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OsszEFOGLALG Atfeds sikbeli és térbeli tartomanyok egyesitésének Fidles-
Velte konstansara adunk félbecslést a résztartomanyok megielebnstansai és
mérete segitségével. Az eredményt 6sszehasontimksmert, a Babuska-Aziz és
Korn konstansokra vonatkozo hasonlo éedecslésekkel.

ABSTRACT. An upper estimation for the Friedrichs-Velte aethted constants of
the union of overlapping planar and spatial domamgiven in terms of the
constants and sizes of the parts and of the siieeafintersection. The estimation
is compared to similar results for the same andHerrelated BabuSka-Aziz and
Korn constants.

1. Introduction

Motivated by problems in planar linear elasticityeldrichs [7] introduced an inequality
between the norms of two square integrable conguigatmonic functions defined on a plane
domain provided one of the functions fulfils a eertside condition and the boundary of the
problem domain is piecewise smooth. His inequalitg the domain specific optimal constant
figuring therein are connected with some other irtgpd inequalities and corresponding
constants such as the BabuSka-Aziz inequality far divergence equation, the inf-sup
condition in the context of Navier-Stokes flows dadsome smooth classes of domains also
Korn's second inequality in linear elasticity, [®]3 Friedrichs inequality remains valid for
more general domains and it was generalized farapaces of harmonic functions, [2,6,12].

In [15] Velte proved two analogous inequalities foree-dimensional simply connected
domains having certain boundary regularity. He atseestigated the connection of these
inequalities and of the corresponding optimal camist with the BabusSka-Aziz inequality,
with the inf-sup condition and with the Cosseractpum of the domain.

For the numerical utilization of the constants wter to [10, 13, 14].

Despite of their importance exact values of allstheonstants are known in a very few
cases. A useful upper estimation of Friedrichs w@onsfor the class of star-shaped planar
domains given first in [9] has been revised regeil [2,3]. Reference [11] contains an
analogous upper estimation for the Velte constaatspatial star-shaped domain.

The aim of the present paper is to give an upp@mason for the Friedrichs and Velte
constants of the union of two overlapping domairtse estimation is derived essentially in
the same way for two and three-dimensional domassvell. It was motivated by similar
estimations for the related BabuSka-Aziz and Kamstants.

In Section 2 we explain the notation and we resathe preliminary results concerning
the Friedrichs-Velte and related constants.
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In Section 3 we derive the main result and compgarecorresponding known ones from
[2, 5, 8, 10,11].

2. Friedrichs-Velte and related constants

Let Q be a bounded planar or spatial domain the bountfaryf which will be further
specified below. We denote | the size of) which means the area for plane domains and
the volume for spatial domains. Let(Q) be the usual Hilbert space of square integrable
functions over). Forf, g € L,(Q2) we denote byf, g)gq = fﬂ fg their inner product, and
1
1l
valued functions, g € L,(Q)"™ we use the inner produtf, g)on = fﬂ Yr=1fkgr and the
respective norm.

by lIf lloq the norm off. The integral mean gf overQ is{f)q = —(1, f)o,n. FOr vector

The Friedrichs inequality reads in the notatiomthaf present paper as follows.

Proposition 2.1 (Shapiro, [11])Let Q be a bounded plane domain satisfying an inteooec
condition and lew, € Q. Letu andv be arbitrary square integrable conjugate harmonic
functions onQ. Then, for some finite positive constaft{g)) andI'(Q, w,), which do not
depend ornw andv Friedrichs inequality holds in either of the forms

[ullgo < TVl o provided (u)q = 0 or 1)
lull o < T(Q wo)llvllg o provided u(w,) = 0. 2

According to [2] Friedrichs inequality remains whlfor the larger class of planar John
domains.

The optimal constarit(Q), called Friedrichs constant of the plane donggis the least
positive number such that the inequality (1) idifleld for all pairs of conjugate harmonic
functionsu andv. The exact value df(Q) depends only on the shape(but does not
depend on its siz&(Q,w,), called Friedrichs constant with respect to thmfe,, depends
additionally on the interior point,. We have

1< T(Q) < T(Qw,) < —2 (). 3)

|D(wo,r)l
whereD (w,, r) denotes any disc centeredwgwith radiusr contained in the interior dt,
see [16].
In order to formulate a three-dimensional analo§yFoedrichs inequality Velte [15]
considers harmonic functiomsandv = (v,, v,, v3) of three variables conjugate in the sense
of the Moisil-Teodorescu equations

rotv = —Vu and divv = 0. (4)
Using these notations, the Velte inequalities heefdllowing.

Proposition 2.2 (Velte, [14])Let Q be a bounded simply-connected spatial domain @Ath
boundary. Then there are constai(®) > 1 andl’'(Q) > 1 depending only on the shape(f
such that for any pait andv conjugate in the sense of (4) the inequalities

lullg. < T(@IIvI[5 o provided (u)o = 0 and )
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Ivllg o < T)lullf o provided v-n = 0 on 9Q (6)

hold, wheren denotes the outer unit normalag. m

The optimal constart(Q), called Velte constant of the spatial domainis the least
positive number such that the inequality (5) idileld for all pairs of conjugate harmonic
functionsu andv.

Obviously, there is an analogy between (1) in tlaagr case and (5) in the spatial case
involving not only the inequalities but also therresponding normalizations. Indeed, if we
set the first two coordinates of the vector functioin (4) zero and if we let the third
coordinatev; depend only om; andx,, then (4) reduce to the Cauchy-Riemann equations
between the harmonic functionsand—v5; and (5) reduces to (1).

Justified by this analogy we denote in this paped @) both Friedrichs and Velte
constants and refer to them as Friedrichs-Veltestzots.

In [4] inequalities for conjugate harmonic diffetiah forms are examined, which contain
the Friedrichs and Velte inequalities as specisésa

Also in [4] the author derives also a correspondebetween the Friedrichs-Velte
constant and the BabuSka-Aziz constaf) figuring in the BabuSka-Aziz inequality, which
guaranties the stable solvability of the divergergmiationdivu = q for q € L,(Q) with
(q)q = 0in the Sobolev spadél(Q)" of vector functions with square integrable gratien
over() and zero trace on the boundary, i.e. we Hayg, < Cllqlloq for the solutioru with
some positive finite constagtdepending not, where|u|, o = [Igrad ull, o. The Babuska-
Aziz constant () of the domain is the least possible of the above constant§]l @f4].

Proposition 2.3 (Costabel, [2,4])For any bounded open $etthe BabuSka-Aziz constant
C(Q) is finite iff the Friedrichs-Velte constaR{Q) is finite, and there holds

C(Q) =T(Q) + 1. (7)

Both constants are further related to other immbrtlomain specific constants, such as the
inf-sup constanB(Q) and the Cosserat constarX):

rQ) +1=c(Q) =$=@, 8)

and if the boundary of the domain is smooth endoghe Korn constari () of the domain
K(Q) = 2¢(Q), c.f. [1,2].

3. Main result

3.1. Estimations

Despite of their importance exact values of thediichs-Velte constants are known only
for a few domains. Such examples are the disc,etlgse, some domains obtainable as
conformal maps of the unit disc in the plane [17,48d the sphere in three dimensions.
However there are useful upper estimations for-&taped domains, see [2,3,9] for planar
and [11] for spatial domains. In order to obtaitireations for the examined constants of
other than star-shaped domains, one can considansuof (star-shaped) domains and derive
estimations for the constants of these unionsrimgeof the constants of the parts, see [8]. In
this section we develop such an estimate for tiedRchs-Velte constant of the overlapping
union of two arbitrary planar or spatial domainsgd @ompare it to other existing ones for the
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Babuska-Aziz and Korn constants. In order to sifyiphie notation we denote the nothil, o
in this section by{-||. First we need the following

Lemma 3.1Let Q denote a bounded planar or spatial domain, andl et a subdomain
such tha{A| > 0. If (f), = 0 for f € L,(Q), then there follows

If —(Hall® < IIfI7 < %Ilf —{Nall®. 9)
PROOF. One easily verifies the equality
IFIZ = 1If = (Fall® + 1QKFHS. (10)

Omitting the nonnegative term on the right-handesaf (10) yields the left-hand side
inequality. Next we uséf), = 0 and estimate by the Cauchy-Schwarz inequality:

(la £) = (uaf) 10NAL- [y, £2 < (01 = 14D - J, f? 1)
Substituting this into (10) and rearranging gives
%II]‘II2 <If —{(Nall® (12)

which is equivalent to the right-hand side inedqyah (9). Equality occurs here if we sét=
1 — x4, Wherey, means the characteristic function of the subdonzaim

The left-hand side of (9) was implicitly alreadyliaed in [7] and [9] in the planar case
and in [11] in the spatial case.

Lemma 3.1 makes it possible to change the normalizéu), = 0 in (5) to{u), = 0 for
some subdomaid € Q in order to obtain a modified version of the Frields-Velte
inequalities.

Lemma 3.2LetQ be a bounded planar or spatial domain and le¢ a subdomain @i such
that|A| > 0. If the Friedrichs-Velte inequality holds énwith the Friedrichs-Velte constant
I'(Q), then there is a constdniQ, A) depending only on the domanand its subdomain
such that the Friedrichs-Velte inequality holdsdonjugate harmonic functions satisfying the
normalization{u), = 0 instead of(u)q = 0. Moreover, the optimal constanf%() and

I'(Q, A) are connected by
r(Q) < T(Q,A4) < %F(Q). (13)

PROOF. Substitute the result of Lemma 3.1 intoRhedrichs-Velte inequalitym

Remark. The Friedrichs-Velte constarit§¢, A) of the domain with respect to a subdomain
can be seen as a generalization of the Friedrigite\éonstantE(Q, w,) with respect to an
interior point.

The main result of this paper is the following

Theorem 3.3 Let beQ = Q,; U Q, andQ, = Q; N Q, such thatQ| > 0. If the Friedrichs-
Velte inequality holds for either of the domaidsandQ,, then it holds also for their unidh
and there also follows

194] |Qa]
rQ) < mr(ﬂl) + IQ_SIF(QZ)' (14)
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PROOF. We give the proof in the spatial case, fastpractically the same in the planar case.
Let the conjugate pair, v € L,(Q) be such thafu), = 0.

a2 Jq u? f91”2+f92 w-fo u? Jo,u' o, vt

= = < z 15
ol 2 Jo 012 Jo, W17 fo,lvP? (13)
By Lemma 3.2 there follows
L < T(0,,90) +T(2,09) (16)
which implies
F(Qr QS) < F(Qll QS) + F(QZJ QS) (17)

The estimation (14) immediatly follows by using thequality (13).m

Example 3.4 Theorem 3.3 can be utilized to obtain upper esemdor Friedrichs-Velte
constants of more general domains using some kngyper bounds for simpler ones. To
exemplify this letQ; be an L-shaped domain which is the union of tvabamegles with sides 1
andL + 1 (L > 1) which intersect in a square with sidelength le @bmain(, is star-shaped

2
and the estimation from [2] yield¥Q,) < (L + % + /LZ + L+ %) . LetQ, be congruent to

Q, and sef)l = Q, U Q, such that)l = Q; N Q, is a rectangle with sides 1 ahd- 1. For the
domainQ, which is not star-shaped, Theorem 3.3 gives thpeu estimatiom'(Q) <

(4 - sz) I'(Q,) which differs from that fof'(Q,) only by a factor at most 4

3.2. Comparison

In this section we compare the main result to exgsbnes for the related constants in the
case of planar and spatial domains as well.

First we consider Theorem 3.1 in [8] for the Balaidlziz constant of the union of
finitely many overlapping star-shaped domains. Pecti comparison is impossible because
this result does not contain the exact BabusSka-&airstants of the subdomains but only an
upper estimation of their value. In order to oveneothis difficulty we follow the proof of
Theorem 3.1 in [8] for the case of the union of taerlapping domains and reformulate it
with keeping the BabuSka-Aziz constants of the sufmins in the resulting formula. We
achieve the following

Proposition 3.5Let beQ = Q; U Q, andQ, = Q; N Q, such thatQ| > 0. If the Babuska-
Aziz inequality holds for either of the domaifig andQ,, then it holds also for their unidh
and there also follows

C(Q) < max {% C(Q,-)}. (18)

We utilize Corollary 3.5 only as a comparison te thain Theorem 3.3, however, it could
be of interest on its own.
To this end we substitute (7) into (18) and we mbta

r@) < max {m () + "’m\f'} (19)
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This shows that (14) gives a better upper estimafiow I'(Q) than (19) if|Q, \ Q| >

10,| andr(Q,) < 20l
10,

Another possibility for comparison gives an analmguwesult from [10] for the related
Korn constanK () in the case of smoothly bounded planar simply-ected domains. It
reads

K(@) < max {K(g )+ = |(w((al) + K@) } (20)

and it is an improved version of a similar restoinfi [5]. Substituting< () = 2 + 2I'(Q) into
the estimation (14) we obtain

19Q2]
|Qs]

2|Q|

194
<
K(Q) T

_|Q|K(Ql)+

o1 K@) — (21)

which is equivalent with the main result (14) andtbe other hand it can be compared to
(20). For the sake of simplicity suppose that tlem@ domairf), is similar tof), and let be
Q] < 19Q,]. In this case we havé(Q,) = K(Q,) and the minimum in (20) is attained for
j=1:

K@) < K@) + 12 (VK@) + K@) (22)

If Q] < 4|Q,]or if 4]Q,] < Q] < 8|Q,| andK(Q,) < m'Zmlln 1 then (21) constitutes a better
upper estimation than (22). 8| > 8|Q,]|, then (22) is definitely better than (21).

Finally we compare Theorem 3.3 to a direct uppeimasion for the Velte constant
derived in [11] for the class of three-dimensios#&r-shaped domains. We realize this
comparison on an example, where the domais the union of two overlapping unit spheres,
which is star-shaped for example with respect éociinter of the line segment connecting the
centers of the spheres. The evaluation of the asbmfrom [11] yields

2
2+d

rQ) <2 (2 j(ﬂ \/9+m+ d ) , (23)

where0 < d < 2 denotes the distance of the centers of the sphEne®rem 3.3 can also be
utilized in this case to obtain the upper estinratio

64

rQ) < i) (24)

where we have also used that the Velte constaatsphere equals 2, see [15]. A numerical
comparison shows that (24) gives a better upp@mason than (23) iD,5012...< d < 2.
An even better upper estimation than (24) give3 {@9every0 < d < 2.

4. Concluding remarks

In this paper the Friedrichs-Velte and related tamts of the union of overlapping
domains were investigated. These domain specifistamts are especially of interest since
they are involved in many problems in fluid dynasnand in elasticity theory but their exact
value is known only for a few types of domains. Tingn result is an upper estimation of the
Friedrichs-Velte constant of the union of two oapping domains in terms of the constants
and sizes of the parts and of the size of theargaction. It can be utilized to obtain useful
estimations for the discussed constants of moretoated domains using the exact values or
upper estimations of the simpler subdomains. ttaspared to existing estimations for the
related BabuSka-Aziz and Korn constant. In ordemake this comparison possible we
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developed a new upper estimation for the BabuSka-Apnstant of the union of two

overlapping domains based on an existing constmictiom [8]. A detailed comparison

shows that the main result is comparable to exjstelated ones: it yields occasionally a
better upper estimation but it is not definitelytbein all cases.
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