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Abstract 16 

Variation partitioning is one of the most frequently used method to infer the importance of 17 

environmental (niche based) and spatial (dispersal) processes in metacommunity structuring. 18 

However, the reliability of the method in predicting the role of the major structuring forces is 19 

less known. We studied the effect of field sampling design on the result of variation 20 

partitioning of fish assemblages in a stream network. Along with four different sample sizes, a 21 

simple random sampling from a total of 115 stream segments (sampling objects) was applied 22 

in 400 iterations, and community variation of each random sample was partitioned into four 23 

fractions: pure environmentally (landscape variables) explained, pure spatially (MEM 24 

eigenvectors) explained, jointly explained by environment and space, and unexplained 25 

variance. Results were highly sensitive to sample size. Even at a given sample size, estimated 26 

variance fractions had remarkable random fluctuation, which can lead to inconsistent results 27 

on the relative importance of environmental and spatial variables on the structuring of 28 

metacommunities. Interestingly, all the four variance fractions correlated better with the 29 

number of the selected spatial variables than with any design properties. Sampling interval 30 

proved to be a fundamentally influential sampling design property because it affected the 31 

number of the selected spatial variables. Our findings suggest that the effect of sampling 32 

design on variation partitioning is related to the ability of the eigenvectors to model complex 33 

spatial patterns. Hence, properties of the sampling design should be more intensively 34 

considered in metacommunity studies. 35 

 36 

Key words: metacommunity; fish assemblage; species distribution modelling; network 37 

topology; Moran’s eigenvector maps (MEM); relative importance of space and environment 38 

 39 
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1. INTRODUCTION 40 

 41 

1.1. Properties of field sampling design 42 

Properties of field sampling design set the window through which ecologists study the spatial 43 

and temporal distribution of organisms and the determining factors affecting distribution 44 

patterns. The frame of this window is the spatio-temporal scale of the study, which has three 45 

elements in ecological sampling theory. Focusing only on the spatial aspect of the scale, the 46 

grain size is the size of the sampling units (e.g., quadrates); the sampling interval is the 47 

average distance between the neighbouring sampling units; and the extent is the total area 48 

included in the investigation (Wiens 1989; Legendre & Legendre 2012 p786). Sample size, 49 

another property of sampling design, is the total number of sampling units in the sample, and 50 

it is a simple measure of the sampling effort. An additional property is the topology of the 51 

sampling units. Topology describes the geometry by which the sampling units are ecologically 52 

connected to each other. When sampling units considered being connected, researchers 53 

assume that material and individuals can move from one sampling unit to the other one (e.g., 54 

Peterson et al. 2013). 55 

 56 

1.2. Variation partitioning 57 

Ecologists try to reveal the mechanisms controlling the distribution of organisms by 58 

investigating their spatial distributional patterns. One of the most frequently used statistical 59 

methods for quantifying different sources of variation of communities is variation partitioning 60 

(or variance partitioning), which was introduced into the ecological methodology by Borcard 61 

et al. (1992). In a classical approach, this method uses a sites-by-species community matrix as 62 

response data, and a sites-by-environmental variables matrix and a sites-by-spatial variables 63 
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matrix as explanatory data to decompose additively the total variation of the response data 64 

into four variance fractions/proportions by fitting canonical ordination models (canonical 65 

correspondence analysis [CCA] or redundancy analysis [RDA]) on the data. One of the 66 

variance fractions is the variation explained exclusively by the studied environmental 67 

variables, denoted by [a] in the original paper of Borcard et al. (1992). This fraction is usually 68 

considered to reflect the importance of environmental effects which could not be associated to 69 

spatial co-variation. Another variance fraction ([c]) is explained purely by the spatial 70 

variables, and gives estimation on community variation that has no relationship with the 71 

environmental variables included into the environmental data matrix. However, depending on 72 

the elaboration of the study, there is a possibility that this fraction incorporates some variation 73 

that would be explainable by a latent, unmeasured environmental variable. A third variance 74 

fraction ([b]) is explained jointly by the studied environmental and spatial variables. In this 75 

case the effects of environmental and spatial factors on community structure cannot be 76 

disentangled. The last fourth variance fraction is the unexplained residual variation [d]. 77 

 78 

Peres-Neto et al. (2006) improved variation partitioning by introducing the adjusted 79 

redundancy statistic or adjusted coefficient of multiple determination (R2
adj). The adjusted 80 

redundancy statistic expresses the unbiased form of the variance fractions/proportions which 81 

is controlled for the number of explanatory variables in the model and the sample size. 82 

 83 

Since its introduction, variation partitioning has become a fundamental method to infer the 84 

measure and importance of environment- and space-related mechanisms structuring 85 

communities, especially in the field of metacommunity researches. Results mirror that this 86 

measure and importance tend to vary according to the studied group of organism (e.g., 87 
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Cottenie 2005; Beisner et al. 2006; Marzin et al. 2013), ecological data type (e.g., Cushman & 88 

McGarigal 2004; Hoeinghaus et al. 2007; Sály et al. 2011 ), ecosystem type (e.g., Cottenie 89 

2005; Heino et al. 2015; Soininen & Weckström 2009), spatial scale of the study (e.g., 90 

Cushman & McGarigal 2004; Declerck et al. 2011; Heino et al. 2015; Mykrä et al. 2007), 91 

study region (e.g., Cottenie 2005) and study years (e.g., Mesquita et al. 2006). 92 

 93 

1.3. Relationship of sampling design and variation partitioning 94 

Differences in the study design are among the most important factors that could lead to 95 

apparently inconsistent results of variation partitioning studies. In fact, Dray et al. (2012 96 

p262–263) explicitly warned that sampling design introduces an artificial spatial structure into 97 

the data in any field study. Despite this casual relevancy, only a little interest has been taken in 98 

studying systematically how sample design influences the detected spatial variation of 99 

assemblages, although many papers have highlighted the importance of certain spatial scale 100 

elements in describing the spatial structure of beta diversity (e.g., Barton et al. 2013; Heino et 101 

al. 2015; Mykrä et al. 2007; Soininen 2015). 102 

 103 

In two simulation studies, Smith & Lundholm (2010) and Gilbert & Bennett (2010) found that 104 

spatial configuration and sampling strategies affect the results of variation partitioning. 105 

Further, they also found that variation partitioning did not model the simulated spatial 106 

structures of the data correctly. Migration rates (i.e., dispersal), as a spatial pattern-generating 107 

mechanism, influenced both the environment- and space-related variation (Smith & 108 

Lundholm 2010); and significant spatially explained variations were found even when the 109 

simulated data did not contain spatial component (Gilbert & Bennett 2010). 110 

 111 
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Spatial extent, sample size and the topology of the sampling units could obviously affect the 112 

environmental and spatial variables that researches consider relevant to describe the spatial 113 

variation of assemblages. In many researches, these explanatory variables are identified via a 114 

forward selection procedure (Blanchet et al. 2008) prior to variation partitioning. Although, 115 

the adjusted form of the variation proportions (Peres-Neto et al. 2006) takes the number of the 116 

explanatory variables into account which helps to compare the results of different studies, the 117 

effect of the sampling design properties on the number of the relevant (i.e., selected) 118 

explanatory variables has not been examined yet. 119 

 120 

For stream-dwelling organisms like fish and aquatic molluscs that have no capacity for 121 

terrestrial movement, dispersal connectivity among habitats is completely determined by the 122 

physical dendritic structure of the stream network (Fagan et al. 2009), hence topology, beside 123 

the dispersal ability of the animals, can be supposed to play a prominent role in their spatial 124 

dynamics. The importance of topology of dendritic stream networks has been studied in 125 

connection with, for example, fish dispersal (Hitt & Angermeier 2008, 2011) and in the 126 

context of the distance-decay similarity relationship for aquatic invertebrates (e.g., Brown & 127 

Swan 2010; Cañedo-Argüelles et al. 2015), but the relationship between the topology of the 128 

effectively sampled locations of a dendritic network and the space-related community 129 

variation is still little known. In fact, the behaviour of variation partitioning as a response of 130 

changes in sampling design is still uncovered; therefore we do not know which sampling 131 

design properties and variance fractions may be statistically associated to each other. 132 

 133 

In spite of the warning results mentioned above and the lack of a solid understanding of the 134 

relationship between sampling design properties and variation partitioning, the latter has been 135 
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frequently used to study the metacommunity organizations of a wide variety of taxa (e.g., 136 

Alahuhta & Heino 2013; Baldissera et al. 2012; Buschke et al. 2015; Campbell et al. 2015; 137 

Erős et al. 2012; Fernandes et al. 2014; Göthe et al. 2013; Grönroos et al. 2013). 138 

 139 

1.4. Aims 140 

In this paper, we present how sampling design can affect the result of variation partitioning, 141 

and how properties of sampling design can influence the number of the selected explanatory 142 

variables and the change of the individual variance fractions in a dendritic stream network 143 

using presence-absence data of fish species. Applying simple random sampling, we focused 144 

on the specific questions as follows. (1) How does sample size (sampling effort) impact the 145 

expected value of the estimated variance fractions? Assuming a fix sample size, (2) how does 146 

the change of sample configuration influence the relative importance (i.e., rank order) of the 147 

estimated variance fractions? (3) Does the change in the sample similarity cause a 148 

proportional change in the result of variation partitioning? (4) In what extent can the change 149 

of properties of sampling design other than sample size (spatial extent, sampling interval, and 150 

topology) explain the change of the individual variance fractions and the number of 151 

explanatory variables used for partitioning? Finally, (5) How strong is the association between 152 

the amount of the unique variance fractions and the number of the selected explanatory 153 

variables used for partitioning? 154 

 155 

 156 

 157 

 158 

 159 
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2. METHODS 160 

 161 

Analyses of this study progressed through three main phases. First, environmental data were 162 

gathered and fish data were predicted by a statistical model using field survey data. Second, 163 

variation partitioning of fish data was done iteratively using simple random sampling with 164 

different sample size. Last, results of the variation partitioning were analysed statistically. 165 

 166 

2.1. Studied stream system, environmental variables, and fish data 167 

The studied stream system is located in Hungary (Fig. 1), and contains two small rivers, the 168 

Zagyva (179 rkm) and the Tarna (105 rkm), and their tributaries (hereafter ZT system). The 169 

catchment area of the ZT system is 5676 km2, and it has partly hilly (500 m > altitude ≥ 200 170 

m a.s.l.), partly lowland (altitude < 200 m a.s.l.) geomorphology. 171 

 172 

The GIS model of the ZT system used for this study consisted of 115 stream segments (sensu 173 

Frissell et al. 1986), that were considered as sampling units (see Erős et al. 2011). Stream 174 

segments were characterized with 20 abiotic environmental variables (see Table 1). We used 175 

variables which could be relatively easily collated in a GIS environment for each segment, 176 

and were widely and successfully used for the predictive modelling of stream fish in former 177 

studies (e.g., Park et al. 2006; Hermoso et al. 2011, 2013, 2015).These GIS based data were 178 

used from the following data bases: WorldClim (Hijmans et al. 2005), BioClim (Hijmans et 179 

al. 2005), Global Human Footprint (Sanderson et al. 2002), Corine Land Cover (Steenmans & 180 

Büttner 2006). Note, that instream variables (e.g., substrate composition) could not be used in 181 

this case, because these data were not available for all segments. Although this may influence 182 

the predictive power of the models, most fish  based models use GIS based data exclusively 183 
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for predictive modelling (e.g., Leathwick et al. 2005; Hermoso et al. 2011, 2013, 2015; Filipe 184 

et al. 2013). Since we used the same variables for each stream segment, which were 185 

determined by the same analytical procedure, it is likely that our modelling approach did not 186 

influence the final outcome of our simulations, and the main conclusions.  187 

 188 

Fig. 1. Location of the Zagyva-Tarna stream system in Hungary. Stream segments (stream 189 

reaches between two confluences) were considered as sampling units of the study. 190 

 191 

Table 1. Abiotic environmental variables used in this study. All the listed variables acted as a 192 

potential predictor in the MARS modelling. However, only variables marked with an asterisk 193 

(*) were included in the variation partitioning procedure, because of strong linear 194 

associations among the variables. 195 

Variable Description Min. Max. 
Mean ± 

SD 

*Distance from 

source 

Stream distance of the midpoint of the segment from the 

flow origin. (rkm) 
0.68 163.22 

20.35 ±

28.17 

*Sinuosity index 

Sinuosity index of the segment. Calculated as (l-d)/d, 

where l is the channel length, d is the Euclidean distance 

between the upstream and downstream endpoints of the 

segment. 0 means straight flow. 

0.00 0.72 0.16 ± 0.13 
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Variable Description Min. Max. 
Mean ± 

SD 

Altitude 

Average altitude above sea of the raster cells touched by 

the segment. Derived from the Alt16 raster of the 

WorldClim database. (m) 

83.00 582.14 
178.23 ± 

84.76 

*Annual mean 

temperature 

Annual mean temperature averaged across the raster cells 

touched by the segment. Derived from the BIO1 raster of 

the BioClim database. (°C) 

7.69 10.70 
10.03 ±

0.59 

Maximum 

temperature of 

the warmest 

month 

Maximum temperature of the warmest moth averaged 

across the raster cells touched by the segment. Derived 

from the BIO5 raster of the BioClim database. (°C) 

23.47 27.28 
26.48 ±

0.63 

Minimum 

temperature of 

the coldest 

month 

Minimum temperature of the coldest moth averaged 

across the raster cells touched by the segment. Derived 

from the BIO6 raster of the BioClim database. (°C) 

-7.10 -4.28 
-5.31 ± 

0.67 

Isothermality 

The proportion of the mean diurnal temperature range to 

the annual temperature range averaged across the raster 

cells touched by the segment. Derived from the BIO3 

raster of the BioClim database. (%) 

29.00 31.00 
30.35 ±

0.54 

Temperature 

seasonality 

Averaged value of the raster cells touched by the segment. 

Derived from the BIO4 raster of the BioClim database. 

(Standard deviation × 100) 

7523.71 7937.44 
7828.59 ± 

67.03 

Annual 

precipitation 

Annual precipitation averaged across the raster cells 

touched by the segment. Derived from the BIO12 raster 

of the BioClim database. (mm) 

518.00 648.86 
546.38 ± 

23.45 

Precipitation of 

the wettest 

month 

Precipitation of the wettest month averaged across the 

raster cells touched by the segments. Derived from the 

BIO13 raster of the BioClim database. (°C) 

67.00 90.29 
71.88 ±

4.30 
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Variable Description Min. Max. 
Mean ± 

SD 

Precipitation of 

the driest month 

Precipitation of the driest month averaged across the 

raster cells touched by the segments. Derived from the 

BIO14 raster of the BioClim database. (°C) 

27.00 36.43 
29.26 ±

1.65 

*Precipitation 

seasonality 

Averaged value of the raster cells touched by the segment. 

Derived from the BIO15 raster of the BioClim database. 

(Coefficient of variation) 

24.86 32.86 
28.97 ±

2.25 

*Human 

footprint 

Human Footprint score averaged across the raster cells 

touched by the segment. Derived from the Global Human 

Footprint (Geographic) v2 (1995–2004) database. A value 

of 0 means no human influence, whereas a value of 100 

means maximum human influence. 

21.00 76.00 
45.18 ±

11.36 

*Artificial 

surfaces (CLC) 

Relative area of the artificial surfaces within a 60 m width 

buffer zone around the segment. Derived by unifying the 

area of the land cover patches coded by 111, 112, 121, 

122, 123, 124, 131, 132, 133, 141 and 142 in CORINE 

2006 database. 

0 0.98 0.12 ± 0.17 

Agricultural 

surfaces (CLC) 

Relative area of the agricultural surfaces within a 60 m 

width buffer zone around the segment. Derived by 

unifying the area of the land cover patches coded by 211, 

213, 221, 222, 231, 242 and 243 in CORINE 2006 

database. 

0 1 0.63 ± 0.29 

*Forested 

vegetation 

(CLC) 

Relative area of the forested vegetation surfaces within a 

60 m width buffer zone around the segment. Derived by 

unifying the area of the land cover patches coded by 311, 

312 and 313 in CORINE 2006 database. 

0 1 0.15 ± 0.23 

*Scrub and 

herbaceous 

Relative area of the scrub and herbaceous vegetation 

surfaces within a 60 m width buffer zone around the 
0 0.65 0.05 ± 0.10 
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Variable Description Min. Max. 
Mean ± 

SD 

vegetation 

(CLC) 

segment. Derived by unifying the area of the land cover 

patches coded by 321, 322, 323 and 324 in CORINE 

2006 database. 

*Wetlands 

(CLC) 

Relative area of inland wetlands within a 60 m width 

buffer zone around the segment. Derived by unifying the 

area of the land cover patches coded by 411 and 412 in 

CORINE 2006 database. 

0 0.47 0.02 ± 0.06 

Water bodies 

(CLC) 

Relative area of inland water bodies within a 60 m width 

buffer zone around the segment. Derived by unifying the 

area of the land cover patches coded by 511 and 512 in 

CORINE 2006 database. 

0 0.86 0.03 ± 0.11 

*Ponds 

Relative area of ponds within a 60 m width buffer zone 

around the segment. Derived from a national Water 

Framework Directive GIS layer. 

0 0.32 0.02 ± 0.06 

 196 

Fish occurrence (presence-absence) data associated to each stream segment was obtained 197 

from predictive species distribution modelling. It was necessary, because fish data from field 198 

surveys (altogether 251 surveys conducted at 132 sites between 2003 and 2014) were only 199 

available for 68 segments (literature and own data on a total of 42 species). For building the 200 

species distribution models we used actual field data. The standardized sampling protocol 201 

consisted of the single pass electrofishing of representative habitats of the segments, with the 202 

total length examined depending on the type of the waterbody (for details see Erős, 2007). For 203 

streams, a battery-powered electrofishing device was used (Hans-Grassl IG 200/2B, PDC). 204 

The crew sampled a 150 m long reach, slowly walking upstream and with single-pass fishing 205 

of the whole stream width. For non-wadeable rivers, boat electrofishing was applied with a 206 
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generator driven device (Hans-Grassl EL64 II GI, SDC), slowly moving downstream and 207 

electrofishing 500 m long reaches in near shore areas. This division in sampling length 208 

between streams and rivers was necessary to optimize sampling effort and to sample fish 209 

assemblages representatively and proportionally to the size of the water body (see e.g., 210 

Oberdorff et al. 2001; Pont et al. 2006). Species richness estimators showed that such an effort 211 

catches most fish species (> 85%) in a single occasion in both streams and rivers in this 212 

ecoregion (see Erős, 2007; Sály et al. 2009 for details). After identification and counting, fish 213 

were released into the water at the site of capture. Note, that segments where former faunistic 214 

studies did not justify the existence of fish were considered unrepresentatively surveyed. 215 

 216 

As a first step of the predictive modelling, fish data of the surveys were pooled within the 217 

stream segments. Species occurring at less than four segments (~5%) were excluded from the 218 

analysis. Data of the remaining species were used as a training data set in a multiresponse 219 

multivariate regression splines (MARS) model (Leathwick et al 2005). In the model, the 20 220 

abiotic environmental variables were used as potential predictors. MARS was fitted with a 221 

generalised linear model with binomial error distribution option on the training data. 222 

Predictive performance of the model was evaluated by a mean AUC value (area under a 223 

receiver operating characteristic curve) computed from ten 4-fold cross validations for each 224 

species separately. Species with a mean AUC value less than 0.7 (an arbitrary threshold) were 225 

excluded (see Appendix), and the model was refitted on the data of the retained species. 226 

Consequently, weakly predictable species, e.g., ubiquitous ones, did not influence the general 227 

predictive performance of the model. In the second step, the trained MARS model was fitted 228 

on all the stream segments to get occurrence probability of the species. As a last step, 229 

occurrence probabilities were converted into binary presence-absence data using a threshold 230 
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criterion that maximizes the sum of sensitivity and specificity (Jiménez-Valverde & Lobo 231 

2007), which resulted in a complete fish data set for the entire ZT system. 232 

 233 

2.2. Reducing the number of environmental variables 234 

Collinearity among explanatory variables can lead to unreliable parameter estimations and to 235 

inflation of the coefficient of (multiple) determination of statistical models. In variation 236 

partitioning, strongly correlated explanatory variables can cause negative estimated variance 237 

fractions (Peres-Neto et al. 2006). Therefore, during preliminary data analyses, the 20 238 

environmental variables were screened on the basis of pairwise Pearson correlations (its 239 

absolute value would not be greater than 0.7) and expert judgement to find a subset of them in 240 

which there was no strong collinearity among the variables. As a result of this screening 241 

process 10 out of the initial 20 environmental variables were selected for further analysis 242 

(marked with an asterisk in Table 1), and used as input variables in forward selection 243 

procedures before variation partitioning. 244 

 245 

2.3. Iterative randomization procedure: sampling, forward selection, variation partitioning 246 

and sampling design characterization 247 

The statistical sampling distributions of the variance fractions were generated using an 248 

iterative randomization procedure (Monte Carlo simulation). This procedure was conducted 249 

with four sample sizes, choosing 23, 46, 69, and 92 stream segments randomly from the 115 250 

ZT stream segments (statistical population). These sample sizes corresponded to 20%, 40%, 251 

60% and 80% information coverage of the statistical population. 252 

 253 
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Each random sample was analysed as if it had been a single field sample, correspondingly, the 254 

steps of its analysis followed a scenario that is commonly used in variation partitioning by 255 

field ecologists. When it was necessary, the geographic localization of the unique stream 256 

segments was modelled by latitude and longitude coordinates of the midpoint of the segments 257 

during the analysis process. Segment midpoint is the point that is halfway stream distance 258 

from both endpoints of the stream segment. 259 

 260 

The iteration process was initiated by choosing a random sample of the ZT segments. Then, 261 

the sample was subjected to a Moran’s eigenvector maps (MEM) analysis (Dray et al. 2006) 262 

to get the potential spatial explanatory variables of the particular sample. To start this analysis, 263 

the pairwise stream distance matrix of the midpoint of the sample stream segments was 264 

transformed into a matrix of normalized distances: 265 

 266 

d'ij = 1 – (dij/dmax) 267 

 268 

where d'ij is the normalized distance for the distance of segment i and segment j; dij is the 269 

original distance (rkm) of segment i and segment j; dmax is the maximum of the pairwise 270 

distances (rkm) of the sample segments. 271 

 272 

Two stream segments were considered neighbours (i.e., connected) only if there was a direct 273 

path (i.e., a path that did not go through a third stream segment included in the given sample) 274 

between them along the stream network. Otherwise they were considered unconnected. 275 

Connectivity relationships were summarized in a symmetric binary matrix (CM) in which 1s 276 

coded the connected and 0s the unconnected pairs of segments. 277 
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 278 

In order to get a spatially weighted connectivity matrix, CM was weighted with the matrix of 279 

the normalized distances. Then, the result matrix (Hadamard product) was eigen-analysed. 280 

Eigenvectors with positive eigenvalue were retained as potential spatial explanatory variables 281 

of the given sample. 282 

 283 

After MEM analysis, the fish data of the sample was checked, and species that did not occur284 

in any sample segments were deleted from the data table. Similarly, environmental data of the 285 

sample were checked as well, and environmental variables with zero variance were deleted. 286 

 287 

Before variation partitioning, a forward selection procedure (Blanchet et al. 2008) was applied 288 

to identify the relevant environmental and spatial variables that can serve as explanatory 289 

variables of the given sample. Forward selection was controlled by three stopping criteria to 290 

avoid overfitting: (1) a preselected variable had to explain a significant portion of the 291 

explained variance, in other words, significance value of a preselected variable had to be 292 

larger than 0.05; (2) a preselected significant variable had to increase the coefficient of 293 

multiple determination (R2) by at least 0.01; (3) the adjusted coefficient of multiple 294 

determination (R2
adj) did not have to be larger than a value of that derived from a global test 295 

(i.e., including all the environmental variables or spatial variables). The numbers of the 296 

selected environmental and spatial variables (i.e., the numbers of the effective explanatory 297 

variables) were recorded. 298 

 299 
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Then, an RDA-based variation partitioning with adjusted coefficients of multiple 300 

determination was used to get the purely environmentally, the purely spatially, the jointly 301 

explained, and the residual variance fractions (Peres-Neto et al. 2006). 302 

 303 

After variance partitioning, sampling design properties of the particular random sample were 304 

recorded. Spatial extent was measured as the area of the rectangle expanding between the 305 

westernmost and easternmost, and southernmost and northernmost sample segments. 306 

Sampling interval was measured as the average Euclidean distance between the neighbouring 307 

stream segments. We note here that during preliminary analyses sample interval had been 308 

measured by using stream distances instead of Euclidean distances, but this showed weaker 309 

relationships with the variance fractions than Euclidean distance did, hence it was omitted. 310 

Topology of the sampling units in a certain sampling design was quantified as average 311 

eccentricity of the nodes of a graph of the sample segments. This connected graph was made 312 

from the symmetric binary connectivity matrix (CM, see above), and its nodes represented the 313 

sample segments, whereas its (unweighted) edges represented the connections between them 314 

(see Erős et al. 2011 Fig. 1). Eccentricity of a single node is the maximum topological 315 

(shortest path) distance between the particular node and any other node of the graph. The 316 

greater the mean eccentricity of the graph nodes, the more elongated the topology of the 317 

sampling design. In preliminary analyses, we had quantified the topology by other graph 318 

theoretic measures (Harary index, degree centrality, betweenness centrality, closeness 319 

centrality) (Minor & Urban 2008; Ricotta et al. 2000), but these measures were rather strongly 320 

associated (mostly linearly) with each other, therefore we used only the mean eccentricity in 321 

the main analysis. 322 

 323 
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Random sampling and the subsequent analysis process described above was iterated 400 324 

times at every sample size level, which resulted in a total of 1600 (4 sample sizes × 400 325 

repetitions) unique sampling designs and variation partitioning analyses. 326 

 327 

After the randomization procedure, variation of the statistical population (i.e., data of all the 328 

115 ZT segments) was also decomposed by the same analytical procedure that had been used 329 

for the random samples. 330 

 331 

2.4. Statistical analysis of variation partitioning results 332 

Finishing the random sampling procedure, the sampling distribution of the variance fractions 333 

and the number of the selected environmental and spatial explanatory variables was 334 

characterised by descriptive statistics. 335 

 336 

Variance fractions of all the 1600 partitioning analyses were ranked to quantify their relative 337 

importance; and the frequency distribution of the unique rank order vectors was used to assess 338 

the robustness of the variance partitioning against sampling design alteration for every sample 339 

size. 340 

 341 

The strength of the general relationship between sampling design modification and the results 342 

of variance partitioning was quantified and tested by Mantel tests with 999 randomizations for 343 

each sample size. In these tests, pairwise sample similarity was measured by Kulczynski 344 

index, and pairwise difference in variation partitioning results by Euclidean distance using 345 

variance fractions [a], [b] and [c]. 346 

 347 
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Specific relationships between the variance fractions, the number of selected environmental 348 

and spatial variables, and sampling design properties were explored by generalised least 349 

squares regression models (i.e., weighted linear regression) with maximum likelihood 350 

estimation (Zuur et al. 2009). Variance fractions and the number of the selected environmental 351 

and spatial variables were the response variables, whereas spatial extent, sampling interval, 352 

topology measure acted as explanatory variables nested within the sample size (categorical 353 

variable) in each regression model. Because variance of the response variables depended on 354 

the groups of the sample size, a variance structure that allows different variances for each 355 

group was built in the models (Zuur et al. 2009). After model fitting, significance of each 356 

explanatory variable at a level of alpha equals 0.05 was judged with a t-test. Non-significant 357 

explanatory variables were excluded and the model was refitted on the data in order to get a 358 

minimum adequate model that had no any insignificant terms (Crawley 2007). 359 

 360 

Relationships between the unique variance fractions and the number of the selected 361 

environmental and spatial variables were examined through correlation analyses. 362 

 363 

2.5. Software tools 364 

GIS data processing was done with QGIS (QGIS Development Team 2014). All the statistical 365 

analyses were conducted in R environment (R Core Team 2015). MARS modelling was 366 

carried out as it is implemented in the earth package (Milborrow et al. 2014). Thresholds to 367 

convert predicted probabilities into presence-absence data were identified with 368 

PresenceAbsence package (Freeman & Moisen 2008). MEM analysis was conducted with the 369 

spacemakeR package (Dray 2013). The packfor package (Dray et al. 2013) was used for the 370 

forward selection procedure. Pairwise stream distance matrix was computed with shp2graph 371 
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(Lu 2014) and igraph (Csárdi & Nepusz 2006) packages. Variation partitioning was done with 372 

the varpart function of the vegan package (Oksanen et al. 2015). Line graph construction and 373 

eccentricity computation were also carried out with the igraph package (Csárdi & Nepusz 374 

2006). Package vegan (Oksanen et al. 2013) was used for the Mantel tests too. Generalised 375 

least squares regressions were conducted with nlme package (Pinheiro et al. 2015). 376 

 377 

 378 

 379 

 380 

3. RESULTS 381 

 382 

3.1. Species distribution modelling 383 

Out of the 42 fish species of the field data set of the Zagyva-Tarna system, 14 species were 384 

excluded owing to rarity, and 11 species because of poor predictability. MARS algorithm 385 

selected two environmental predictors (distance from source and precipitation of the wettest 386 

month) to model the distribution of the remaining 17 fish species that were included into the 387 

main analyses (Table 2). The fit of the MARS model on the training data measured by the 388 

coefficient of determination (R2) averaged across the 17 species was 0.30 ± 0.13 (mean ± SD). 389 

The same value of the generalized coefficient of determination (GR2, it is corrected for the 390 

effective number of model parameters and the number of observations [see earth package 391 

vignette ‘Notes on the earth package’ at http://www.milbo.org/doc/earth-notes.pdf]) 392 

measuring the generalization performance of the model was 0.20 ± 0.14. The mean AUC 393 

value of the ten 4-fold cross validations averaged across the 17 species was 0.80 ± 0.06 (Table 394 

2). 395 
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 396 

 397 

Table 2. Relative occurrence frequency (i.e., prevalence) of the fish species in the training 398 

data and MARS–GLM performance. R2: coefficient of determination; GR2: generalized 399 

coefficient of determination; AUC: area under a receiver operating characteristic curve 400 

averaged across the results of ten 4-fold cross validations. 401 

Species Common name 
Rel. occ. fr. 

(n=68) 
R2 GR2 

AUC 

(mean ± SD) 

Alburnoides bipunctatus 
Schneider 

(spirlin) 
0.176 0.177 0.069 0.733 ± 0.194 

Alburnus alburnus bleak 0.529 0.358 0.274 0.766 ± 0.111 

Barbatula barbatula stone loach 0.544 0.273 0.178 0.739 ± 0.152 

Blicca bjoerkna white bream 0.309 0.302 0.210 0.764 ± 0.145 

Carassius gibelio Prussian carp 0.500 0.177 0.069 0.727 ± 0.124 

Cobitis elongatoides spined loach 0.618 0.331 0.243 0.827 ± 0.095 

Esox lucius northern pike 0.353 0.428 0.353 0.853 ± 0.100 

Gobio gobio gudgeon 0.588 0.137 0.024 0.732 ± 0.142 

Leuciscus aspius asp 0.074 0.145 0.033 0.811 ± 0.171 

Leuciscus leuciscus common dace 0.088 0.160 0.050 0.848 ± 0.155 

Proterorhinus semilunaris 
Western tubenose 

goby 
0.309 0.590 0.537 0.952 ± 0.041 

Rhodeus sericeus bitterling 0.500 0.425 0.349 0.833 ± 0.123 

Romanogobio vladykovi 
Danube whitefin 

gudgeon 
0.147 0.319 0.230 0.846 ± 0.146 

Rutilus rutilus roach 0.559 0.416 0.339 0.844 ± 0.100 

Sander lucioperca pikeperch 0.147 0.177 0.069 0.765 ± 0.155 

Scardinius erythrophthalmus rudd 0.279 0.300 0.208 0.810 ± 0.104 

Squalius cephalus chub 0.632 0.363 0.280 0.761 ± 0.142 
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Species Common name 
Rel. occ. fr. 

(n=68) 
R2 GR2 

AUC 

(mean ± SD) 

mean and SD of species – 0.374 ± 0.197 0.299 ± 0.126 0.207 ± 0.143 0.801 ± 0.060 

 402 

 403 

 404 

3.2. Descriptive statistics of variance fractions and the number of the selected environmental 405 

and spatial variables 406 

Descriptive statistics of the sample distribution of the variance fractions varied as sample size 407 

changed (Table 3). Mean value of variance fraction [a] decreased, and that of variance fraction 408 

[b] increased considerably with increasing sample size. Although, the mean of variance 409 

fraction [c] also increased, its changes were moderate. Interestingly, the mean of variance 410 

fraction [d] remained virtually the same at all the four sample sizes (Fig. 2; Table 3). Further, 411 

the mean value of the residual variance fraction was reasonably close to the residual variance 412 

fraction obtained from variation partitioning of the total statistical population (115 ZT 413 

segments) even at the smallest sample size. Whereas the mean value of the other variance 414 

fractions approximated the corresponding variance fractions in greater steps with increasing 415 

sample size (Table 3). 416 

 417 
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 418 

Fig. 2. Mean value and standard deviation of the variance fractions at different sample sizes. 419 

Values were computed from the results of RDA-based variation partitioning analyses of 364 420

(for sample size 23) or 400 (for sample size 46, 69, 92) random samples. Circles stand for the 421 

pure environmentally explained ([a]), squares for the jointly explained by environment and 422 

space ([b]), triangles for the pure spatially explained, and diamonds for the unexplained ([d]) 423 

variance fractions. 424 

 425 

All the dispersion indices (SD, CV%, IQR and range) decreased monotonically as sample size 426 

increased. Despite of this trend, the range of stochastic fluctuation of each variance fraction 427 

exceeded 0.10 (i.e., 10%) even at the largest sample size that is when dispersion was the 428 

smallest for every variance fraction. Considering a given sample size, the residual variance 429 

fraction ([d]) showed the smallest, and the pure spatial variance fraction ([c]) the largest 430 

relative variability measured by the coefficient of variation (Table 3).431 

 432 

Mean value of the number of the selected environmental and spatial variables also showed a 433 

positive relationship with sample size. Further, increasing sample size had a greater effect on 434 
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the number of the selected MEM variables, than on the number of the selected environmental 435 

ones. Similarly to the case of variance fractions, mean values of these two variables computed 436 

at the largest simple size were the closest to the number of the selected environmental and 437 

MEM variables obtained from the forward selection of the total statistical population (115 ZT 438 

segments) (Table 3). 439 

 440 

Standard deviation and range of the number of the selected MEM variables depended on the 441 

sample size too, but those of the number of the selected environmental variables did not so 442 

(Table 3). 443 

 444 
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Table 3. Descriptive statistics of the variance fractions and the number of the selected 445 

environmental and spatial variables derived from an iterative randomization procedure. [a] 446 

purely environmentally explained variance fraction. [b] variance fraction jointly explained by 447 

environmental and spatial variables. [c] purely spatially explained variance fraction. [d] 448 

unexplained residual variance fraction. Sample size refers the number of stream segments of 449 

the random samples. n: the number of random samples drawn during the iterative 450 

randomization procedure; SD: standard deviation; CV (%): coefficient of variation (SD/mean 451 

× 100); Q1: the first quartile; Q3: the third quartile; IQR: interquartile range. Note that 452 

variation partitioning was not done in 36 cases out of the 400 random samples at the level of 453 

sample size 23. Note also that the last row shows the result of variation partitioning of the 454 

entire data set (i.e., all the 115 ZT segments). 455 

Sample size 

(relative sample size) 
Statistics [a] [b] [c] [d] 

# of selected 

env. vars 

# of selected 

spatial vars 

23 (0.20) n 364 364 364 364 364 364 

 min 0.017 0.018 -0.047 0.222 1 1 

 Q1 0.201 0.173 0.002 0.367 2 1 

 median 0.286 0.254 0.026 0.412 2 2 

 Q3 0.379 0.344 0.055 0.465 3 3 

 max 0.605 0.582 0.247 0.643 6 9 

 mean 0.290 0.260 0.034 0.415 2.511 2.44 

 SD 0.124 0.113 0.043 0.071 0.759 1.338 

 CV (%) 42.73 43.23 127.20 17.12 30.22 54.83 

 IQR 0.177 0.172 0.053 0.098 1 2 

 range 0.588 0.564 0.294 0.422 5 8 

46 (0.40) n 400 400 400 400 400 400 
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Sample size 

(relative sample size) 
Statistics [a] [b] [c] [d] 

# of selected 

env. vars 

# of selected 

spatial vars 

 min 0.042 0.061 -0.014 0.290 2 1 

 Q1 0.166 0.262 0.024 0.386 3 4 

 median 0.212 0.324 0.040 0.416 3 5 

 Q3 0.280 0.372 0.061 0.443 4 7 

 max 0.488 0.529 0.170 0.550 6 13 

 mean 0.222 0.316 0.046 0.416 3.298 5.495 

 SD 0.080 0.080 0.030 0.044 0.846 2.122 

 CV (%) 35.93 25.36 66.65 10.64 25.65 38.61 

 IQR 0.113 0.110 0.037 0.058 1 3 

 range 0.446 0.469 0.184 0.260 4 12 

69 (0.60) n 400 400 400 400 400 400 

 min 0.061 0.205 0.006 0.311 2 2 

 Q1 0.147 0.318 0.040 0.387 4 7 

 median 0.178 0.355 0.054 0.411 4 9 

 Q3 0.214 0.39 0.070 0.432 4 11 

 max 0.343 0.498 0.145 0.499 7 17 

 mean 0.181 0.354 0.056 0.409 4.065 8.918 

 SD 0.053 0.052 0.023 0.032 0.776 2.532138 

 CV (%) 29.07 14.56 41.63 7.89 19.10 28.39 

 IQR 0.067 0.073 0.030 0.045 0 4 

 range 0.282 0.292 0.139 0.188 5 15 

92 (0.80) n 400 400 400 400 400 400 

 min 0.031 0.282 0.012 0.311 3 6 
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Sample size 

(relative sample size) 
Statistics [a] [b] [c] [d] 

# of selected 

env. vars 

# of selected 

spatial vars 

 Q1 0.105 0.379 0.058 0.380 4 12 

 median 0.127 0.402 0.072 0.395 4 14 

 Q3 0.152 0.424 0.090 0.411 5 16 

 max 0.241 0.486 0.156 0.455 7 23 

 mean 0.131 0.400 0.074 0.395 4.518 13.97 

 SD 0.036 0.036 0.022 0.023 0.718 2.771 

 CV (%) 27.31 9.045 29.59 5.89 15.90 19.84 

 IQR 0.047 0.045 0.031 0.031 1 4 

 range 0.210 0.203 0.143 0.144 4 17 

115 (total statistical population) – 0.103 0.429 0.084 0.384 5 18 

 456 

 457 

3.3. Rank order of variance fractions 458 

Stochastic fluctuation of the variance fractions affected strongly their rank order. Considering 459 

all the four variance fractions, frequency distribution of the rank orders consisted 10, 6, 5 and 460 

4 different rank order vectors for the sample size 23, 46, 69 and 92, respectively (Table 4). If 461 

we considered only the variance fractions [a], [b] and [c], the numbers of the unique rank 462 

order vectors were 5, 3, 3 and 2 for the sample size 23, 46, 69 and 92, respectively (Table 5). 463 

 464 
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Table 4. Frequency distribution of the unique rank orders considering all the four variance 465 

fractions ([a] pure environmentally explained, [b] jointly explained by environment and 466 

space, [c] pure spatially explained, [d] unexplained). Rank 1 denotes the smallest of the 467 

variance fractions. At every sample size, the frequency distribution was made from the result 468 

of 400 variation partitioning analyses. NAs mean that variation partitioning was not done 469 

because there were not any significant spatial variable for 36 random sample configuration. 470 

Therefore, in these cases all the explained variance can be interpreted as pure 471 

environmentally explained variance. 472 

Sample size 

(relative sample size) 
type of rank order vector [a] [b] [c] [d] frequency rel. freq. 

23 (0.20) 1 3 2 1 4 127 0.3175 

 2 2 3 1 4 92 0.2300 

 3 4 2 1 3 69 0.1725 

 4 2 4 1 3 48 0.1200 

 5 1 4 2 3 10 0.0250 

 6 1 3 2 4 9 0.0225 

 7 4 3 1 2 4 0.0100 

 8 4 1 2 3 4 0.0100 

 9 3 4 1 2 1 0.0025 

 10 NA NA NA NA 36 0.0900 

46 (0.40) 1 2 3 1 4 212 0.5300 

 2 3 2 1 4 102 0.2550 

 3 2 4 1 3 62 0.1550 

 4 4 2 1 3 10 0.0250 

 5 1 4 2 3 10 0.0250 
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Sample size 

(relative sample size) 
type of rank order vector [a] [b] [c] [d] frequency rel. freq. 

 6 1 3 2 4 4 0.0100 

69 (0.60) 1 2 3 1 4 300 0.7500 

 2 2 4 1 3 68 0.1700 

 3 3 2 1 4 21 0.0525 

 4 1 4 2 3 10 0.0250 

 5 1 3 2 4 1 0.0025 

92 (0.80) 1 2 4 1 3 174 0.4350 

 2 2 3 1 4 174 0.4350 

 3 1 4 2 3 48 0.1200

 4 1 3 2 4 4 0.0100 

115 (total statistical population) true rank order 2 4 1 3 – – 

 473 

Table 5. Frequency distribution of the unique rank orders considering all the pure 474 

environmentally explained ([a]), the jointly explained by environment and space ([b]), and 475 

the pure spatially explained ([c]) variance fractions. Rank 1 denotes the smallest of the 476 

variance fractions. At every sample size, the frequency distribution was made from the result 477 

of 400 variation partitioning analyses. NAs mean that variation partitioning was not done 478 

because there were not any significant spatial variable for 36 random sample configuration. 479 

Therefore, in these cases all the explained variance can be interpreted as pure 480 

environmentally explained variance. 481 

Sample size 

(relative sample size) 
type of rank order vector [a] [b] [c] frequency rel. freq. 

23 (0.20) 1 3 2 1 200 0.5000 



30 

Sample size 

(relative sample size) 
type of rank order vector [a] [b] [c] frequency rel. freq. 

 2 2 3 1 141 0.3525 

 3 1 3 2 19 0.0475 

 4 3 1 2 4 0.0100 

 5 NA NA NA 36 0.0900 

46 (0.40) 1 2 3 1 274 0.6850 

 2 3 2 1 112 0.2800 

 3 1 3 2 14 0.0350 

69 (0.60) 1 2 3 1 368 0.9200 

 2 3 2 1 21 0.05250

 3 1 3 2 11 0.02750 

92 (0.80) 1 2 3 1 348 0.8700 

 2 1 3 2 52 0.1300 

115 (total statistical population) true rank order 2 3 1 – – 

 482 

 483 

 484 

3.4. General relationship between sampling design modification and results of variation 485 

partitioning 486 

Although the mean of the pairwise Euclidean distances of the variation partitioning results of 487 

the random samples crashed, and the mean of the pairwise sample similarities (Kulczynski 488 

index) increased sharply as the sample size increased, there was not any kind of association 489 

between them at any levels of a single sample size (Table 6.). 490 

 491 
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Table 6. Results of Mantel tests of variation partitioning (Euclidean distances) vs. sample 492 

similarities (Kulczynski index). Euclidean distances were computed from the three variance 493 

fractions as follows: pure environmentally explained ([a]), jointly explained by environment 494 

and space ([b]), and pure spatially explained ([c]). p-values were computed from 999 495 

randomizations. 496 

Sample size 

(relative sample size) 

Mantel statistics 

(Spearman correlation) 

p-value 

23 (0.20) -0.018 1 

46 (0.40) -0.022 1 

69 (0.60) -0.033 1 

92 (0.80) -0.036 1 

 497 

3.5. Relationships between properties of sampling design and unique variance fractions 498 

Number of explanatory variables contained by the minimum adequate regression models 499 

varied across the models of the different response variables (i.e., variance fractions). In 500 

general, the strength of the linear relationships of the properties of the sampling design with 501 

the unique variance fractions were moderate (see pseudo-R2s in Table 7) and sample size 502 

dependent. 503 

 504 

Pure environmentally explained variance fraction ([a]) was affected negatively by spatial 505 

extent although its effect was only marginally significant (0.05 < p ≤ 0.10) at sample size 69, 506 

and significant (p < 0.05) at sample sizes 46 and 92. Estimated effect of sampling interval on 507 

variance fraction [a] was positive at all the sample sizes, but it was marginally significant at 508 
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sample size 69 and significant at sample size 92. Interestingly, the effect size (regression 509 

coefficient b) and its statistical significance (p-value) of sampling interval increased 510 

consistently as sample size increased. Mean eccentricity (topology) showed significant 511 

positive effect on [a] at sample size 92, and marginally significant positive effects at sample 512 

sizes 46 and 69. 513 

 514 

Variance fraction explained jointly by environment and space ([b]) was significantly 515 

associated only with sampling interval in a negative way at each sample size. Similarly to the516 

case of variance fraction [a], the effect size and significance of this association also increased517 

consistently with increasing sample size. 518 

 519 

Pure spatially explained variance fraction ([c]) was negatively influenced by sampling interval 520 

and mean eccentricity, but only at the largest sample size. The effect of these two explanatory 521 

variables was highly insignificant at other sample sizes. 522 

 523 

Residual variance fraction ([d]) was affected by spatial extent positively at sample sizes 46, 524 

69, 92, by sampling interval also positively at sample sizes 23, 69, 92, and by mean 525 

eccentricity negatively at sample size 69. 526 

 527 

3.6. Relationships between properties of sampling design and the number of the selected 528 

spatial and environmental variables 529 

Variation of the number of the selected environmental and spatial variables was better 530 

explainable by sample design properties than that of the variance fractions (see pseudo R2 531 

values at Table 7). The number of the selected environmental variables was positively related 532 
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to spatial extent at larger sample sizes (69, 92). On the other hand, the number of the selected 533 

spatial variables was influenced only by sampling interval and in a negative way. Apart from 534 

sample size 46, this relationship was significant at all the other sample sizes (Table 7). 535 

 536 

3.7. Correlations between variance fractions and number of the selected environmental and 537 

spatial variables 538 

Pairwise Pearson correlation coefficients showed that each unique variance fraction covaried 539 

much stronger with the number of the selected spatial variables than with spatial extent, 540 

sampling interval or mean eccentricity independently of sample size. The direction of the 541 

covariation was consistent across sample sizes for every variance fraction. On the contrary, 542 

strength and direction of covariation between unique variance fractions and the number of the 543 

selected environmental variables depended on sample size and type of variance fraction 544 

(Table 8).545 



34 

Table 7. Results of the generalised least squares models. Estimated partial regression coefficients (b), their standard error (SE), significance value, and 546 

the standardized partial regression coefficients (i.e., beta coefficients [Quinn & Keough, 2002]) (beta). Pseudo-R2 means the proportion of explained 547 

variation; it was computed as 1 - RSS/TSS where RSS is the residual sum of squares and TSS is the total sum of squares. Note that the spatial extent, 548 

sampling interval and mean eccentricity was nested within sample size, but models did not contain sample size as a main effect. Consequently, the 549 

estimation of the intercept parameter is meaningless and is not shown in the table. 550 

  
Sample size 23 (0.20) 

Explanatory variables 

Sample size 46 (0.40) 

Explanatory variables 

Sample size 69 (0.60) 

Explanatory variables 

Sample size 92 (0.80) 

Explanatory variables 

Response variable 

(pseudo-R2) 
 

spa. 

ext. 
sampl. int. mean ecc. 

spa. 

ext. 
sampl. int. mean ecc. 

spa. 

ext. 
sampl. int. mean ecc. 

spa. 

ext. 
sampl. int. mean ecc. 

[a] 

(0.352) 
b -2.6×10-06 3.0×10-4 -0.004 -1.6×10-05 0.004 0.008 -9.2×10-06 0.008 0.005 -1.2×10-05 0.020 0.006 

 SE 9.9×10-06 0.003 0.008 7.2×10-06 0.004 0.004 5.2×10-06 0.004 0.003 4.8×10-06 0.005 0.002 

 t statistics -0.261 0.092 -0.558 -2.245 1.105 1.925 -1.757 1.941 1.718 -2.472 4.038 2.700 

 p-value 0.793 0.927 0.577 0.025 0.269 0.054 0.079 0.052 0.086 0.014 5.7×10-05 0.007 

 beta -0.015 0.006 -0.032 -0.121 0.063 0.104 -0.091 0.105 0.089 -0.126 0.213 0.137 

[b] 

(0.324) 
b  -0.005   -0.007   -0.016   -0.024  
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Sample size 23 (0.20) 

Explanatory variables 

Sample size 46 (0.40) 

Explanatory variables 

Sample size 69 (0.60) 

Explanatory variables 

Sample size 92 (0.80) 

Explanatory variables 

Response variable 

(pseudo-R2) 
 

spa. 

ext. 
sampl. int. mean ecc. 

spa. 

ext. 
sampl. int. mean ecc. 

spa. 

ext. 
sampl. int. mean ecc. 

spa. 

ext. 
sampl. int. mean ecc. 

 SE  0.002   0.003   0.003   0.005  

 t statistics  -2.051   -2.264   -4.519   -5.159  

 p-value  0.040   0.024   6.7×10-06   2.8×10-07  

 beta  -0.107   -0.113   -0.221   -0.250  

[c] 

(0.197) 
b  -0.001 0.002  0.002 0.001  0.001 3.2×10-04  -0.012 -0.004 

 SE  0.001 0.003  0.001 0.002  0.002 0.001  0.003 0.001 

 t statistics  -0.863 0.855  1.399 0.891  0.450 0.242  -4.065 -3.143 

 p-value  0.388 0.393  0.162 0.373  0.653 0.809  5.1×10-05 0.002 

 beta  -0.049 0.049  0.074 0.047  0.024 0.013  -0.206 -0.160 

[d] 

(0.086) 
b 4.5×10-06 0.005 0.002 1.1×10-05 0.004 -0.004 8.4×10-06 0.008 -0.005 8.2×10-06 0.017 -0.002 

 SE 5.5×10-06 0.002 0.005 3.9×10-06 0.002 0.002 3.1×10-06 0.002 0.002 3.0×10-06 0.003 0.001 
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Sample size 23 (0.20) 

Explanatory variables 

Sample size 46 (0.40) 

Explanatory variables 

Sample size 69 (0.60) 

Explanatory variables 

Sample size 92 (0.80) 

Explanatory variables 

Response variable 

(pseudo-R2) 
 

spa. 

ext. 
sampl. int. mean ecc. 

spa. 

ext. 
sampl. int. mean ecc. 

spa. 

ext. 
sampl. int. mean ecc. 

spa. 

ext. 
sampl. int. mean ecc. 

 t statistics 0.818 2.957 0.480 2.904 1.801 -1.920 2.723 3.381 -2.662 2.719 5.405 -1.410 

 p-value 0.414 0.003 0.631 0.004 0.072 0.055 0.006 0.001 0.008 0.007 7.5×10-08 0.159 

 beta 0.046 0.181 0.027 0.153 0.100 -0.102 0.135 0.175 -0.133 0.133 0.273 -0.069 

# of selected 

env. vars 

(0.518) 

b -7.7×10-06  -0.002 -4.4×10-05  0.030 2.4×10-04  0.127 4.4×10-04  0.068 

 SE 5.5×10-05  0.045 7.1×10-05  0.041 7.3×10-05  0.041 9.3×10-05  0.040 

 t statistics -0.141  -0.035 -0.624  0.723 3.289  3.128 4.660  1.690 

 p-value 0.888  0.972 0.533  0.470 0.001  0.002 3.4×10-06  0.091 

 beta -0.007  -0.002 -0.031  0.036 0.162  0.154 0.229  0.083 

# of selected 

spatial vars 

(0.783) 

b  -0.074   -0.081   -0.623   -1.229  

 SE  0.029   0.084   0.171   0.357  
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Sample size 23 (0.20) 

Explanatory variables 

Sample size 46 (0.40) 

Explanatory variables 

Sample size 69 (0.60) 

Explanatory variables 

Sample size 92 (0.80) 

Explanatory variables 

Response variable 

(pseudo-R2) 
 

spa. 

ext. 
sampl. int. mean ecc. 

spa. 

ext. 
sampl. int. mean ecc. 

spa. 

ext. 
sampl. int. mean ecc. 

spa. 

ext. 
sampl. int. mean ecc. 

 t statistics  -2.564   -0.967   -3.640   -3.442  

 p-value  0.010   0.334   2.8×10-04   5.9×10-04  

 beta  -0.133   -0.048   -0.180   -0.170  

 551 
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Table 8. Pairwise Pearson correlation coefficients (lower triangle) and their p-values (upper triangle) of the sampling design properties, number of the 552 

selected environmental and spatial variables, and the unique variance fractions. 553 

sample size 23 spatial extent sampling interval mean ecc. # of selected 

env. vars 

# of selected 

spatial vars 

[a] [b] [c] [d] 

spatial extent  < 0.001 0.063 0.918 0.198 0.845 0.552 0.096 0.021 

sampling interval 0.427  < 0.001 0.073 0.011 0.830 0.041 0.202 < 0.001 

mean eccentricity -0.093 -0.378  0.996 0.283 0.533 0.461 0.204 0.392 

# of selected environmental variables 0.005 0.090 0.000  0.615 < 0.001 0.931 0.003 < 0.001 

# of selected spatial variables -0.068 -0.134 0.056 -0.026  < 0.001 < 0.001 < 0.001 < 0.001 

[a] -0.010 0.011 -0.033 0.229 -0.733  < 0.001 < 0.001 < 0.001 

[b] -0.031 -0.107 0.039 0.005 0.769 -0.816  < 0.001 < 0.001 

[c] -0.087 -0.067 0.067 -0.158 0.576 -0.410 0.236  < 0.001 

[d] 0.121 0.191 -0.045 -0.311 -0.292 -0.201 -0.307 -0.268  

sample size 46          

spatial extent  < 0.001 0.121 0.569 0.813 0.065 0.515 0.155 < 0.001 

sampling interval 0.321  < 0.001 0.866 0.334 0.830 0.024 0.244 < 0.001 
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sample size 23 spatial extent sampling interval mean ecc. # of selected 

env. vars 

# of selected 

spatial vars 

[a] [b] [c] [d] 

mean eccentricity 0.078 -0.336  0.498 0.957 0.142 0.785 0.655 0.013 

# of selected environmental variables -0.029 0.008 0.034  0.736 0.104 0.796 0.150 0.016 

# of selected spatial variables -0.012 -0.048 0.003 0.017  < 0.001 < 0.001 < 0.001 < 0.001 

[a] -0.092 -0.011 0.074 0.081 -0.713  < 0.001 < 0.001 0.404 

[b] -0.033 -0.113 -0.014 0.013 0.733 -0.858  < 0.001 < 0.001 

[c] 0.071 0.058 0.022 -0.072 0.572 -0.428 0.267  < 0.001 

[d] 0.177 0.183 -0.123 -0.121 -0.433 0.042 -0.444 -0.396  

sample size 69          

spatial extent  < 0.001 0.131 0.003 0.093 0.170 0.078 0.101 < 0.001 

sampling interval 0.278  < 0.001 0.271 < 0.001 0.286 < 0.001 0.692 < 0.001 

mean eccentricity -0.076 -0.293  0.005 0.117 0.190 0.301 0.908 < 0.001

# of selected environmental variables 0.150 -0.055 0.142  0.204 0.134 0.395 0.043 0.018 

# of selected spatial variables -0.084 -0.179 0.078 -0.064  < 0.001 < 0.001 < 0.001 < 0.001 

[a] -0.069 0.053 0.066 0.075 -0.668  < 0.001 < 0.001 0.203 



40 

sample size 23 spatial extent sampling interval mean ecc. # of selected 

env. vars 

# of selected 

spatial vars 

[a] [b] [c] [d] 

[b] -0.088 -0.221 0.052 0.043 0.700 -0.854  < 0.001 < 0.001 

[c] 0.082 0.020 0.006 -0.101 0.577 -0.458 0.344  < 0.001 

[d] 0.194 0.252 -0.195 -0.118 -0.446 0.064 -0.453 -0.525  

sample size 92          

spatial extent  < 0.001 0.010 < 0.001 0.344 0.099 0.066 0.306 < 0.001 

sampling interval 0.290  < 0.001 0.050 0.001 0.005 < 0.001 0.001 < 0.001 

mean eccentricity -0.129 -0.267  0.285 0.097 0.053 0.163 0.037 0.001 

# of selected environmental variables 0.219 0.098 0.054  0.058 < 0.001 0.175 < 0.001 0.996 

# of selected spatial variables -0.047 -0.170 0.083 -0.095  < 0.001 < 0.001 < 0.001 < 0.001 

[a] -0.083 0.139 0.097 0.179 -0.675  < 0.001 < 0.001 < 0.001 

[b] -0.092 -0.250 0.070 -0.068 0.683 -0.882  < 0.001 < 0.001

[c] 0.051 -0.164 -0.104 -0.178 0.610 -0.500 0.339  < 0.001 

[d] 0.221 0.330 -0.159 0.000 -0.602 0.305 -0.517 -0.704  
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4. DISCUSSION 554 

 555 

This methodological investigation provides an insight into the relationship between 556 

ordination-based variation partitioning and the properties of sampling design in a dendritic 557 

network context. Although a recent prominent study (Gilbert & Bennett 2010) has touched 558 

this problem in a lattice grid context, to our knowledge, this study is the first which focused 559 

on the effect of sampling design primarily on the relative importance of the environment- and 560 

space-related component of assemblage variations, and on the specific relationships between 561 

the unique variance fractions and sampling design properties. 562 

 563 

4.1. Effect of sample size 564 

In general, because our dendritic study system (Zagyva-Tarna stream system) consists of a 565 

finite number of sampling units (stream segments), sample size usually interacts with the 566 

effects of the other sampling design properties. 567 

 568 

Expected values of the variance fractions estimated by the sample mean behaved in a peculiar 569 

way as sample size increased. Interestingly, residual variance fraction [d] changed negligibly 570 

as sample size increased. This result suggests that given a certain set of environmental 571 

descriptor variables, the total explainable variation of assemblages can be estimated with 572 

rather high accuracy independently from the sample size of the study. At the same time, the 573 

dispersion statistics of the unique residual variance fraction showed that the precision of this 574 

estimation can be low, especially at small or medium sample size. 575 

 576 
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Contrary to the residual variation, the mean values of the environment- and space-related 577 

variance fractions varied highly and their relative importance changed with changes in sample 578 

size. The decreasing of the mean environmentally explained variance with increasing sample 579 

size could, on the one hand, be a data set specific phenomenon. Both distance from source and 580 

precipitation of the wettest month, the two predictors used to model fish species distributions 581 

by MARS, can be associated with the longitudinal profile of a stream system. If species 582 

distribution is controlled mainly by the longitudinal profile associated environmental factors, 583 

the pure environmentally explained variance is expected to be low at small sample size, 584 

because spatially compact (i.e., less eccentric) sampling design with a short environmental 585 

gradient is more probable to occur at small sample size than at large sample size. On the other 586 

hand, the most fundamental environmental factors that control the spatial distribution of 587 

riverine fish assemblages at large scale, such as altitude, channel slope, discharge, are strongly 588 

related to the longitudinal aspect of running waters (Matthews 1998). Therefore, this natural 589 

character of stream systems can also result in low environmentally explained variance. 590 

 591 

The greater the sample size, the more complex network structures can be combined from the 592 

sample segments. This can be the reason why space-related variance increased with sample 593 

size. In other words, the number of possible unique topological configurations (i.e., possible 594 

spatial patterns) of the sampling units depends on the number of the sample units and on their 595 

topological position within the stream network. This assumption is supported by the result 596 

that the mean number of the selected MEM variables also increased as sample size increased. 597 

On the other hand, least squares regression model showed that at a certain sample size, the 598 

number of the selected MEM variables was influenced by sampling interval. Eigenanalyses-599 

based spatial models, like MEM analysis and the analysis of principal coordinates of 600 
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neighbour matrices (PCNM; Borcard & Legendre 2002), have the ability to model complex 601 

spatial patterns at various spatial scales (Dray et al. 2012). Smith & Lundholm (2010) argued 602 

for the sophisticated behaviour of the PCNM method about that variation partitioning could 603 

not distinguish between environment-related and space-related patterns. Similarly, Gilbert & 604 

Bennett (2010) also showed that PCNM predictors inflated the explained variation in spite the 605 

use of the adjusted coefficient of determination (R2
adj). Therefore, it can be supposed that 606 

space-related variances revealed by these eigenanalyses-based techniques primarily reflect the 607 

complexity of the design in terms of the number and spatial arrangement of the sampling 608 

units. If this is really the case, ecologists should be cautious when they infer the importance of 609 

dispersal of the studied organisms from purely the spatially explained variance of 610 

assemblages, especially when they have no reasonable knowledge on the movement ability of 611 

the studied species. 612 

 613 

4.2. Effect of sampling configuration 614 

Given a fix sample size, the stochastic fluctuation of the estimated variance fractions induced 615 

by the change of sampling configuration seems to be not consistent with each other. As a 616 

consequence, rank order of the variance fractions can change randomly as well. Considering 617 

the relative frequency of the experienced unique rank order vectors suggest that the 618 

uncertainty of the estimation of the true rank order (i.e., the rank order obtained by variation 619 

partitioning of the total statistical population [115 segments]) is the greatest at small sample 620 

size. However, as our results demonstrate, it is possible that even at 80% information 621 

coverage of the statistical population there could be roughly 0.13 probability chance to miss 622 

the true rank order vector when researchers aim to assess the relative importance of variance 623 

fractions [a], [b] and [c]. Moreover, small sample size could involve such sample 624 
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configurations from which MEM eigenvectors are not able to cover any significant spatial 625 

structures at a significance level of alpha equals 0.05. This result supports Alahuhta & Heino's 626 

(2013) conclusion that the relative contribution of environmental and spatial mechanisms to 627 

metacommunity structuring varies in a rather unpredictable way. 628 

 629 

As Mantel tests revealed, the change of sample design similarity seems not to cause a 630 

proportional modification in the result of variation partitioning. In other words, a small 631 

change in sample similarity of two random samples can result in both a great and a small 632 

difference between the results of the variance partitioning of the two random samples alike. 633 

This surprising result suggests that the effect of sampling design on variation partitioning can 634 

be hardly predicted on the basis of sample similarity. The rationale behind this must be related 635 

to the identity of the sampling units. Considering a compositional difference between two 636 

equal-sized samples caused by only a single pair of randomly selected stream segments, the 637 

biological similarity (species pool) can vary according to the topological position of the 638 

selected segments. For example, two stream segments with the same Strahler order (e.g., two 639 

headwater segments) tend to have much more similar species pool than two segments with 640 

different Strahler order (e.g., one headwater and one mainstem segment).  641 

 642 

4.3. Effect of spatial extent, sampling interval and topology 643 

Results of the GLS models suggest that spatial extent affect mainly the environmentally 644 

explainable variation of species assemblages. This involves an indirect influence on the 645 

residual variation as well. Interestingly, Grönroos et al. (2013) found that spatial extent was 646 

not related to metacommunity structuring. Because they had different number of local sites at 647 

the different spatial extents, the modifying role of sample size and/or topology may be the 648 
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reason for the apparent lack of the effect of spatial extent. Sampling interval appears to 649 

modify both the environment- and space-related variation, but its effect on these two unique 650 

variance fractions could depend on the sample size. However, the emergent and negative 651 

effect of sampling interval as it can be detected in the residual variation seems to be 652 

independent on sample size. Although, topology seems to affect both the pure environmental 653 

and spatial variance its influence can be powerful only at large sample size. To sum up, results 654 

suggest that variation partitioning in a dendritic system (i.e., in a system with a finite number 655 

of sampling units) is more sensitive to the properties of the sampling design when the 656 

informational coverage of the statistical population is large than when that is small or 657 

medium. 658 

 659 

Spatial extent and topology tend to influence the selected number of the abiotic variables, 660 

although their effect seems significant only at large sample sizes. On the contrary, sampling 661 

interval could reduce the number of the selected spatial explanatory variables. That is 662 

sampling interval might influence the complexity of the spatial structure that can be modelled 663 

by an eigenanalysis-based spatial method in dendritic networks. 664 

 665 

Probably the most surprising result emerging from our study was that each variance fraction 666 

was correlated much stronger with the number of the selected MEM variables than with any 667 

of the sampling design properties. Further, pseudo-R2 values of the GLS models indicated that 668 

sampling interval tend to explain better the variation of the number of the selected MEM 669 

variables than that of any variance fractions. Hence, it is likely that sampling interval 670 

primarily affects the number of the selected MEM variables in the forward selection 671 

procedure, which in turn influences the estimated variance fractions in variation partitioning. 672 
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The increased number of the selected MEM variables tend to increase the spatially explained 673 

variance, and reduce the environmentally explained and the residual variance fractions (see 674 

correlations in Table 8). This finding corresponds to Gilbert & Bennett (2010) who reported a 675 

statistical artefact nature of eigenanalysis-based spatial methods, because selection of some 676 

eigenvector variables can involve selecting additional ones leading to inflated explained 677 

variance. Therefore, spatial patterns behind the increased spatially explained community 678 

variation sometimes can be ecologically meaningless. 679 

 680 

 681 

5. CONCLUSIONS 682 

 683 

The findings of this study clearly indicate that sampling design has a considerable and 684 

unpredictable effect on the result of multivariate variation partitioning. Of sampling design 685 

properties, it seems that sample size and sampling interval influences notably the results. It is 686 

highly probable that this influencing effect is strongly related to the ability of eigenanalysis-687 

based spatial variables to model complex patterns. Apart from other important factors, such as 688 

biogeographic regions and anthropogenic modifications, differences in sampling design could 689 

have a significant role in the inconsistency of the results of metacommunity studies of stream 690 

organisms. 691 
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APPENDIX 889 

Species excluded from the MARS–GLM modelling because of low predictability (i.e., with a 890 

mean AUC value less than 0.7). Rel. occ. fr.: relative occurrence frequency; R2: coefficient of 891 

determination; GR2: generalized coefficient of determination; AUC: area under a receiver 892 

operating characteristic curve averaged across the results of ten 4-fold cross validations. 893 

Species Common name Rel. occ. fr. 
(n=68) 

R2 GR2 AUC 
(mean ± SD) 

Abramis brama common bream 0.191 0.109 -0.007 0.691 ± 
0.114 

Ameiurus melas black bullhead 0.118 0.069 -0.053 0.656 ± 
0.148 

Carassius carassius Crucian carp 0.088 0.078 -0.042 0.629 ± 
0.252 

Gymnocephalus cernua ruffe 0.103 0.104 -0.014 0.664 ± 
0.220 

Lepomis gibbosus pumpkinseed 0.221 0.060 -0.063 0.629 ± 
0.148 

Leucaspius delineatus belica 0.059 0.015 -0.114 0.485 ± 
0.247 

Leuciscus idus ide 0.118 0.070 -0.052 0.675 ± 
0.194 

Misgurnus fossilis weatherfish 0.103 0.073 -0.048 0.681 ± 
0.191 

Neogobius fluviatilis monkey goby 0.059 0.025 -0.102 0.636 ± 
0.237 

Perca fluviatilis European perch 0.309 0.146 0.034 0.693 ± 
0.112 

Pseudorasbora parva stone moroko 0.265 0.112 -0.004 0.677 ± 
0.138 
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