single tooth of the mill, hence we drop the sub-

script j. We consider those time instants where the

tooth is engaged in cutting (g(t) ≡ 1), and assume a

linear cutting force characteristics (q = 1). For simplic-

ity, we also omit the argument t.

Let F̃ and F denote the nominal cutting force calcu-

lated with the standard chip thickness expression h̃ and

the actual one obtained from the velocity-dependent

model with chip thickness h, respectively. Let their dif-

ference be denoted by ∆F = F − F̃. We introduce

chip thickness vectors with a similar notation: h̃ = h̃r̃,

h = hr, and ∆h = h − h̃, see Fig. 5 for rake angle

αr. Note that the rake angle αr indicated in the figure

was chosen only for illustration purposes. The cutting

force expression itself is independent of the rake angle,

since only the direction of the actual cutting velocity is

taken into account when calculating the cutting force.

Similarly, changes in the tool’s rake and flank face due

to tool wear do not modify the cutting force expression

of this model. The tool geometry may affect only the

cutting-force coefficients Kt and Kr.

According to Eq. (13), assuming a single tooth in

cut with linear cutting force characteristics, the cutting-

force components become

F̃r̃ =Kraph̃ , F̃t̃ = Ktaph̃ ,

Fr =Kraph , Ft = Ktaph .
(25)

Since F̃r̃/F̃t̃ = Fr/Ft = Kr/Kt, the angle between r̃

and F̃ and between r and F are both equal to γ =

arctan(Kt/Kr). Besides, since Fr/F̃r̃ = Ft/F̃t̃ = h/h̃,

the vector triangles (h, h̃, ∆h) and (F, F̃, ∆F) are simi-

lar. Consequently, the additional force ∆F can be plot-

ted by rotating ∆h clockwise with angle γ.

The additional force ∆F is responsible for the pro-

cess damping effect in our model. If the force points to

the right, then its x-directional component ∆Fx is pos-

itive and a positive process damping is introduced in

the system. If ∆F points to the left, a negative process

damping term appears in the governing equation.

According to Fig. 5, the process damping force ∆F

forms an angle γ − (π− 2ϕ̃)−α with the y axis, where

α = ϕ̃− ϕ is the angle between the chip thickness vec-

tors h̃ and h or, equivalently, between the nominal and

the actual cutting velocities ṽ and v. Considering small

vibration velocities (small ẋ), the angle α is also small

and can be neglected compared to γ. Therefore, the an-

gle of ∆F can be approximated by γ− (π− 2ϕ̃). When

the process damping is positive, the force ∆F points to

the right and the inequality

0 < γ − (π − 2ϕ̃) < π (26)

.
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Fig. 5 Direction of the process damping force

holds. Thus, the process damping is positive if

ϕex,cr <ϕ̃ < ϕen,cr . (27)

where ϕex,cr = π/2− γ/2 and ϕen,cr = π − γ/2 are the

critical exit and enter immersion angles.

For low radial immersions, when ϕex < ϕex,cr in up-

milling or when ϕen > ϕen,cr in down-milling, inequal-

ity (27) does not hold when the tooth is cutting. There-

fore, the process damping is always negative. Note that

this additional negative damping does not necessarily

mean instability for systems with periodic coefficients

(parametric excitation), but, as rule of thumb, one can

say that the stable region is usually smaller for negative
periodic damping coefficients than for positive ones.

In the example of Sect. 5, Kr/Kt = 0.3 and γ =

arctan(Kt/Kr) = 73◦, which yields ϕex,cr = 53◦ and

ϕen,cr = 143◦. The direction of the process damping

force in this example is illustrated for five different an-

gular positions of the tooth assuming zero rake angle

in Fig. 6. In the figure, the vibration velocity ẋ and the

angle α are enlarged for better visibility, they are no

longer small, which slightly modifies the critical enter

and exit immersion angles ϕex,cr and ϕen,cr. When ϕ̃ =

45◦ < ϕex,cr (see Fig. 6a) and when ϕ̃ = 160◦ > ϕen,cr

(see Fig. 6e), the force ∆F points to the left implying a

negative process damping. For ϕ̃ = ϕex,cr (see Fig. 6b)

and ϕ̃ = ϕen,cr (see Fig. 6d), the force ∆F is verti-

cal, hence the process damping term vanishes. When

ϕex,cr < ϕ̃ = 90◦ < ϕen,cr (see Fig. 6c), the force ∆F

points to the right indicating a positive process damp-

ing.

Recall that the special case of turning operations is

obtained by considering a single tooth permanently in
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cut at position ϕ̃ = 90◦. Based on Fig. 6c, the velocity-

dependent cutting force model indeed introduces a strong

positive process damping for turning operations. In this

case, the vibration velocity ẋ is perpendicular to the

nominal cutting velocity ṽ. However, for low radial im-

mersion milling, when ϕ̃ is close to 0◦ or to 180◦, and

the vibration velocity ẋ is almost parallel to the nominal

cutting velocity ṽ, one gets a negative process damping.

Finally, a critical immersion ratio can also be deter-

mined, below which always a negative process damping

occurs. According to Eqs. (15) and (27), the process

damping coefficient is never positive for up-milling with

radial immersion ratio ae/D < (1 − cosϕex,cr)/2 and

for down-milling with ae/D < (1 + cosϕen,cr)/2. In the

above example, the critical cases correspond to ae/D ≈
0.2 up-milling and ae/D ≈ 0.1 down-milling. In Fig. 4,

the stability lobe diagrams are presented for these ra-

dial immersion ratios for a four-fluted tool (N = 4)

with nonlinear cutting force expression (q = 3/4). We

can see that indeed the process damping and the low-

speed stability improvement vanish approximately at

these radial immersion ratios.

7 Conclusions

In this paper, we investigated the process damping ef-

fect for the single-degree-of-freedom model of milling

by considering a velocity-dependent cutting force model

following [4, 14, 18]. We took into account that the cut-

ting velocity is affected by the vibration velocity during

chatter. The direction of the actual cutting velocity was

used to calculate the chip thickness and to project the

cutting force to tangential and radial directions. Us-

ing the resulting velocity-dependent cutting force ex-

pression, the linearized equation of motion involves an

additional time-periodic damping term, which is in-

versely proportional to the cutting speed. This addi-

tional damping is a kind of process damping, which may

be responsible for low-speed stability improvement.

Analyzing the linear stability of the governing time-

periodic delay-differential equation, we computed the

stability lobe diagrams of the system and arrived at

an important observation. The experimentally observed

phenomenon [3–10] that the stability lobes shift to-

wards higher depths of cut at low cutting speeds is

often modeled by adding a positive constant process

damping term to the governing equation, which is in-

versely proportional to the cutting speed. This term can

be explained by a cutting force model with velocity-

dependent chip thickness expression and force projec-

tions in case of turning operations [4, 14]. This expla-

nation is also valid for milling operations with large

radial immersion. However, the velocity-dependency in-

troduces a periodically varying negative process damp-

ing for milling with low radial immersion. In this case,

there is a decrease in the maximum stable depth of

cut at low cutting speeds, which contradicts widely ac-

cepted experimental observations. Namely, a significant

amount of experimental data has been reported in the

literature, which verifies the existence of the low-speed

stability improvement, that is, the increase of the max-

imum stable depth of cut at decreasing spindle speeds

[3–10, 14]. However, the authors are not aware of pub-

lications where the decrease of the low-speed stability

was shown by experiments. Consequently, the velocity-

dependent cutting force does not provide a proper ex-

planation to the low-speed stability improvement for all

machining operations, and an extended model is needed

for low radial immersion milling.

The improved stability at low cutting speeds can be

attributed to other physical phenomena. One candidate

is the interference between the tool’s flank face and the

wavy surface of the workpiece [3–6, 8–12, 15]. The flank

contact force is modeled as a damping inversely pro-

portional to the cutting speed as a first approximation,

which gives a similar constant process damping term in

the governing equation. Note, however, that the contact

between the tool’s flank and the workpiece is intermit-

tent, it depends on the vibrations of the tool-workpiece

system, which in fact yields complicated nonsmooth dy-

namics [12]. Stability properties of such nonsmooth sys-

tems can hardly be captured by linear models such as

the one with constant process damping term.

Another possible explanation of the low-speed sta-

bility improvement is the so-called short regenerative

effect [16, 17]. These models account for the fact that

the cutting force is the resultant of a force system dis-

tributed along the tool’s rake face [34, 35]. The gov-

erning equation of motion is a delay-differential equa-

tion where a short distributed delay is superimposed

on the large regenerative point delay. The additional

short delay originates in the fact that the chip needs

a small amount of time to slip along the rake face of

the tool. The additional short delay increases the max-

imum stable depth of cut at low cutting speeds for turn-

ing models [16, 17] and also for milling with any radial

immersion [36]. Therefore, the short regenerative effect

provides an appropriate model to explain the improved

low-speed stability properties observed by experiments.
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