Effect of field sampling design on variation partitioning in a dendritic stream network

.

8

Péter Sály ${ }^{\text {a,* }}$, Tibor Erős ${ }^{\text {a }}$
${ }^{\text {a }}$ MTA Centre for Ecological Research, Balaton Limnological Institute, H-8237 Tihany,
Klebelsberg Kuno u. 3., Hungary
e-mail addresses: saly.peter@okologia.mta.hu (PS), eros.tibor@okologia.mta.hu (TE)

Abstract

Variation partitioning is one of the most frequently used method to infer the importance of environmental (niche based) and spatial (dispersal) processes in metacommunity structuring. However, the reliability of the method in predicting the role of the major structuring forces is less known. We studied the effect of field sampling design on the result of variation partitioning of fish assemblages in a stream network. Along with four different sample sizes, a simple random sampling from a total of 115 stream segments (sampling objects) was applied in 400 iterations, and community variation of each random sample was partitioned into four fractions: pure environmentally (landscape variables) explained, pure spatially (MEM eigenvectors) explained, jointly explained by environment and space, and unexplained variance. Results were highly sensitive to sample size. Even at a given sample size, estimated variance fractions had remarkable random fluctuation, which can lead to inconsistent results on the relative importance of environmental and spatial variables on the structuring of metacommunities. Interestingly, all the four variance fractions correlated better with the number of the selected spatial variables than with any design properties. Sampling interval proved to be a fundamentally influential sampling design property because it affected the number of the selected spatial variables. Our findings suggest that the effect of sampling design on variation partitioning is related to the ability of the eigenvectors to model complex spatial patterns. Hence, properties of the sampling design should be more intensively considered in metacommunity studies.

Key words: metacommunity; fish assemblage; species distribution modelling; network topology; Moran's eigenvector maps (MEM); relative importance of space and environment

1. INTRODUCTION

1.1. Properties of field sampling design

Properties of field sampling design set the window through which ecologists study the spatial and temporal distribution of organisms and the determining factors affecting distribution patterns. The frame of this window is the spatio-temporal scale of the study, which has three elements in ecological sampling theory. Focusing only on the spatial aspect of the scale, the grain size is the size of the sampling units (e.g., quadrates); the sampling interval is the average distance between the neighbouring sampling units; and the extent is the total area included in the investigation (Wiens 1989; Legendre \& Legendre 2012 p786). Sample size, another property of sampling design, is the total number of sampling units in the sample, and it is a simple measure of the sampling effort. An additional property is the topology of the sampling units. Topology describes the geometry by which the sampling units are ecologically connected to each other. When sampling units considered being connected, researchers assume that material and individuals can move from one sampling unit to the other one (e.g., Peterson et al. 2013).

1.2. Variation partitioning

Ecologists try to reveal the mechanisms controlling the distribution of organisms by investigating their spatial distributional patterns. One of the most frequently used statistical methods for quantifying different sources of variation of communities is variation partitioning (or variance partitioning), which was introduced into the ecological methodology by Borcard et al. (1992). In a classical approach, this method uses a sites-by-species community matrix as response data, and a sites-by-environmental variables matrix and a sites-by-spatial variables
matrix as explanatory data to decompose additively the total variation of the response data into four variance fractions/proportions by fitting canonical ordination models (canonical correspondence analysis [CCA] or redundancy analysis [RDA]) on the data. One of the variance fractions is the variation explained exclusively by the studied environmental variables, denoted by [a] in the original paper of Borcard et al. (1992). This fraction is usually considered to reflect the importance of environmental effects which could not be associated to spatial co-variation. Another variance fraction ([c]) is explained purely by the spatial variables, and gives estimation on community variation that has no relationship with the environmental variables included into the environmental data matrix. However, depending on the elaboration of the study, there is a possibility that this fraction incorporates some variation that would be explainable by a latent, unmeasured environmental variable. A third variance fraction ([b]) is explained jointly by the studied environmental and spatial variables. In this case the effects of environmental and spatial factors on community structure cannot be disentangled. The last fourth variance fraction is the unexplained residual variation [d].

Peres-Neto et al. (2006) improved variation partitioning by introducing the adjusted redundancy statistic or adjusted coefficient of multiple determination $\left(\mathrm{R}^{2}{ }_{\text {adj }}\right)$. The adjusted redundancy statistic expresses the unbiased form of the variance fractions/proportions which is controlled for the number of explanatory variables in the model and the sample size.

Since its introduction, variation partitioning has become a fundamental method to infer the measure and importance of environment- and space-related mechanisms structuring communities, especially in the field of metacommunity researches. Results mirror that this measure and importance tend to vary according to the studied group of organism (e.g.,

Cottenie 2005; Beisner et al. 2006; Marzin et al. 2013), ecological data type (e.g., Cushman \& McGarigal 2004; Hoeinghaus et al. 2007; Sály et al. 2011), ecosystem type (e.g., Cottenie 2005; Heino et al. 2015; Soininen \& Weckström 2009), spatial scale of the study (e.g., Cushman \& McGarigal 2004; Declerck et al. 2011; Heino et al. 2015; Mykrä et al. 2007), study region (e.g., Cottenie 2005) and study years (e.g., Mesquita et al. 2006).

1.3. Relationship of sampling design and variation partitioning

Differences in the study design are among the most important factors that could lead to apparently inconsistent results of variation partitioning studies. In fact, Dray et al. (2012 p262-263) explicitly warned that sampling design introduces an artificial spatial structure into the data in any field study. Despite this casual relevancy, only a little interest has been taken in studying systematically how sample design influences the detected spatial variation of assemblages, although many papers have highlighted the importance of certain spatial scale elements in describing the spatial structure of beta diversity (e.g., Barton et al. 2013; Heino et al. 2015; Mykrä et al. 2007; Soininen 2015).

In two simulation studies, Smith \& Lundholm (2010) and Gilbert \& Bennett (2010) found that spatial configuration and sampling strategies affect the results of variation partitioning. Further, they also found that variation partitioning did not model the simulated spatial structures of the data correctly. Migration rates (i.e., dispersal), as a spatial pattern-generating mechanism, influenced both the environment- and space-related variation (Smith \& Lundholm 2010); and significant spatially explained variations were found even when the simulated data did not contain spatial component (Gilbert \& Bennett 2010).

Spatial extent, sample size and the topology of the sampling units could obviously affect the environmental and spatial variables that researches consider relevant to describe the spatial variation of assemblages. In many researches, these explanatory variables are identified via a forward selection procedure (Blanchet et al. 2008) prior to variation partitioning. Although, the adjusted form of the variation proportions (Peres-Neto et al. 2006) takes the number of the explanatory variables into account which helps to compare the results of different studies, the effect of the sampling design properties on the number of the relevant (i.e., selected) explanatory variables has not been examined yet.

For stream-dwelling organisms like fish and aquatic molluscs that have no capacity for terrestrial movement, dispersal connectivity among habitats is completely determined by the physical dendritic structure of the stream network (Fagan et al. 2009), hence topology, beside the dispersal ability of the animals, can be supposed to play a prominent role in their spatial dynamics. The importance of topology of dendritic stream networks has been studied in connection with, for example, fish dispersal (Hitt \& Angermeier 2008, 2011) and in the context of the distance-decay similarity relationship for aquatic invertebrates (e.g., Brown \& Swan 2010; Cañedo-Argüelles et al. 2015), but the relationship between the topology of the effectively sampled locations of a dendritic network and the space-related community variation is still little known. In fact, the behaviour of variation partitioning as a response of changes in sampling design is still uncovered; therefore we do not know which sampling design properties and variance fractions may be statistically associated to each other.

In spite of the warning results mentioned above and the lack of a solid understanding of the relationship between sampling design properties and variation partitioning, the latter has been
frequently used to study the metacommunity organizations of a wide variety of taxa (e.g., Alahuhta \& Heino 2013; Baldissera et al. 2012; Buschke et al. 2015; Campbell et al. 2015; Erős et al. 2012; Fernandes et al. 2014; Göthe et al. 2013; Grönroos et al. 2013).

1.4. Aims

In this paper, we present how sampling design can affect the result of variation partitioning, and how properties of sampling design can influence the number of the selected explanatory variables and the change of the individual variance fractions in a dendritic stream network using presence-absence data of fish species. Applying simple random sampling, we focused on the specific questions as follows. (1) How does sample size (sampling effort) impact the expected value of the estimated variance fractions? Assuming a fix sample size, (2) how does the change of sample configuration influence the relative importance (i.e., rank order) of the estimated variance fractions? (3) Does the change in the sample similarity cause a proportional change in the result of variation partitioning? (4) In what extent can the change of properties of sampling design other than sample size (spatial extent, sampling interval, and topology) explain the change of the individual variance fractions and the number of explanatory variables used for partitioning? Finally, (5) How strong is the association between the amount of the unique variance fractions and the number of the selected explanatory variables used for partitioning?

Analyses of this study progressed through three main phases. First, environmental data were gathered and fish data were predicted by a statistical model using field survey data. Second, variation partitioning of fish data was done iteratively using simple random sampling with different sample size. Last, results of the variation partitioning were analysed statistically.

2.1. Studied stream system, environmental variables, and fish data

The studied stream system is located in Hungary (Fig. 1), and contains two small rivers, the Zagyva (179 rkm) and the Tarna (105 rkm), and their tributaries (hereafter ZT system). The catchment area of the ZT system is $5676 \mathrm{~km}^{2}$, and it has partly hilly ($500 \mathrm{~m}>$ altitude ≥ 200 m a.s.l.), partly lowland (altitude $<200 \mathrm{~m}$ a.s.l.) geomorphology.

The GIS model of the ZT system used for this study consisted of 115 stream segments (sensu Frissell et al. 1986), that were considered as sampling units (see Erős et al. 2011). Stream segments were characterized with 20 abiotic environmental variables (see Table 1). We used variables which could be relatively easily collated in a GIS environment for each segment, and were widely and successfully used for the predictive modelling of stream fish in former studies (e.g., Park et al. 2006; Hermoso et al. 2011, 2013, 2015).These GIS based data were used from the following data bases: WorldClim (Hijmans et al. 2005), BioClim (Hijmans et al. 2005), Global Human Footprint (Sanderson et al. 2002), Corine Land Cover (Steenmans \& Büttner 2006). Note, that instream variables (e.g., substrate composition) could not be used in this case, because these data were not available for all segments. Although this may influence the predictive power of the models, most fish based models use GIS based data exclusively
for predictive modelling (e.g., Leathwick et al. 2005; Hermoso et al. 2011, 2013, 2015; Filipe et al. 2013). Since we used the same variables for each stream segment, which were determined by the same analytical procedure, it is likely that our modelling approach did not influence the final outcome of our simulations, and the main conclusions.

Fig. 1. Location of the Zagyva-Tarna stream system in Hungary. Stream segments (stream reaches between two confluences) were considered as sampling units of the study.

Table 1. Abiotic environmental variables used in this study. All the listed variables acted as a potential predictor in the MARS modelling. However, only variables marked with an asterisk (*) were included in the variation partitioning procedure, because of strong linear associations among the variables.

Variable	Description	Min.	Max.	Mean \pm
*Distance from	Stream distance of the midpoint of the segment from the	0.68	163.22	$20.35 \pm$
source	flow origin. (rkm)			28.17
	Sinuosity index of the segment. Calculated as (1-d)/d,			
	where 1 is the channel length, d is the Euclidean distance	0.00	0.72	0.16 ± 0.13
*Sinuosity index	between the upstream and downstream endpoints of the			

Variable	Description	Min.	Max.	Mean \pm SD
Altitude	Average altitude above sea of the raster cells touched by the segment. Derived from the Alt16 raster of the WorldClim database. (m)	83.00	582.14	$\begin{aligned} & 178.23 \pm \\ & 84.76 \end{aligned}$
*Annual mean temperature	Annual mean temperature averaged across the raster cells touched by the segment. Derived from the BIO1 raster of the BioClim database. $\left({ }^{\circ} \mathrm{C}\right)$	7.69	10.70	$\begin{aligned} & 10.03 \pm \\ & 0.59 \end{aligned}$
Maximum temperature of the warmest month	Maximum temperature of the warmest moth averaged across the raster cells touched by the segment. Derived from the BIO5 raster of the BioClim database. $\left({ }^{\circ} \mathrm{C}\right)$	23.47	27.28	$\begin{aligned} & 26.48 \pm \\ & 0.63 \end{aligned}$
Minimum temperature of the coldest month	Minimum temperature of the coldest moth averaged across the raster cells touched by the segment. Derived from the BIO6 raster of the BioClim database. $\left({ }^{\circ} \mathrm{C}\right)$	-7.10	-4.28	$\begin{aligned} & -5.31 \pm \\ & 0.67 \end{aligned}$
Isothermality	The proportion of the mean diurnal temperature range to the annual temperature range averaged across the raster cells touched by the segment. Derived from the BIO3 raster of the BioClim database. (\%)	29.00	31.00	$\begin{aligned} & 30.35 \pm \\ & 0.54 \end{aligned}$
Temperature seasonality	Averaged value of the raster cells touched by the segment. Derived from the BIO4 raster of the BioClim database. (Standard deviation $\times 100$)	7523.71	7937.44	$\begin{aligned} & 7828.59 \pm \\ & 67.03 \end{aligned}$
Annual precipitation	Annual precipitation averaged across the raster cells touched by the segment. Derived from the BIO12 raster of the BioClim database. (mm)	518.00	648.86	$\begin{aligned} & 546.38 \pm \\ & 23.45 \end{aligned}$
Precipitation of the wettest month	Precipitation of the wettest month averaged across the raster cells touched by the segments. Derived from the BIO13 raster of the BioClim database. $\left({ }^{\circ} \mathrm{C}\right)$	67.00	90.29	$\begin{aligned} & 71.88 \pm \\ & 4.30 \end{aligned}$

Variable	Description Min.	Max.	$\text { Mean } \pm$ SD
vegetation	segment. Derived by unifying the area of the land cover		
(CLC)	patches coded by 321, 322, 323 and 324 in CORINE		
	2006 database.		
	Relative area of inland wetlands within a 60 m width		
	buffer zone around the segment. Derived by unifying the 0	0.47	0.02 ± 0.06
(CLC)	area of the land cover patches coded by 411 and 412 in		
	CORINE 2006 database.		
	Relative area of inland water bodies within a 60 m width		
	buffer zone around the segment. Derived by unifying the 0	0.86	0.03 ± 0.11
(CLC)	area of the land cover patches coded by 511 and 512 in		
	CORINE 2006 database.		
	Relative area of ponds within a 60 m width buffer zone		
*Ponds	around the segment. Derived from a national Water 0	0.32	0.02 ± 0.06
	Framework Directive GIS layer.		

Fish occurrence (presence-absence) data associated to each stream segment was obtained from predictive species distribution modelling. It was necessary, because fish data from field surveys (altogether 251 surveys conducted at 132 sites between 2003 and 2014) were only available for 68 segments (literature and own data on a total of 42 species). For building the species distribution models we used actual field data. The standardized sampling protocol consisted of the single pass electrofishing of representative habitats of the segments, with the total length examined depending on the type of the waterbody (for details see Erős, 2007). For streams, a battery-powered electrofishing device was used (Hans-Grassl IG 200/2B, PDC). The crew sampled a 150 m long reach, slowly walking upstream and with single-pass fishing of the whole stream width. For non-wadeable rivers, boat electrofishing was applied with a
generator driven device (Hans-Grassl EL64 II GI, SDC), slowly moving downstream and electrofishing 500 m long reaches in near shore areas. This division in sampling length between streams and rivers was necessary to optimize sampling effort and to sample fish assemblages representatively and proportionally to the size of the water body (see e.g., Oberdorff et al. 2001; Pont et al. 2006). Species richness estimators showed that such an effort catches most fish species ($>85 \%$) in a single occasion in both streams and rivers in this ecoregion (see Erős, 2007; Sály et al. 2009 for details). After identification and counting, fish were released into the water at the site of capture. Note, that segments where former faunistic studies did not justify the existence of fish were considered unrepresentatively surveyed.

As a first step of the predictive modelling, fish data of the surveys were pooled within the stream segments. Species occurring at less than four segments ($\sim 5 \%$) were excluded from the analysis. Data of the remaining species were used as a training data set in a multiresponse multivariate regression splines (MARS) model (Leathwick et al 2005). In the model, the 20 abiotic environmental variables were used as potential predictors. MARS was fitted with a generalised linear model with binomial error distribution option on the training data. Predictive performance of the model was evaluated by a mean AUC value (area under a receiver operating characteristic curve) computed from ten 4 -fold cross validations for each species separately. Species with a mean AUC value less than 0.7 (an arbitrary threshold) were excluded (see Appendix), and the model was refitted on the data of the retained species. Consequently, weakly predictable species, e.g., ubiquitous ones, did not influence the general predictive performance of the model. In the second step, the trained MARS model was fitted on all the stream segments to get occurrence probability of the species. As a last step, occurrence probabilities were converted into binary presence-absence data using a threshold
criterion that maximizes the sum of sensitivity and specificity (Jiménez-Valverde \& Lobo 2007), which resulted in a complete fish data set for the entire ZT system.

2.2. Reducing the number of environmental variables

Collinearity among explanatory variables can lead to unreliable parameter estimations and to inflation of the coefficient of (multiple) determination of statistical models. In variation partitioning, strongly correlated explanatory variables can cause negative estimated variance fractions (Peres-Neto et al. 2006). Therefore, during preliminary data analyses, the 20 environmental variables were screened on the basis of pairwise Pearson correlations (its absolute value would not be greater than 0.7) and expert judgement to find a subset of them in which there was no strong collinearity among the variables. As a result of this screening process 10 out of the initial 20 environmental variables were selected for further analysis (marked with an asterisk in Table 1), and used as input variables in forward selection procedures before variation partitioning.
2.3. Iterative randomization procedure: sampling, forward selection, variation partitioning and sampling design characterization

The statistical sampling distributions of the variance fractions were generated using an iterative randomization procedure (Monte Carlo simulation). This procedure was conducted with four sample sizes, choosing $23,46,69$, and 92 stream segments randomly from the 115 ZT stream segments (statistical population). These sample sizes corresponded to 20\%, 40\%, 60% and 80% information coverage of the statistical population.

Each random sample was analysed as if it had been a single field sample, correspondingly, the steps of its analysis followed a scenario that is commonly used in variation partitioning by field ecologists. When it was necessary, the geographic localization of the unique stream segments was modelled by latitude and longitude coordinates of the midpoint of the segments during the analysis process. Segment midpoint is the point that is halfway stream distance from both endpoints of the stream segment.

The iteration process was initiated by choosing a random sample of the ZT segments. Then, the sample was subjected to a Moran's eigenvector maps (MEM) analysis (Dray et al. 2006) to get the potential spatial explanatory variables of the particular sample. To start this analysis, the pairwise stream distance matrix of the midpoint of the sample stream segments was transformed into a matrix of normalized distances:
$\mathrm{d}^{\prime}{ }_{\mathrm{ij}}=1-\left(\mathrm{d}_{\mathrm{ij}} / \mathrm{d}_{\text {max }}\right)$
where $d^{\prime}{ }_{i j}$ is the normalized distance for the distance of segment i and segment $j ; d_{i j}$ is the original distance (rkm) of segment i and segment $j ; d_{\max }$ is the maximum of the pairwise distances (rkm) of the sample segments.

Two stream segments were considered neighbours (i.e., connected) only if there was a direct path (i.e., a path that did not go through a third stream segment included in the given sample) between them along the stream network. Otherwise they were considered unconnected. Connectivity relationships were summarized in a symmetric binary matrix (CM) in which 1 s coded the connected and 0 s the unconnected pairs of segments.

In order to get a spatially weighted connectivity matrix, CM was weighted with the matrix of the normalized distances. Then, the result matrix (Hadamard product) was eigen-analysed. Eigenvectors with positive eigenvalue were retained as potential spatial explanatory variables of the given sample.

After MEM analysis, the fish data of the sample was checked, and species that did not occur in any sample segments were deleted from the data table. Similarly, environmental data of the sample were checked as well, and environmental variables with zero variance were deleted.

Before variation partitioning, a forward selection procedure (Blanchet et al. 2008) was applied to identify the relevant environmental and spatial variables that can serve as explanatory variables of the given sample. Forward selection was controlled by three stopping criteria to avoid overfitting: (1) a preselected variable had to explain a significant portion of the explained variance, in other words, significance value of a preselected variable had to be larger than 0.05 ; (2) a preselected significant variable had to increase the coefficient of multiple determination $\left(\mathrm{R}^{2}\right)$ by at least 0.01 ; (3) the adjusted coefficient of multiple determination (R^{2} adj $)$ did not have to be larger than a value of that derived from a global test (i.e., including all the environmental variables or spatial variables). The numbers of the selected environmental and spatial variables (i.e., the numbers of the effective explanatory variables) were recorded.

Then, an RDA-based variation partitioning with adjusted coefficients of multiple determination was used to get the purely environmentally, the purely spatially, the jointly explained, and the residual variance fractions (Peres-Neto et al. 2006).

After variance partitioning, sampling design properties of the particular random sample were recorded. Spatial extent was measured as the area of the rectangle expanding between the westernmost and easternmost, and southernmost and northernmost sample segments. Sampling interval was measured as the average Euclidean distance between the neighbouring stream segments. We note here that during preliminary analyses sample interval had been measured by using stream distances instead of Euclidean distances, but this showed weaker relationships with the variance fractions than Euclidean distance did, hence it was omitted. Topology of the sampling units in a certain sampling design was quantified as average eccentricity of the nodes of a graph of the sample segments. This connected graph was made from the symmetric binary connectivity matrix (CM, see above), and its nodes represented the sample segments, whereas its (unweighted) edges represented the connections between them (see Erős et al. 2011 Fig. 1). Eccentricity of a single node is the maximum topological (shortest path) distance between the particular node and any other node of the graph. The greater the mean eccentricity of the graph nodes, the more elongated the topology of the sampling design. In preliminary analyses, we had quantified the topology by other graph theoretic measures (Harary index, degree centrality, betweenness centrality, closeness centrality) (Minor \& Urban 2008; Ricotta et al. 2000), but these measures were rather strongly associated (mostly linearly) with each other, therefore we used only the mean eccentricity in the main analysis.

Random sampling and the subsequent analysis process described above was iterated 400 times at every sample size level, which resulted in a total of 1600 (4 sample sizes $\times 400$ repetitions) unique sampling designs and variation partitioning analyses.

After the randomization procedure, variation of the statistical population (i.e., data of all the 115 ZT segments) was also decomposed by the same analytical procedure that had been used for the random samples.

2.4. Statistical analysis of variation partitioning results

Finishing the random sampling procedure, the sampling distribution of the variance fractions and the number of the selected environmental and spatial explanatory variables was characterised by descriptive statistics.

Variance fractions of all the 1600 partitioning analyses were ranked to quantify their relative importance; and the frequency distribution of the unique rank order vectors was used to assess the robustness of the variance partitioning against sampling design alteration for every sample size.

The strength of the general relationship between sampling design modification and the results of variance partitioning was quantified and tested by Mantel tests with 999 randomizations for each sample size. In these tests, pairwise sample similarity was measured by Kulczynski index, and pairwise difference in variation partitioning results by Euclidean distance using variance fractions [a], [b] and [c].

Specific relationships between the variance fractions, the number of selected environmental and spatial variables, and sampling design properties were explored by generalised least squares regression models (i.e., weighted linear regression) with maximum likelihood estimation (Zuur et al. 2009). Variance fractions and the number of the selected environmental and spatial variables were the response variables, whereas spatial extent, sampling interval, topology measure acted as explanatory variables nested within the sample size (categorical variable) in each regression model. Because variance of the response variables depended on the groups of the sample size, a variance structure that allows different variances for each group was built in the models (Zuur et al. 2009). After model fitting, significance of each explanatory variable at a level of alpha equals 0.05 was judged with a t-test. Non-significant explanatory variables were excluded and the model was refitted on the data in order to get a minimum adequate model that had no any insignificant terms (Crawley 2007).

Relationships between the unique variance fractions and the number of the selected environmental and spatial variables were examined through correlation analyses.

2.5. Software tools

GIS data processing was done with QGIS (QGIS Development Team 2014). All the statistical analyses were conducted in R environment (R Core Team 2015). MARS modelling was carried out as it is implemented in the earth package (Milborrow et al. 2014). Thresholds to convert predicted probabilities into presence-absence data were identified with PresenceAbsence package (Freeman \& Moisen 2008). MEM analysis was conducted with the spacemakeR package (Dray 2013). The packfor package (Dray et al. 2013) was used for the forward selection procedure. Pairwise stream distance matrix was computed with shp2graph
(Lu 2014) and igraph (Csárdi \& Nepusz 2006) packages. Variation partitioning was done with the varpart function of the vegan package (Oksanen et al. 2015). Line graph construction and eccentricity computation were also carried out with the igraph package (Csárdi \& Nepusz 2006). Package vegan (Oksanen et al. 2013) was used for the Mantel tests too. Generalised least squares regressions were conducted with nlme package (Pinheiro et al. 2015).

3. RESULTS

3.1. Species distribution modelling

Out of the 42 fish species of the field data set of the Zagyva-Tarna system, 14 species were excluded owing to rarity, and 11 species because of poor predictability. MARS algorithm selected two environmental predictors (distance from source and precipitation of the wettest month) to model the distribution of the remaining 17 fish species that were included into the main analyses (Table 2). The fit of the MARS model on the training data measured by the coefficient of determination $\left(\mathrm{R}^{2}\right)$ averaged across the 17 species was 0.30 ± 0.13 (mean $\pm \mathrm{SD}$). The same value of the generalized coefficient of determination $\left(\mathrm{GR}^{2}\right.$, it is corrected for the effective number of model parameters and the number of observations [see earth package vignette 'Notes on the earth package' at http://www.milbo.org/doc/earth-notes.pdf]) measuring the generalization performance of the model was 0.20 ± 0.14. The mean AUC value of the ten 4 -fold cross validations averaged across the 17 species was 0.80 ± 0.06 (Table 2). averaged across the results of ten 4-fold cross validations.

Species	Common name	Rel. occ. fr. (n=68)	R^{2}	GR ${ }^{2}$	$\begin{aligned} & \text { AUC } \\ & (\text { mean } \pm \mathrm{SD}) \end{aligned}$
Alburnoides bipunctatus	Schneider (spirlin)	0.176	0.177	0.069	0.733 ± 0.194
Alburnus alburnus	bleak	0.529	0.358	0.274	0.766 ± 0.111
Barbatula barbatula	stone loach	0.544	0.273	0.178	0.739 ± 0.152
Blicca bjoerkna	white bream	0.309	0.302	0.210	0.764 ± 0.145
Carassius gibelio	Prussian carp	0.500	0.177	0.069	0.727 ± 0.124
Cobitis elongatoides	spined loach	0.618	0.331	0.243	0.827 ± 0.095
Esox lucius	northern pike	0.353	0.428	0.353	0.853 ± 0.100
Gobio gobio	gudgeon	0.588	0.137	0.024	0.732 ± 0.142
Leuciscus aspius	asp	0.074	0.145	0.033	0.811 ± 0.171
Leuciscus leuciscus	common dace	0.088	0.160	0.050	0.848 ± 0.155
Proterorhinus semilunaris	Western tubenose goby	0.309	0.590	0.537	0.952 ± 0.041
Rhodeus sericeus	bitterling	0.500	0.425	0.349	0.833 ± 0.123
Romanogobio vladykovi	Danube whitefin gudgeon	0.147	0.319	0.230	0.846 ± 0.146
Rutilus rutilus	roach	0.559	0.416	0.339	0.844 ± 0.100
Sander lucioperca	pikeperch	0.147	0.177	0.069	0.765 ± 0.155
Scardinius erythrophthalmus	rudd	0.279	0.300	0.208	0.810 ± 0.104
Squalius cephalus	chub	0.632	0.363	0.280	0.761 ± 0.142

Species	Common name	Rel. occ. fr. $(\mathrm{n}=68)$	R^{2}	GR^{2}	AUC
mean and SD of species $\pm \mathrm{SD})$					

3.2. Descriptive statistics of variance fractions and the number of the selected environmental

 and spatial variablesDescriptive statistics of the sample distribution of the variance fractions varied as sample size changed (Table 3). Mean value of variance fraction [a] decreased, and that of variance fraction [b] increased considerably with increasing sample size. Although, the mean of variance fraction [c] also increased, its changes were moderate. Interestingly, the mean of variance fraction [d] remained virtually the same at all the four sample sizes (Fig. 2; Table 3). Further, the mean value of the residual variance fraction was reasonably close to the residual variance fraction obtained from variation partitioning of the total statistical population (115 ZT segments) even at the smallest sample size. Whereas the mean value of the other variance fractions approximated the corresponding variance fractions in greater steps with increasing sample size (Table 3).

Fig. 2. Mean value and standard deviation of the variance fractions at different sample sizes. Values were computed from the results of RDA-based variation partitioning analyses of 364 (for sample size 23) or 400 (for sample size 46, 69, 92) random samples. Circles stand for the pure environmentally explained ([a]), squares for the jointly explained by environment and space ([b]), triangles for the pure spatially explained, and diamonds for the unexplained ([d]) variance fractions.

All the dispersion indices (SD, CV\%, IQR and range) decreased monotonically as sample size increased. Despite of this trend, the range of stochastic fluctuation of each variance fraction exceeded 0.10 (i.e., 10%) even at the largest sample size that is when dispersion was the smallest for every variance fraction. Considering a given sample size, the residual variance fraction ([d]) showed the smallest, and the pure spatial variance fraction ([c]) the largest relative variability measured by the coefficient of variation (Table 3).

Mean value of the number of the selected environmental and spatial variables also showed a positive relationship with sample size. Further, increasing sample size had a greater effect on
the number of the selected MEM variables, than on the number of the selected environmental ones. Similarly to the case of variance fractions, mean values of these two variables computed at the largest simple size were the closest to the number of the selected environmental and MEM variables obtained from the forward selection of the total statistical population (115 ZT segments) (Table 3).

Standard deviation and range of the number of the selected MEM variables depended on the sample size too, but those of the number of the selected environmental variables did not so (Table 3).

Table 3. Descriptive statistics of the variance fractions and the number of the selected environmental and spatial variables derived from an iterative randomization procedure. [a] purely environmentally explained variance fraction. [b] variance fraction jointly explained by environmental and spatial variables. [c] purely spatially explained variance fraction. [d] unexplained residual variance fraction. Sample size refers the number of stream segments of the random samples. n : the number of random samples drawn during the iterative randomization procedure; SD: standard deviation; CV (\%): coefficient of variation (SD/mean \times 100); Q1: the first quartile; Q3: the third quartile; IQR: interquartile range. Note that variation partitioning was not done in 36 cases out of the 400 random samples at the level of sample size 23. Note also that the last row shows the result of variation partitioning of the entire data set (i.e., all the 115 ZT segments).

Sample size (relative sample size)	Statistics	[a]	[b]	[c]	[d]	\# of selected env. vars	\# of selected spatial vars
23 (0.20)	n	364	364	364	364	364	364
	min	0.017	0.018	-0.047	0.222	1	1
	Q1	0.201	0.173	0.002	0.367	2	1
	median	0.286	0.254	0.026	0.412	2	2
	Q3	0.379	0.344	0.055	0.465	3	3
	max	0.605	0.582	0.247	0.643	6	9
	mean	0.290	0.260	0.034	0.415	2.511	2.44
	SD	0.124	0.113	0.043	0.071	0.759	1.338
	CV (\%)	42.73	43.23	127.20	17.12	30.22	54.83
	IQR	0.177	0.172	0.053	0.098	1	2
	range	0.588	0.564	0.294	0.422	5	8
46 (0.40)	n	400	400	400	400	400	400

Sample size (relative sample size)	Statistics	[a]	[b]	[c]	[d]	\# of selected env. vars	\# of selected spatial vars
	min	0.042	0.061	-0.014	0.290	2	1
	Q1	0.166	0.262	0.024	0.386	3	4
	median	0.212	0.324	0.040	0.416	3	5
	Q3	0.280	0.372	0.061	0.443	4	7
	max	0.488	0.529	0.170	0.550	6	13
	mean	0.222	0.316	0.046	0.416	3.298	5.495
	SD	0.080	0.080	0.030	0.044	0.846	2.122
	CV (\%)	35.93	25.36	66.65	10.64	25.65	38.61
	IQR	0.113	0.110	0.037	0.058	1	3
	range	0.446	0.469	0.184	0.260	4	12
69 (0.60)	n	400	400	400	400	400	400
	min	0.061	0.205	0.006	0.311	2	2
	Q1	0.147	0.318	0.040	0.387	4	7
	median	0.178	0.355	0.054	0.411	4	9
	Q3	0.214	0.39	0.070	0.432	4	11
	max	0.343	0.498	0.145	0.499	7	17
	mean	0.181	0.354	0.056	0.409	4.065	8.918
	SD	0.053	0.052	0.023	0.032	0.776	2.532138
	CV (\%)	29.07	14.56	41.63	7.89	19.10	28.39
	IQR	0.067	0.073	0.030	0.045	0	4
	range	0.282	0.292	0.139	0.188	5	15
92 (0.80)	n	400	400	400	400	400	400
	min	0.031	0.282	0.012	0.311	3	6

Sample size (relative sample size)	Statistics	[a]	[b]	[c]	[d]	\# of selected env. vars	\# of selected spatial vars
(relative sample size)	Q1	0.105	0.379	0.058	0.380	4	12
	median	0.127	0.402	0.072	0.395	4	14
	Q3	0.152	0.424	0.090	0.411	5	16
	max	0.241	0.486	0.156	0.455	7	23
	mean	0.131	0.400	0.074	0.395	4.518	13.97
	SD	0.036	0.036	0.022	0.023	0.718	2.771
	CV (\%)	27.31	9.045	29.59	5.89	15.90	19.84
	IQR	0.047	0.045	0.031	0.031	1	4
	range	0.210	0.203	0.143	0.144	4	17
115 (total statistical population)	-	0.103	0.429	0.084	0.384	5	18

3.3. Rank order of variance fractions

Stochastic fluctuation of the variance fractions affected strongly their rank order. Considering all the four variance fractions, frequency distribution of the rank orders consisted $10,6,5$ and 4 different rank order vectors for the sample size 23, 46, 69 and 92, respectively (Table 4). If we considered only the variance fractions [a], [b] and [c], the numbers of the unique rank order vectors were 5, 3, 3 and 2 for the sample size 23, 46, 69 and 92 , respectively (Table 5).

465 Table 4. Frequency distribution of the unique rank orders considering all the four variance 466 fractions ([a] pure environmentally explained, [b] jointly explained by environment and 467 space, [c] pure spatially explained, [d] unexplained). Rank 1 denotes the smallest of the 468 variance fractions. At every sample size, the frequency distribution was made from the result 469 of 400 variation partitioning analyses. NAs mean that variation partitioning was not done 470 because there were not any significant spatial variable for 36 random sample configuration. 471 Therefore, in these cases all the explained variance can be interpreted as pure 472 environmentally explained variance.

474 Table 5. Frequency distribution of the unique rank orders considering all the pure 475 environmentally explained ([a]), the jointly explained by environment and space ([b]), and of 400 variation partitioning analyses. NAs mean that variation partitioning was not done 479 because there were not any significant spatial variable for 36 random sample configuration. 480 Therefore, in these cases all the explained variance can be interpreted as pure environmentally explained variance.

Sample size (relative sample size)	type of rank order vector	$[\mathrm{a}]$	$[\mathrm{b}]$	$[\mathrm{c}]$	frequency	rel. freq.
$23(0.20)$	1	3	2	1	200	0.5000

Sample size (relative sample size)	type of rank or2	[a]2	[b] 3	[c] 1	frequency 141	rel. freq.0.3525
	3	1	3	2	19	0.0475
	4	3	1	2	4	0.0100
46 (0.40)	5	NA	NA	NA	36	0.0900
	1	2	3	1	274	0.6850
	2	3	2	1	112	0.2800
69 (0.60)	3	1	3	2	14	0.0350
	1	2	3	1	368	0.9200
	2	3	2	1	21	0.05250
92 (0.80)	3	1	3	2	11	0.02750
	1	2	3	1	348	0.8700
	2	1	3	2	52	0.1300
115 (total statistical population)	true rank order	2	3	1	-	-

3.4. General relationship between sampling design modification and results of variation partitioning

Although the mean of the pairwise Euclidean distances of the variation partitioning results of the random samples crashed, and the mean of the pairwise sample similarities (Kulczynski index) increased sharply as the sample size increased, there was not any kind of association between them at any levels of a single sample size (Table 6.).

Table 6. Results of Mantel tests of variation partitioning (Euclidean distances) vs. sample similarities (Kulczynski index). Euclidean distances were computed from the three variance fractions as follows: pure environmentally explained ([a]), jointly explained by environment and space ([b]), and pure spatially explained ([c]). p-values were computed from 999 randomizations.

Sample size (relative sample size)	Mantel statistics	p -value
$23(0.20)$	-0.018	1
$46(0.40)$	-0.022	1
$69(0.60)$	-0.033	1
$92(0.80)$	-0.036	1

3.5. Relationships between properties of sampling design and unique variance fractions Number of explanatory variables contained by the minimum adequate regression models varied across the models of the different response variables (i.e., variance fractions). In general, the strength of the linear relationships of the properties of the sampling design with the unique variance fractions were moderate (see pseudo- $\mathrm{R}^{2} \mathrm{~s}$ in Table 7) and sample size dependent.

Pure environmentally explained variance fraction ([a]) was affected negatively by spatial extent although its effect was only marginally significant $(0.05<p \leq 0.10)$ at sample size 69 , and significant ($\mathrm{p}<0.05$) at sample sizes 46 and 92 . Estimated effect of sampling interval on variance fraction [a] was positive at all the sample sizes, but it was marginally significant at
sample size 69 and significant at sample size 92. Interestingly, the effect size (regression coefficient b) and its statistical significance (p-value) of sampling interval increased consistently as sample size increased. Mean eccentricity (topology) showed significant positive effect on [a] at sample size 92, and marginally significant positive effects at sample sizes 46 and 69.

Variance fraction explained jointly by environment and space ([b]) was significantly associated only with sampling interval in a negative way at each sample size. Similarly to the case of variance fraction [a], the effect size and significance of this association also increased consistently with increasing sample size.

Pure spatially explained variance fraction ([c]) was negatively influenced by sampling interval and mean eccentricity, but only at the largest sample size. The effect of these two explanatory variables was highly insignificant at other sample sizes.

Residual variance fraction ([d]) was affected by spatial extent positively at sample sizes 46, 69,92 , by sampling interval also positively at sample sizes $23,69,92$, and by mean eccentricity negatively at sample size 69 .
3.6. Relationships between properties of sampling design and the number of the selected spatial and environmental variables

Variation of the number of the selected environmental and spatial variables was better explainable by sample design properties than that of the variance fractions (see pseudo R^{2} values at Table 7). The number of the selected environmental variables was positively related
to spatial extent at larger sample sizes $(69,92)$. On the other hand, the number of the selected spatial variables was influenced only by sampling interval and in a negative way. Apart from sample size 46, this relationship was significant at all the other sample sizes (Table 7).
3.7. Correlations between variance fractions and number of the selected environmental and spatial variables

Pairwise Pearson correlation coefficients showed that each unique variance fraction covaried much stronger with the number of the selected spatial variables than with spatial extent, sampling interval or mean eccentricity independently of sample size. The direction of the covariation was consistent across sample sizes for every variance fraction. On the contrary, strength and direction of covariation between unique variance fractions and the number of the selected environmental variables depended on sample size and type of variance fraction (Table 8).

546 Table 7. Results of the generalised least squares models. Estimated partial regression coefficients (b), their standard error (SE), significance value, and 547 the standardized partial regression coefficients (i.e., beta coefficients [Quinn \& Keough, 2002]) (beta). Pseudo- R^{2} means the proportion of explained 548 variation; it was computed as $1-R S S / T S S$ where RSS is the residual sum of squares and TSS is the total sum of squares. Note that the spatial extent, 549 sampling interval and mean eccentricity was nested within sample size, but models did not contain sample size as a main effect. Consequently, the

550 estimation of the intercept parameter is meaningless and is not shown in the table.

		Sample size 23 (0.20)			Sample size 46 (0.40)			Sample size 69 (0.60)			Sample size 92 (0.80)		
		Explanator	y variables										
Response variable (pseudo- R^{2})		spa. ext.	sampl. int.	mean ecc.	spa. ext.	sampl. int.	mean ecc.	spa. ext.	sampl. int.	mean ecc.	spa. ext.	sampl. int.	mean ecc.
[a] (0.352)	b	-2.6×10^{-06}	3.0×10^{-4}	-0.004	-1.6×10^{-05}	0.004	0.008	-9.2×10^{-06}	0.008	0.005	-1.2×10^{-05}	0.020	0.006
	SE	9.9×10^{-06}	0.003	0.008	7.2×10^{-06}	0.004	0.004	5.2×10^{-06}	0.004	0.003	4.8×10^{-06}	0.005	0.002
	t statistics	-0.261	0.092	-0.558	-2.245	1.105	1.925	-1.757	1.941	1.718	-2.472	4.038	2.700
	p-value	0.793	0.927	0.577	0.025	0.269	0.054	0.079	0.052	0.086	0.014	5.7×10^{-05}	0.007
	beta	-0.015	0.006	-0.032	-0.121	0.063	0.104	-0.091	0.105	0.089	-0.126	0.213	0.137
[b]													
(0.324)	b		-0.005			-0.007			-0.016			-0.024	

Response variable(pseudo-R²)		Sample size 23 (0.20)			Sample size 46 (0.40)			Sample size 69 (0.60)			Sample size 92 (0.80)		
		Explanatory variables											
		spa. ext.	sampl. int.	mean ecc.	spa. ext.	sampl. int.	mean ecc.	spa. ext.	sampl. int.	mean ecc.	spa. ext.	sampl. int.	mean ecc.
	t statistics	0.818	2.957	0.480	2.904	1.801	-1.920	2.723	3.381	-2.662	2.719	5.405	-1.410
	p-value	0.414	0.003	0.631	0.004	0.072	0.055	0.006	0.001	0.008	0.007	7.5×10^{-08}	0.159
	beta	0.046	0.181	0.027	0.153	0.100	-0.102	0.135	0.175	-0.133	0.133	0.273	-0.069
\# of selected													
env. vars	b	-7.7×10^{-06}		-0.002	-4.4×10^{-05}		0.030	2.4×10^{-04}		0.127	4.4×10^{-04}		0.068
(0.518)													
	SE	5.5×10^{-05}		0.045	7.1×10^{-05}		0.041	7.3×10^{-05}		0.041	9.3×10^{-05}		0.040
	t statistics	-0.141		-0.035	-0.624		0.723	3.289		3.128	4.660		1.690
	p-value	0.888		0.972	0.533		0.470	0.001		0.002	3.4×10^{-06}		0.091
	beta	-0.007		-0.002	-0.031		0.036	0.162		0.154	0.229		0.083
\# of selected													
spatial vars	b		-0.074			-0.081			-0.623			-1.229	
(0.783)													
	SE		0.029			0.084			0.171			0.357	

		Samp	ze 23 (0.20)	Sam	e 46 (0.40)	Sam	69 (0.60)	Samp	92 (0.80)	
		Expl	ry variables	Expl	y variables	Expl	y variables	Expl	y variables	
Response variable (pseudo- R^{2})		spa. ext.	sampl. int.	mean ecc.						
	t statistics		-2.564		-0.967		-3.640		-3.442	
	p-value		0.010		0.334		2.8×10^{-04}		5.9×10^{-04}	
	beta		-0.133		-0.048		-0.180		-0.170	

552 Table 8. Pairwise Pearson correlation coefficients (lower triangle) and their p-values (upper triangle) of the sampling design properties, number of the selected environmental and spatial variables, and the unique variance fractions.

sample size 23	spatial extent	sampling interval	mean ecc.	\# of selected env. vars	\# of selected spatial vars	[a]	[b]	[c]	[d]
spatial extent		<0.001	0.063	0.918	0.198	0.845	0.552	0.096	0.021
sampling interval	0.427		<0.001	0.073	0.011	0.830	0.041	0.202	<0.001
mean eccentricity	-0.093	-0.378		0.996	0.283	0.533	0.461	0.204	0.392
\# of selected environmental variables	0.005	0.090	0.000		0.615	<0.001	0.931	0.003	<0.001
\# of selected spatial variables	-0.068	-0.134	0.056	-0.026		<0.001	< 0.001	< 0.001	< 0.001
[a]	-0.010	0.011	-0.033	0.229	-0.733		<0.001	< 0.001	< 0.001
[b]	-0.031	-0.107	0.039	0.005	0.769	-0.816		<0.001	<0.001
[c]	-0.087	-0.067	0.067	-0.158	0.576	-0.410	0.236		< 0.001
[d]	0.121	0.191	-0.045	-0.311	-0.292	-0.201	-0.307	-0.268	
sample size 46									
spatial extent		<0.001	0.121	0.569	0.813	0.065	0.515	0.155	< 0.001
sampling interval	0.321		<0.001	0.866	0.334	0.830	0.024	0.244	< 0.001

sample size 23	spatial extent	sampling interval	mean ecc.	\# of selected env. vars	\# of selected spatial vars	[a]	[b]	[c]	[d]
mean eccentricity	0.078	-0.336		0.498	0.957	0.142	0.785	0.655	0.013
\# of selected environmental variables	-0.029	0.008	0.034		0.736	0.104	0.796	0.150	0.016
\# of selected spatial variables	-0.012	-0.048	0.003	0.017		<0.001	<0.001	<0.001	<0.001
[a]	-0.092	-0.011	0.074	0.081	-0.713		< 0.001	< 0.001	0.404
[b]	-0.033	-0.113	-0.014	0.013	0.733	-0.858		<0.001	< 0.001
[c]	0.071	0.058	0.022	-0.072	0.572	-0.428	0.267		<0.001
[d]	0.177	0.183	-0.123	-0.121	-0.433	0.042	-0.444	-0.396	
sample size 69									
spatial extent		< 0.001	0.131	0.003	0.093	0.170	0.078	0.101	< 0.001
sampling interval	0.278		< 0.001	0.271	<0.001	0.286	< 0.001	0.692	<0.001
mean eccentricity	-0.076	-0.293		0.005	0.117	0.190	0.301	0.908	<0.001
\# of selected environmental variables	0.150	-0.055	0.142		0.204	0.134	0.395	0.043	0.018
\# of selected spatial variables	-0.084	-0.179	0.078	-0.064		<0.001	<0.001	<0.001	< 0.001
[a]	-0.069	0.053	0.066	0.075	-0.668		<0.001	< 0.001	0.203

sample size 23	spatial extent	sampling interval	mean ecc.	\# of selected env. vars	\# of selected spatial vars		[b]	[c]	[d]
[b]	-0.088	-0.221	0.052	0.043	0.700	-0.854		<0.001	<0.001
[c]	0.082	0.020	0.006	-0.101	0.577	-0.458	0.344		<0.001
[d]	0.194	0.252	-0.195	-0.118	-0.446	0.064	-0.453	-0.525	
sample size 92									
spatial extent		<0.001	0.010	<0.001	0.344	0.099	0.066	0.306	<0.001
sampling interval	0.290		<0.001	0.050	0.001	0.005	<0.001	0.001	<0.001
mean eccentricity	-0.129	-0.267		0.285	0.097	0.053	0.163	0.037	0.001
\# of selected environmental variables	0.219	0.098	0.054		0.058	<0.001	0.175	<0.001	0.996
\# of selected spatial variables	-0.047	-0.170	0.083	-0.095		<0.001	<0.001	<0.001	<0.001
[a]	-0.083	0.139	0.097	0.179	-0.675		<0.001	<0.001	<0.001
[b]	-0.092	-0.250	0.070	-0.068	0.683	-0.882		<0.001	<0.001
[c]	0.051	-0.164	-0.104	-0.178	0.610	-0.500	0.339		<0.001
[d]	0.221	0.330	-0.159	0.000	-0.602	0.305	-0.517	-0.704	

4. DISCUSSION

This methodological investigation provides an insight into the relationship between ordination-based variation partitioning and the properties of sampling design in a dendritic network context. Although a recent prominent study (Gilbert \& Bennett 2010) has touched this problem in a lattice grid context, to our knowledge, this study is the first which focused on the effect of sampling design primarily on the relative importance of the environment- and space-related component of assemblage variations, and on the specific relationships between the unique variance fractions and sampling design properties.

4.1. Effect of sample size

In general, because our dendritic study system (Zagyva-Tarna stream system) consists of a finite number of sampling units (stream segments), sample size usually interacts with the effects of the other sampling design properties.

Expected values of the variance fractions estimated by the sample mean behaved in a peculiar way as sample size increased. Interestingly, residual variance fraction [d] changed negligibly as sample size increased. This result suggests that given a certain set of environmental descriptor variables, the total explainable variation of assemblages can be estimated with rather high accuracy independently from the sample size of the study. At the same time, the dispersion statistics of the unique residual variance fraction showed that the precision of this estimation can be low, especially at small or medium sample size.

Contrary to the residual variation, the mean values of the environment- and space-related variance fractions varied highly and their relative importance changed with changes in sample size. The decreasing of the mean environmentally explained variance with increasing sample size could, on the one hand, be a data set specific phenomenon. Both distance from source and precipitation of the wettest month, the two predictors used to model fish species distributions by MARS, can be associated with the longitudinal profile of a stream system. If species distribution is controlled mainly by the longitudinal profile associated environmental factors, the pure environmentally explained variance is expected to be low at small sample size, because spatially compact (i.e., less eccentric) sampling design with a short environmental gradient is more probable to occur at small sample size than at large sample size. On the other hand, the most fundamental environmental factors that control the spatial distribution of riverine fish assemblages at large scale, such as altitude, channel slope, discharge, are strongly related to the longitudinal aspect of running waters (Matthews 1998). Therefore, this natural character of stream systems can also result in low environmentally explained variance.

The greater the sample size, the more complex network structures can be combined from the sample segments. This can be the reason why space-related variance increased with sample size. In other words, the number of possible unique topological configurations (i.e., possible spatial patterns) of the sampling units depends on the number of the sample units and on their topological position within the stream network. This assumption is supported by the result that the mean number of the selected MEM variables also increased as sample size increased. On the other hand, least squares regression model showed that at a certain sample size, the number of the selected MEM variables was influenced by sampling interval. Eigenanalysesbased spatial models, like MEM analysis and the analysis of principal coordinates of
neighbour matrices (PCNM; Borcard \& Legendre 2002), have the ability to model complex spatial patterns at various spatial scales (Dray et al. 2012). Smith \& Lundholm (2010) argued for the sophisticated behaviour of the PCNM method about that variation partitioning could not distinguish between environment-related and space-related patterns. Similarly, Gilbert \& Bennett (2010) also showed that PCNM predictors inflated the explained variation in spite the use of the adjusted coefficient of determination ($\mathrm{R}_{\mathrm{adj}}^{2}$). Therefore, it can be supposed that space-related variances revealed by these eigenanalyses-based techniques primarily reflect the complexity of the design in terms of the number and spatial arrangement of the sampling units. If this is really the case, ecologists should be cautious when they infer the importance of dispersal of the studied organisms from purely the spatially explained variance of assemblages, especially when they have no reasonable knowledge on the movement ability of the studied species.

4.2. Effect of sampling configuration

Given a fix sample size, the stochastic fluctuation of the estimated variance fractions induced by the change of sampling configuration seems to be not consistent with each other. As a consequence, rank order of the variance fractions can change randomly as well. Considering the relative frequency of the experienced unique rank order vectors suggest that the uncertainty of the estimation of the true rank order (i.e., the rank order obtained by variation partitioning of the total statistical population [115 segments]) is the greatest at small sample size. However, as our results demonstrate, it is possible that even at 80% information coverage of the statistical population there could be roughly 0.13 probability chance to miss the true rank order vector when researchers aim to assess the relative importance of variance fractions [a], [b] and [c]. Moreover, small sample size could involve such sample
configurations from which MEM eigenvectors are not able to cover any significant spatial structures at a significance level of alpha equals 0.05 . This result supports Alahuhta \& Heino's (2013) conclusion that the relative contribution of environmental and spatial mechanisms to metacommunity structuring varies in a rather unpredictable way.

As Mantel tests revealed, the change of sample design similarity seems not to cause a proportional modification in the result of variation partitioning. In other words, a small change in sample similarity of two random samples can result in both a great and a small difference between the results of the variance partitioning of the two random samples alike. This surprising result suggests that the effect of sampling design on variation partitioning can be hardly predicted on the basis of sample similarity. The rationale behind this must be related to the identity of the sampling units. Considering a compositional difference between two equal-sized samples caused by only a single pair of randomly selected stream segments, the biological similarity (species pool) can vary according to the topological position of the selected segments. For example, two stream segments with the same Strahler order (e.g., two headwater segments) tend to have much more similar species pool than two segments with different Strahler order (e.g., one headwater and one mainstem segment).

4.3. Effect of spatial extent, sampling interval and topology

Results of the GLS models suggest that spatial extent affect mainly the environmentally explainable variation of species assemblages. This involves an indirect influence on the residual variation as well. Interestingly, Grönroos et al. (2013) found that spatial extent was not related to metacommunity structuring. Because they had different number of local sites at the different spatial extents, the modifying role of sample size and/or topology may be the
reason for the apparent lack of the effect of spatial extent. Sampling interval appears to modify both the environment- and space-related variation, but its effect on these two unique variance fractions could depend on the sample size. However, the emergent and negative effect of sampling interval as it can be detected in the residual variation seems to be independent on sample size. Although, topology seems to affect both the pure environmental and spatial variance its influence can be powerful only at large sample size. To sum up, results suggest that variation partitioning in a dendritic system (i.e., in a system with a finite number of sampling units) is more sensitive to the properties of the sampling design when the informational coverage of the statistical population is large than when that is small or medium.

Spatial extent and topology tend to influence the selected number of the abiotic variables, although their effect seems significant only at large sample sizes. On the contrary, sampling interval could reduce the number of the selected spatial explanatory variables. That is sampling interval might influence the complexity of the spatial structure that can be modelled by an eigenanalysis-based spatial method in dendritic networks.

Probably the most surprising result emerging from our study was that each variance fraction was correlated much stronger with the number of the selected MEM variables than with any of the sampling design properties. Further, pseudo- R^{2} values of the GLS models indicated that sampling interval tend to explain better the variation of the number of the selected MEM variables than that of any variance fractions. Hence, it is likely that sampling interval primarily affects the number of the selected MEM variables in the forward selection procedure, which in turn influences the estimated variance fractions in variation partitioning.

The increased number of the selected MEM variables tend to increase the spatially explained variance, and reduce the environmentally explained and the residual variance fractions (see correlations in Table 8). This finding corresponds to Gilbert \& Bennett (2010) who reported a statistical artefact nature of eigenanalysis-based spatial methods, because selection of some eigenvector variables can involve selecting additional ones leading to inflated explained variance. Therefore, spatial patterns behind the increased spatially explained community variation sometimes can be ecologically meaningless.

5. CONCLUSIONS

The findings of this study clearly indicate that sampling design has a considerable and unpredictable effect on the result of multivariate variation partitioning. Of sampling design properties, it seems that sample size and sampling interval influences notably the results. It is highly probable that this influencing effect is strongly related to the ability of eigenanalysisbased spatial variables to model complex patterns. Apart from other important factors, such as biogeographic regions and anthropogenic modifications, differences in sampling design could have a significant role in the inconsistency of the results of metacommunity studies of stream organisms.

Acknowledgements
This work was supported by the OTKA K104279 grant and the Bolyai János Research Scholarship of the Hungarian Academy of Sciences (TE).

REFERENCES

Alahuhta, J. and Heino, J. 2013. Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. - Journal of Biogeography 40: 1572-1582.

Baldissera, R. et al. 2012. Metacommunity composition of web-spiders in a fragmented neotropical forest: relative importance of environmental and spatial effects. - Plos One 7: e48099.

Barton, P. S. et al. 2013. The spatial scaling of beta diversity. - Global Ecology and Biogeography 22: 639-647.

Beisner, B. E. et al. 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. - Ecology 87: 2985-2991.

Borcard, D. and Legendre, P. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. - Ecological Modelling 153: 51-68.

Brown, B. L. and Swan, C. M. 2010. Dendritic network structure constrains metacommunity properties in riverine ecosystems. - Journal of Animal Ecology 79: 571-580.

Buschke, F. T. et al. 2015. Partitioning the variation in African vertebrate distributions into environmental and spatial components - exploring the link between ecology and biogeography. - Ecography 38: 450-461.

Campbell, R. E. et al. 2015. Flow-related disturbance creates a gradient of metacommunity types within stream networks. - Landscape Ecology 30: 667-680.

Cañedo-Argüelles, M. et al. 2015. Dispersal strength determines meta-community structure in a dendritic riverine network. - Journal of Biogeography 42: 778-790.

Cottenie, K. 2005. Integrating environmental and spatial processes in ecological community dynamics. - Ecology Letters 8: 1175-1182.

Crawley, M. J. 2007. The R Book. - Wiley Publishing.

Csárdi, G. and Nepusz, T. 2006. The igraph software package for complex network research. InterJournal Complex Systems: 1695.

Cushman, S. A. and McGarigal, K. 2004. Patterns in the species-environment relationship depend on both scale and choice of response variables. - Oikos 105: 117-124.

Declerck, S. A. J. et al. 2011. Scale dependency of processes structuring metacommunities of cladocerans in temporary pools of High-Andes wetlands. - Ecography 34: 296-305.

Dray, S. 2013. spacemakeR: Spatial modelling. - R package version 0.0-5/r113.

Dray, S. et al. 2012. Community ecology in the age of multivariate multiscale spatial analysis. - Ecological Monographs 82: 257-275.

Dray, S. et al. 2013. packfor: Forward Selection with permutation (Canoco p.46). - R package version 0.0-8/r109.

Erős, T. et al. 2012. Temporal variability in the spatial and environmental determinants of functional metacommunity organization - stream fish in a human-modified landscape. Freshwater Biology 57: 1914-1928.

Erős, T. et al. 2011. Network thinking in riverscape conservation - A graph-based approach. Biological Conservation 144: 184-192.

Fagan, W. F. et al. 2009. Riverine landscapes: Ecology for an alternative geometry. - In: Cantrell, S., Cosner, C. et al. (ed.), Spatial Ecology. Chapman and Hall/CRC, pp. 85-100.

Filipe, A. et al. 2013. Forecasting fish distribution along stream networks: brown trout (Salmo trutta) in Europe. - Diversity and Distributions 19: 1059-1071.

Fernandes, I. M. et al. 2014. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. - Ecography 37: 464-475.

Freeman, E. A. and Moisen, G. 2008. PresenceAbsence: An R Package for Presence Absence Analysis. - Journal of Statistical Software 23: 1-31.

Frissell, C. A. et al. 1986. A hierarchical framework for stream habitat classification - viewing 770 streams in a watershed context. - Environmental Management 10: 199-214.

772 Gilbert, B. and Bennett, J. R. 2010. Partitioning variation in ecological communities: do the numbers add up? - Journal of Applied Ecology 47: 1071-1082.

Göthe, E. et al. 2013. Metacommunity structure in a small boreal stream network. - Journal of Animal Ecology 82: 449-458.

Grönroos, M. et al. 2013. Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. - Ecology and Evolution 3: 44734487.

Heino, J. et al. 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. - Freshwater Biology 60: 845-869.

Hermoso, V. et al. 2011. Addressing longitudinal connectivity in the systematic conservation planning for freshwaters. - Freshwater Biology 56, 57-70.

Hermoso, V. et al. 2013. Data Acquisition for Conservation Assessments: Is the Effort Worth It? - PLoS ONE 8: e59662.

Hermoso, V. et al. 2015. Evaluating the costs and benefits of systematic data acquisition for conservation assessments. - Ecography 38: 283-292.

Hijmans, R. et al. 2005. Very high resolution interpolated climate surfaces for global land areas. - International Journal of Climatology 25: 1965-1978.

Hitt, N. P. and Angermeier, P. L. 2011. Fish community and bioassessment responses to stream network position. - Journal of the North American Benthological Society 30: 296-309.

Hitt, N. P. and Angermeier, P. L. 2008. Evidence for fish dispersal from spatial analysis of stream network topology. - Journal of the North American Benthological Society 27: 304320.

Hoeinghaus, D. J. et al. 2007. Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. - Journal of Biogeography 34: 324-338.

Jiménez-Valverde, A. and Lobo, J. M. 2007. Threshold criteria for conversion of probability of species presence to either-or presence-absence. - Acta Oecologica-international Journal of Ecology 31: 361-369.

Leathwick, J. R. et al. 2005. Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish. - Freshwater Biology 50: 20342052.

Lu, B. 2014. shp2graph: Convert a SpatialLinesDataFrame object to a "igraph-class" object. R package version 0-2.

Marzin, A. et al. 2013. The relative influence of catchment, riparian corridor, and reach-scale anthropogenic pressures on fish and macroinvertebrate assemblages in French rivers. Hydrobiologia 704: 375-388.

Matthews, W. J. 1998. Patterns in freshwater fish ecology. - Chapman and Hall.

Mesquita, N. et al. 2006. Spatial variation in fish assemblages across small mediterranean drainages: Effects of habitat and landscape context. - Environmental Biology of Fishes 77: 105-120.

Minor, E. S. and Urban, D. L. 2008. A graph-theory framework for evaluating landscape connectivity and conservation planning. - Conservation Biology 22: 297-307.

Mykrä, H. et al. 2007. Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. - Global Ecology and Biogeography 16: 149159.

Oberdorff, T. et al. 2001. A probabilistic model characterizing fish assemblages of French rivers: a framework for environmental assessment. - Freshwater Biology 46: 399-415.

Oksanen, J. et al. 2015. vegan: Community Ecology Package. - R package version 2.3-0.

Park, Y. et al. 2006. Stream fish assemblages and basin land cover in a river network. Science of The Total Environment 365: 140-153.

Peterson, E. E. et al. 2013. Modelling dendritic ecological networks in space: an integrated network perspective. - Ecology Letters 16: 707-719.

Pinheiro, J. et al. 2015. nlme: Linear and Nonlinear Mixed Effects Models. - R package version 3.1-122.

Pont D., et al. 2006. Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. - Journal of Applied Ecology 43: 70-80.

QGIS Development Team 2014. QGIS Geographic Information System. - Open Source Geospatial Foundation.

R Core Team 2015. R: A Language and Environment for Statistical Computing. - R Foundation for Statistical Computing. Vienna, Austria.

Ricotta, C. et al. 2000. Quantifying the network connectivity of landscape mosaics: a graphtheoretical approach. - Community Ecology 1: 89-94.

Sály, P. et al. 2009. Assemblage level monitoring of stream fishes: the relative efficiency of single-pass vs. double-pass electrofishing. - Fisheries Research 99: 226-233.

Sály, P. et al. 2011. The relative influence of spatial context and catchment- and site-scale environmental factors on stream fish assemblages in a human-modified landscape. - Ecology of Freshwater Fish 20: 251-262.

Sanderson, E. W. et al. 2002. The human footprint and the last of the wild. - Bioscience 52: 891-904.

Smith, T. W. and Lundholm, J. T. 2010. Variation partitioning as a tool to distinguish between niche and neutral processes. - Ecography 33: 648-655.

Soininen, J. 2015. Spatial structure in ecological communities - a quantitative analysis. Oikos DOI: 10.1111/oik. 02241

Soininen, J. and Weckström, J. 2009. Diatom community structure along environmental and spatial gradients in lakes and streams. - Fundamental and Applied Limnology 174: 205-213.

Steenmans, C. and Büttner, G. 2006. Mapping land cover of Europe for 2006 under GMES. In: Matthias, B. (ed.), Proceedings of the 2nd Workshop of the EARSeL SIG on Land Use and Land Cover. The European Association of Remote Sensing Laboratories and the Center for Remote Sensing of Land Surfaces at the Rheinische Friedrich-Wilhelms-Universität Bonn, pp. 202-207.

Species	Common name	Rel. occ. fr. $(\mathrm{n}=68)$		GR ${ }^{2}$	$\begin{aligned} & \text { AUC } \\ & (\text { mean } \pm \text { SD }) \end{aligned}$
Abramis brama	common bream	0.191	0.109	-0.007	$\begin{aligned} & 0.691 \pm \\ & 0.114 \end{aligned}$
Ameiurus melas	black bullhead	0.118	0.069	-0.053	$\begin{aligned} & 0.656 \pm \\ & 0.148 \end{aligned}$
Carassius carassius	Crucian carp	0.088	0.078	-0.042	$\begin{aligned} & 0.629 \pm \\ & 0.252 \end{aligned}$
Gymnocephalus cernua	ruffe	0.103	0.104	-0.014	$\begin{aligned} & 0.664 \pm \\ & 0.220 \end{aligned}$
Lepomis gibbosus	pumpkinseed	0.221	0.060	-0.063	$\begin{aligned} & 0.629 \pm \\ & 0.148 \end{aligned}$
Leucaspius delineatus	belica	0.059	0.015	-0.114	$\begin{aligned} & 0.485 \pm \\ & 0.247 \end{aligned}$
Leuciscus idus	ide	0.118	0.070	-0.052	$\begin{aligned} & 0.675 \pm \\ & 0.194 \end{aligned}$
Misgurnus fossilis	weatherfish	0.103	0.073	-0.048	$\begin{aligned} & 0.681 \pm \\ & 0.191 \end{aligned}$
Neogobius fluviatilis	monkey goby	0.059	0.025	-0.102	$\begin{aligned} & 0.636 \pm \\ & 0.237 \end{aligned}$
Perca fluviatilis	European perch	0.309	0.146	0.034	$\begin{aligned} & 0.693 \pm \\ & 0.112 \end{aligned}$
Pseudorasbora parva	stone moroko	0.265	0.112	-0.004	$\begin{aligned} & 0.677 \pm \\ & 0.138 \end{aligned}$

APPENDIX

Species excluded from the MARS-GLM modelling because of low predictability (i.e., with a mean AUC value less than 0.7). Rel. occ. fr.: relative occurrence frequency; R^{2} : coefficient of determination; $G R^{2}$: generalized coefficient of determination; AUC: area under a receiver operating characteristic curve averaged across the results of ten 4-fold cross validations.

Figure

