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Technological differences, theoretically consistent 

frontiers and technical efficiency: a Random parameter 

application in the Hungarian crop producing farms 

Lajos Baráth – Heinrich Hockmann 

Abstract  

 

Existing studies of agricultural production largely neglect technology heterogeneity. 

However, the assumption of homogeneous production may result in inadequate policy 

implications. There is a growing literature on this issue. In this paper we contribute to this 

literature by modelling the effect of heterogeneous technologies and its impact on 

technological parameters and technical efficiency using a reformulated Random parameter 

Model. Our approach is based on the model developed by Alvarez et al. (2004). However, the 

original version of this model faces one crucial econometric problem: the assumption of 

independence of technical inefficiency and input variables does not, hence the estimated 

results are not necessarily consistent. Therefore we reformulate the model to allow for a 

more consistent estimation. Additionally, we examine the importance of the fulfilment of 

theoretical consistency: monotonicity and quasi-concavity. In order to fulfil these criteria we 

apply constrained maximum likelihood estimation, more specifically we build linear and 

non-linear constraints into the model and force it to yield theoretically consistent results, not 

only in the mean but also in different approximation points. For the empirical analysis we 

use farm level data from the Hungarian FADN Database. The results showed that 

considering technological differences is important. According to model selection criteria the 

modified Alvarez model with constraints was the preferred specification. Additionally, the 

results imply that the consideration of the effect of heterogeneous technologies on 

production potential and efficiency crucial in order to get adequate policy implication. 

 

JEL: C5, D24, Q12  
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technical efficiency, technological heterogeneity, Random Parameter Model, theoretical 
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Technológia különbségek, elméleti konzisztencia és 

technikai hatékonyság: a magyar növénytermesztő 

üzemek vizsgálata random paraméter modellel 

Baráth Lajos – Heinrich Hockmann 

Összefoglaló  

 

A mezőgazdasági termelés hatékonyságát modellező tanulmányok nagy része nem veszi 

figyelembe az üzemek közötti technológiai különbségeket. A homogén technológia 

feltételezése azonban hibás agrárpolitikai javaslatokhoz vezethet. Egyre növekszik azon 

tanulmányok száma, amelyek erre a problémára hívják fel a figyelmet. Cikkünkben egy 

módosított random paraméter modell segítségével a különböző technológiák figyelembe 

vételének hatását vizsgáljuk a becsült technológiai paraméterekre és a technikai 

hatékonyságra. A cikkben használt modell az Alvarez és társai által 2004-ben javasolt 

modellen alapul. Az eredeti modellben azonban a technikai hatékonyság és az input változók 

függetlenségének kritériuma nem feltétlenül teljesül, így az eredmények torzítottak lehetnek. 

Az eredeti modellt ezért módosítjuk és bemutatjuk, hogy a módosított verzió esetében nem 

jelentkezik ez a probléma. Második célkitűzésünk az elméleti konzisztenciának 

(monotonitás, kvázi konkávitás) való megfelelés hatásának vizsgálata. Lineáris és nem 

lineáris korlátokat építünk a modellbe és biztosítjuk, hogy az átlagtól távolabbi megfigyelési 

pontokon is konzisztens eredményt kapjunk. Az empirikus elemzéshez a Tesztüzemi 

Rendszer (FADN) adatait használtuk. Modellszelekciós kritériumok alapján arra 

következtethetünk, hogy a módosított, lineáris és nem lineáris korlátokkal becsült modell 

illeszkedik legjobban a vizsgált adatokra. Az eredmények alátámasztják, hogy a technológiai 

különbségek figyelembe vétele és az elméleti konzisztenciának való megfelelés döntő 

jelentőségű a megfelelő agrárpolitikai javaslatok kidolgozásában. 

 

JEL: C5, D24, Q12 

Tárgyszavak:  

technikai hatékonyság, technológiai különbségek, random parameter modell, elméleti 

konzisztencia, montonitás, kvázi konkávitás, magyar mezőgazdaság 
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INTRODUCTION 

Analysis of farm efficiency using frontier methods can deliver significant insights into the 

competitiveness of farms and their potential for increasing productivity and improving 

resource use. Policy makers are particularly interested in the potential impact of their 

decisions on performance of firms. Thus findings from the study of technical efficiency (TE), 

far-reaching policy implications (Abdulai-Tietje, 2007; Bauer et al., 1998).  

There exist numerous papers concerning technical efficiency of the agricultural sector, 

but in the majority of technical efficiency literature homogenous technology is assumed for 

every farms1. However, farms may adopt different technologies or face different natural 

resource and economic conditions for a variety of reasons. Without considering this possible 

heterogeneity, the efficiency and productivity estimates of farms can be over-estimated. 

There is a growing body of macro agricultural productivity literature which emphasise the 

importance of modelling these possible technologies. In a recent paper Eberhardt-Teal 

(2013) conducted an extensive comparison among different linear parametric models and 

revealed that the assumption of a homogeneous production function in the farm sector may 

mask or distort important insights into development and demonstrates that failure to 

account for technology heterogeneity leads to misspecified empirical models with serious 

implications for any TFP estimates obtained (Eberhardt-Teal, 2013 ).  

In contrast, in Stochastic Frontier context the number of agricultural 

efficiency/productivity paper accounting for technological differences is limited. Concerning 

a related issue, the separation of unobserved heterogeneity from efficiency estimates, using 

different mainly variable intercept models, extensive investigations has already been 

conducted, but there is a lack of systematic investigation of a more generally formulated 

models, which are able to distinguish efficiency from technological differences across farms.  

Two classical methods have been developed in the frontier context which allow to model 

different technologies: the random parameters model and the latent class models. Random 

parameters formulation models consider firm heterogeneity in the form of continuous 

parameter variation. The latent class model, on the other hand, can be viewed as an 

approximation to this since variation of the parameters are treated as generated by a discrete 

distribution instead (Greene, 2005). 

Although, Latent Class models was used and compared with traditional SFA models in 

some paper (e.g. Alvarez and del Corral, 2010; Alvarez et al., 2012; Emvalomatis, 2007; Sauer 

and Morrison Paul, 2013), only a few author examined efficiency with random parameter 

                                                        
1 Technology, in this context, refers to the shape of the production function. 
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model (e.g Cechura et al., 2014; Wang et al., 2012) and extensive comparison of the results 

with other model hasn’t been conducted yet. In addition, the results of these paper might be 

biased, as they used a special type of RPM, namely the model that was originally proposed by 

Alvarez et al, 2004. However, it might not yield consistent estimates, because the 

fundamental assumption of the independence of inefficiency (u) and explanatory variables 

(x), does not necessarily hold.  

Our first contribution to the literature is that we propose a reformulated version of 

original Alvarez et al (2004) model that provide more consistent estimates.  

In our second contribution we focus on the changes in the parameter estimates, efficiency 

and productivity scores in agricultural context when we move from variable intercept SF 

model to RPM. More precisely, among the available variable intercept models for purposes of 

comparison, our starting point is the True Random Effect (TRE) model which was found in 

many paper the most suitable to separate unobserved heterogeneity from efficiency estimates 

(e.g, Abdulai-Tietje, 2007; Kuenzle, 2005; Farsi et al., 2005) and compare the results of these 

models with the original Alvarez et al., 2004 and the reformulated Alvarez et al model. 

Allowing for heterogeneous technologies is much closer to real world, therefore such 

comparison have important policy implication. As public policies designed to improve 

agricultural productivity can be targeted at the different components of productivity. 

Efficient policy requires careful and realistic estimates.  

In our third contribution we examine, how does the fulfilment of the requirement of 

theoretical consistency influence the estimates? Efficiency estimates are often used without a 

critical assessment with respect to the literature on theoretical consistency, specifically on 

monotonicity and quasi-concavity. The robustness of policy suggestions based on inferences 

from efficiency measures nevertheless crucially depends on theoretically well-founded 

estimates (Sauer-Hockmann, 2005). In order to fulfil the criteria of monotonicity and quasi-

concavity we build linear and non-linear constraints into the model and force the model to 

yield theoretically consistent results.  

Following, the original Alvarez et al., 2004 model we formulate the production frontier in 

translog form. However, the translog specification fulfils these criteria only locally (Diewert-

Wales, 1988). The usual practice is checking the fulfilment of theoretically consistency at the 

mean of the data. However, the lack of global consistency yields that production far apart 

from this point can’t be consistently interpreted. As our aim is to investigate farms individual 

technologies, we need consistent estimates not only in the mean of the data. We overcome 

this problem as follows. We identify several approximation points and force the model – 

through the linear and non-linear constraint – to fulfil the required criteria at every 

approximation point. We then estimate the model with and without constraints thus we are 
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able to check how the fulfilment of these restrictions changes the estimation results and 

whether it leads to different policy suggestion.  

For empirical analysis we use Hungarian FADN Data. Considering the characteristics of 

the Hungarian agriculture we assume that there exist at least two significant background 

factors which imply that the technology parameters are different across farms and therefore 

the estimation of a homogeneous production function might lead to inadequate policy 

implication. First, the Hungarian agriculture has a typical dual structure with a large number 

of small-scale farms on one side and a small number of large-scale farms on the other and 

within these categories there are further significant differences among farms (i.e. the 

standard deviation of output and input variables are high). Second, the ecological conditions 

are very diverse – according to an agro-economic potential survey, 35 ecological regions has 

been distinguished (Láng et al., 1983). Because of these we think that an RPM is an adequate 

approach to model the production structure and efficiency in such a diverse production 

environment.  

The remainder of the paper is organised as follows. We begin by briefly examining 

previous studies concerning heterogeneity and then we outline the methods used in the 

analysis (Sec.2 and 3). In the fourth Section we present the data used in our analysis. The 

following section (Section 5) discusses our results. Here special weight is put to the estimated 

efficiencies and the interpretation of unobserved heterogeneity. Finally, Sec. 6 summarizes 

our findings and draws conclusion about future modelling.  

THEORETICAL BACKGROUND: THE BASIC EFFICIENCY MODEL 

We start with the basic stochastic frontier model. Following Aigner et al. (1977) and Meeusen 

and van den Broeck (1977) the stochastic production frontier model in a general form might 

be written as follows: 

, 

where represents the output of the i-

unknown parameters,  is a symmetric random error, which accounts for statistical noise 

and  is a non-negative random variable associated with technical inefficiency. 

Several techniques can be used to estimate the unknown parameters in the model. 

Aigner, Lovell and Schmidt (ALS) (1977) obtained ML estimates under the assumptions 

(Coelli et al., 2005): 
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The assumptions says that the  s are independently and identically distributed normal 

random variables with zero means and variances  and the  s are independently and 

identically distributed half-normal variables with scale parameter  (Coelli et al., 2005). 

ALS (1977) parameterised the log-likelihood function for this so-called normal; half-normal 

model in terms of  and . Using this parameterisation, the model relies 

of the likelihood of the compound error term :  

  where  

 and  represent the density and distribution of the standard normal. Using this 

relation, the log-likelihood function can be determined in the usual way (ALS, 1997).  

Following the Model of ALS (1977), stochastic frontier models have been subject of a 

great body of literature resulting in a large number of econometric models. An extensive 

review can be found in Kumbhakar and Lovell (2000), Coelli et al. (2005) and Fried et al. 

(2008).  

One of the most important issues in these models is adjusting for the unobserved 

heterogeneity among firms functioning in different production environments (Farsi et al., 

2005). Early work on heterogeneity focused at the inclusion of environmental variables in the 

production models (Agrell and Brea-Solis, 2015). However, in many cases it may not be 

feasible to include such kind of variables because of shortages of degree of freedom or 

multicollinearity or they may simple not be observable (Hsiao, 2014). Therefore, later works, 

explored various statistical techniques to determine omitted variables (i.e. unobserved 

heterogeneity) (Agrell and Brea-Solis, 2015).  

Conventional panel data models such as fixed-effects or random-effects models can be 

employed to account for unobserved heterogeneity (Pitt and Lee, 1981; Schmidt and Sickles, 

1984). However, there are two major limitations of these models: (i) the treatment of the 

inefficiency term as time-invariant, which raises a fundamental identification problem and 

(ii) they fail to distinguish between cross individual heterogeneity and inefficiency (Abdulai-

Tietje, 2007; Greene, 2005).  

To account for these limitations, Greene (2005) proposed two stochastic frontier models 

that are time-variant and that distinguish unobserved heterogeneity from the inefficiency 

component. These models are termed the ‘true’ fixed-effects (TFE) and ‘true’ random-effects 

(TRE) models (Abdulai-Tietje, 2007). However, as pointed out by Greene (2005), the TFE 

model might produce biased individual effects and efficiency estimates, because the presence 

of the individual effects creates an incidental parameter problem. In contrast, TRE models 

produce unbiased inefficiency estimates, therefore we focus here on the description of TRE 

model, only.  
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The TRE model might be written as follows: 

, 

where  is a random firm specific effect. Other variables as defined earlier2.  

Although TRE is able to separate TE and heterogeneity, it is insufficient to capture 

underlying variation in agricultural technology. However, as Hsiao, 2014 argues: in farm 

production it is likely that unobserved heterogeneity could also impact the marginal 

productivity of inputs used such as soil characteristics (e.g., slope, soil fertility, water reserve, 

etc.) or climatic conditions. In this context, random parameter models appear to be more 

capable of capturing the unobserved heterogeneity than a model with only individual- and/or 

time-specific effects (variable-intercept models) (Hsiao, 2014). Despite of this fact, variable-

coefficient models have not gained as wide acceptance in empirical work as has the variable-

intercept models, may be because of computational complexity. 

This paper attempts to close this gap: (i) by applying an RPM in agricultural context with 

farm level panel data and (ii) by modification of the RPM, which was originally proposed by 

Alvarez et al., 2004. 

MODELLING TECHNOLOGY WITH UNOBSERVED HETEROGENEITY 

In order to model technological differences we use a modified version of the fixed-

management model, originally proposed by Alvarez et al. (2004):  

,  

where mi* is a firm specific latent variable, other variables as defined earlier.  

The key feature of the model is the interactions of “mi*” with the input variables. This 

model allows not only the constant to change, but also the structural parameters. Such 

specification therefore can be used to model the heterogeneity of the production structure. 

Without this interaction the model doesn’t differ from standard variable intercept models.  

Alvarez et al., (2004) interpret the latent variable (mi*) as an effect that accounts for 

management differences between firms. However, there doesn't exist any underlying theory 

or empirical justification which would state why this term should capture only the effect of 

management. It might capture various differences among firms. Recent empirical papers 

(Wang et al., 2012; Belyaeva et al., 2014) argue that this term might capture the effect of 

various sources of unobserved heterogeneity such as differences in regional/farm 

characteristics, input quality, environmental conditions or socio-economic characteristics etc. 

We follow this interpretation. 

                                                        
2  The estimation procedure is similar to the one of the models discussed below. In order to avoid duplications 

we omit a detailed description of the estimation procedure here. 
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The expectation of the model is that the production is monotonically increasing in mi*. 

The maximal output for given  (i.e the frontier output, ) is achieved with the maximal 

level of this component, i.e with . 

Assuming a translog function the production frontier of the original Alvarez et al., 2004 

model may be written as: 

 

, 

where  is the optimal output.  and  vectors of parameter estimates and exogenous 

inputs, respectively. The k×k matrix Bkk contains the second order parameters. Additionally 

a time trend (t) and its square (tt) are introduced to capture non-monotonic technical 

change. The variable  enters all first order terms: the constant, the time trend and the first 

order parameters of the exogenous variables with 

(2) 

*

*

ln
0

y

m




 ,   

e. g. the unobserved heterogeneity influences production positively. 

Farms generally do not exploit their full production capacities ( ), e. g. their actual 

output ( ) can lie below the optimal level. The observed output ( ) can be modelled using 

the same structure as  (see eq.1). The only difference is: instead of the maximum level of 

the unobserved components ( ), the production model is defined with the actual level of 

this component ( ), where ( ). 

Having defined the optimal and actual level of production we can define technical 

efficiency (TEit or ) – which is the ratio of observed to potential output:  

(3)  -   

For estimation, a critical assumption is the absence of correlation between  and the 

input levels ( ); therefore Alvarez et al., 2004 highlight that it is important to show 

explicitly the definition of  in the model:”  

  

Although  appear in , Alvarez et al., 2004 assume that it does not influence 

 and  can be calculated using only the first summand in Eq. 3. However, because 

of the inclusion of the second summand [ ], it is not possible to separate 

properly  and the other input variables. Hence,  and  might correlate.  
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In order to avoid this possible correlation, we reformulate the model to provide more 

consistent estimations. As there doesn’t exists any economic theory that would suggest the 

inclusion of the second order term of term , we estimate the model without this 

term. This allows us to properly separate (the efficiency effect) from the input 

level. As a result we can avoid the possible correlation between the input level and 

inefficiency, and the reformulated model ensures more consistent estimates.  

Following this modification the model takes the form:  

(5)    

(6)   

Equation 6 clearly show that in this formulation TE takes the form suggested in (Eq. 5). 

Although (Eq.4) involves an unobservable variable ( ) it is possible to translate the 

model, similarly as in the case of the original model, into an empirically estimable form. We 

continue to employ the translog function, so the model might be written as follows:  

 (7)  

, with 

 

      , 

In this form the model takes the appearance of an RPM. It differs from more familiar 

random coefficients models in two respects. First, only the constant and first order terms are 

randomly distributed. Second, the random component  of each random parameter is the 

same for all exogenous variables.  

The likelihood function will have the same structure as in conventional stochastic frontier 

analysis. However, two important modifications have to be mentioned: the compound 

variance of the error term and the measure of the extent of inefficiency. The variance of the 

compound error term in the original model is given by: 

   

Since in our model  is determined through the relation  the standard 

calculation changes to  

 . 

Similarly, the original measure for the extent of efficiency  changes to  

 . 
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These modifications result in a similar likelihood function as in the Meeusen and van den 

Broeck (1977) case. 

  with   and  defined above. 

However, it remains how to treat the unobserved heterogeneity. The parameters of the 

model can be estimated by maximum simulated likelihood technique (Greene, 2005; Alvarez 

et al., 2004), where  is assumed to be standard normally distributed with zero mean and 

variance 1. We can then take several draws from this distribution, plug in the values of  

into the likelihood function and construct the simulated maximum likelihood function as 

follows: 

 

 ,  

Here R represents the number of replications in the simulation process. According to 

Greene, 2005: „in order to achieve a reasonable approximation to the true likelihood 

function, a reasonably large number of random draws are required. The process can be 

greatly accelerated by using ‘intelligent’ draws, such as Halton sequences (see Bhat (1999) or 

Train (1999) for discussion).” Following this suggestion we used Halton sequences for the 

simulation. We decided to use 1000 replication in the final model since we experienced that 

with lower number of replication the  do not seem to be give stable results for . 

Moreover, the number of replications was also used by Alvarez et al. 2004 in their paper 

which applied this PRM model. 

However, after the likelihood is optimized the  can be estimated via (Alvarez et al 

2004, Greene 1986-2007): 
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where the function 
 *

,
ˆ | , ,i rf y m tx

 denotes the likelihood function for farm i evaluated at 

the parameter estimates and the current draw of mi*. 

Given the estimates of the model and the expectation of the  the efficiency score can be 

estimated according to the conventional Jondrow et al. (1982) procedure (Alvarez et al. 

2004): 
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In the estimation special attention was paid to theoretically consistency. Thus, we force 

the model to fulfil the requirements of theoretical consistency from an economic point of 

view, i.e. monotonicity and curvature properties (Coelli et al. 2005, Fuss and McFadden 

1978). 

“The translog specification fulfils these requirements only locally (Diewert and Wales 

1988). In many cases the desired properties are not checked at all, or checked only at the 

mean of the dataset. The lack of global consistency yields that production far apart from the 

approximation points may not be consistently interpreted. We overcome this problem by 

forcing the estimation to provide theoretically consistent results for a number of 

approximation points by applying corresponding linear and nonlinear inequality restrictions. 

The approximation points were calculated as follows: for each variable the one sigma 

deviation from the mean was calculated. All observations inside of the one sigma deviation 

were excluded. For the resulted data sets the mean of each variable was computed; these 

means in the constructed new data set were used as new approximation points. Since we have 

4 exogenous variables we constructed 8 approximation points. For each point we have 4 

linear monotonicity restriction and one sign restriction for the impact of unobserved 

heterogeneity (Equation 2). In addition there are 4 nonlinear curvature restrictions for each 

approximation point. This procedure gives us consistent results from an economic point of 

view for a wide range of observations.” 

In order to fulfil the monotonicity criteria we build linear constraints into the model as 

follow:  

 for  and  

 
*

*

*

ln
0

m

y
S

m


 

 ,   

and force the model to fulfil this criteria at every defined approximation points. 

Similarly, in order to fulfil the criteria of quasi-concavity we build nonlinear constraints 

into the model. We guaranteed that the bordered Hessian at the different approximation 

points is negative semidefinite. For this we apply the Cholesky decomposition (Lau 1978): 

Since every bordered Hessian Matrix H can be written in in the following form:3  

                                                        
3 Here the matric A refers to the second derivatives of the production function with respect to inputs and a 

represents the vector of first derivatives of the production function. The Cholesky factorization of 
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 . 

Using  the above expression changes to  

  

  

This results in the following curvature restrictions  

 (i)  and 

 (ii)  

DATA 

For purposes of empirical analysis we use Hungarian FADN Data. We used data on 

specialised COP farms over the 2004–2009 periods. Agricultural farms can join and leave the 

Hungarian FADN system, and to maintain representativeness, farms that leave the system 

are replaced by similarly characterised farms (Keszthelyi and Pesti, 2009). Our primary goal 

is to examine technological differences between farms. This question can be better examined 

if in every year the same farms are in the sample, therefore we used balanced panel. Our 

sample contains 3984 observations, 664 for each year. The data were provided by the 

Research Institute for Agricultural Economics. 

Table 1 

Descriptive Statistics 

 Symbol Mean Standard 
Deviation 

Minimum Maximum 

Output (EUR) Y 40097.8 84487.8 128.51 931774. 

Labour (Awu) A 3.73 8.30 0.01 100.09 

Land (ha) L 237.41 428.57 3.68 3787. 

Capital (EUR) K 17309.6 42077.1 5.53 339055. 

Variable Inputs (EUR) V 28224.6 60186.5 323.26 657902. 

Source: Authors’ calculations based on Hungarian FADN data. 

 

We estimated the model with one output (Y – total agricultural production in constant 

EUR) and four inputs: (1) labour in Annual Work Units (A), (2) utilised agricultural area 

(UAA) in hectares (L), (3) capital input (as a sum of depreciation and services) in constant 

EUR (K) and (4) variable input (intermediate consumption) in constant EUR (V). All of the 

variables expressed in nominal prices were deflated to 2005 prices with the use of the 

                                                                                                                                                                             

 is L'DL (Lau 1978). The matrix D represents the Cholesky factors dii for i =1,4 and L is a 
lower triangular matrix with element lij, for i, j =1,4 and lii = 1.  
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appropriate deflators; precisely, the output (Y) was deflated by the agricultural output price 

index, the total specific costs (V) by the price index of purchased goods and services and the 

corresponding values of total fixed assets (K) by the price index of agricultural investments. 

Some descriptive statistics are presented in Table 1.  

The high variance of the individual variables is apparent; e.g. the labour input had a 

minimum value of 0.01 AWU and a maximum of 100 AWU, and the values for (UAA) ranged 

from 8.5to 3787 hectares. These high differences suggest that heterogeneity plays an 

important role in Hungarian agriculture. The huge differences between the minimum and 

maximum values also imply that the marginal products of these inputs are different among 

farms thus it seems to be reasonable to assume that farms with such a heterogeneous input 

endowment use different technologies and it is important to account for these differences in 

the production model. 

RESULTS  

We start with the discussion of parameter coefficients. Table 1 reports the parameter 

estimates of the models estimated: (1) TRE, (2) original Alvarez et al., 2004 Model and (3) 

the reformulated Alvarez Model.  

All variables were divided by their geometric mean, thus the first order coefficients can be 

interpreted as output elasticities evaluated at the geometric mean of the sample. We interpret 

and compare the results among the different models from 5 points of view: (1) the 

characteristic of technology, (2) the effect of technological change, (3) the impact of the 

unobserved heterogeneity, (4) the importance of inefficiency in comparison to statistical 

noise and (5) return to scale. 

First, table 2 clearly shows that the first order coefficients are different among the 

estimated models. The estimates of TRE and original Alvarez Model are rather similar, 

however there is a marked difference between these and the results of the modified Alvarez 

Model, especially the estimates of material inputs are round 10% lower in the modified 

Alvarez model. The reason for that might be that financial constraints are important in the 

Hungarian agriculture and many farms are not able to afford enough fertilisers and crop 

protection materials, therefore their technologies is less intensive. The lower estimates of the 

modified Alvarez Model, which are supposed to more consistently estimate technological 

differences, might reflect to this fact.  

Second, all model suggest that technological progress occurred and the growth rate was 

increasing in the Hungarian agriculture over the analysed period. However, the modified 

Alvarez Model suggests that the technological progress was much higher. There are no 
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differences among the models in terms of the characteristic of technological change: all 

models suggest that it was capital using. 

Third, the effect of the unobserved latent variable, assumed to capture the effect of 

heterogeneity, is significant in all model versions. The interaction of this variable is 

significant not only with the constant (the assumption of TRE) but also with observed inputs, 

which suggest that there exist significant technological differences among farms and it is 

important to model these differences in order to get unbiased results.  

Fourth, u  and v
 is significant in all model and the estimates of u  is much higher in 

the first two models, suggesting that inefficiency variation has a significantly larger impact on 

output variation than statistical noise, confirming that technical inefficiency is an important 

phenomenon in Hungarian agriculture. The modified Alvarez Model differs from the first two 

models, since u is much higher in this model. However, when calculating  for the modified 

model the definition  has to be taken into account. Computing this expression at 

the sample mean gives . Thus, all models give similar results for the significance of 

inefficiency. 

Table 2 

Parameter Estimates- Model Comparison 

 
Constant TRE  O_Alvarez  M_Alvarez  

0.273 *** 0.267 *** 0.241 *** 

N
eu

tr
  

T
F

 T  0.006 ** 0.005 * 0.028 *** 

TT  0.009 *** 0.009 ** 0.018 *** 

in
p

u
ts

-
fi

rs
t 

o
rd

er
  

A 0.054 *** 0.040 *** 0.074 *** 
L 0.158 *** 0.167 *** 0.177 *** 
K 0.132 *** 0.125 *** 0.142 *** 
V 0.664 *** 0.672 *** 0.571 *** 

b
ia

se
d

 
te

ch
n

ic
a

l 
ch

a
n

g
e A*T -0.001   -0.001  0.000   

L*T -0.006   -0.001  0.000   
K*T 0.008 ** 0.007 ** 0.007 * 
V*T -0.004   -0.007   -0.009   

se
co

n
d

 o
rd

er
 

AA 0.038 ** 0.018  0.010   
LL 0.052   0.041  0.126 ** 
KK 0.067 *** 0.062 *** 0.071 *** 
VV 0.023   -0.004  0.023   
AL -0.107 *** -0.135 *** -0.077 *** 
AK 0.017 * -0.002  0.010   
AV 0.046 ** 0.094 ** 0.051 ** 
LK 0.015   0.014  -0.008   
LV 0.002   -0.020  -0.057   
KV -0.082 *** -0.096 *** -0.051 ** 

u n
o

b
s

e
r

v
e d
 

h
e te ro g
e

n
e

it
y

 

AM 0.181 *** 0.174 *** 0.179 *** 
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AM_T -  0.010 *** 0.018 *** 
AM_A -  0.044 *** 0.027 *** 
AM_L -  -0.002  0.015 ** 
AM_K -  0.002  -0.001   
AM_V -  -0.081 *** -0.070 *** 
AMM -   0.021 *** -  

a
u

x
il

ia
r

y
 p

a
ra

-
m

e
te

rs
 

SV 0.167 *** 0.163  0.167 *** 
SU 0.395 *** 0.394  2.083 *** 

 2.368   2.414   2.232   

 RTS 1.008  1.004  0.964  

m
o

d
e

l 
se

le
c-

ti
o

n
  Log L -1011.391  -961.402  -853.328  

AIC 2070.782  1982.804  1764.656  
BIC 2109.190  2030.814  1811.065  

Note: TRE true random effect, O_Alvarez =original Alvarez model, M_Alvarez = 
modified Alvarez model, all models were estimated without constraints 

Source: Own estimation 

 

The consequence of the different definitions can be seen in Figure 1. The red line 

represents the distribution of u for all three models4. The differences in the distributions 

were only marginal so that only one line is drawn. However, this distribution of u represent 

the also the distribution of technical efficiency in the first two models. The distribution of 

technical efficiency in the third model is presented by the histogram in Figure 1. It can be 

seen at the first glance that efficiencies of the first model are much lower than in the other 

models. From our point of view this result is very convincing. While in the first two model a 

large share of the farm have efficiency lower than 25% (e-u, u > .3) but the shares of firm with 

low efficiency reduces to a marginal fraction in the third model. Given the farms are 

operating in a homogeneous institutional environment the wide span of efficiencies are 

difficult to justify. Moreover, the parameter value for intermediate inputs in the modified 

Alvarez is much closer to the actual value of intermediate input share on total revenues 

provided by the data. Thus we conclude that the third model depicts the inefficiency much 

more appropriately than the first two models. 

                                                        
4 The line represents only the rough characterization of the distribution of u. Since it is used for illustrative 

purpose only this procedure appears reasonable. 
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Figure 1 

Distribution of inefficiencies by model 

 
Source: own calculation 
 

Fifth, returns to scale are also different among the models. TRE and the original Alvarez 

Model suggest slightly increasing return to scale, whereas the modified Alvarez Model 

suggests slightly decreasing RTS. 

Until now, we have seen that the estimated models yield different results. An obvious 

question, which suit better to these dataset? In order to select the most appropriate 

specification, we used model selection criteria. Specifically, we used the Akaike Information 

criteria (AIC) and Bayesian information criterion (BIC)5. The preferred model is that for 

which the value of these statistics are lowest. Table 1 clearly shows that both the values of AIC 

and BIC is getting lower, when we move from TRE to the modified Alvarez Model, i.e. the 

modified Alvarez model is the preferred model to these data. Two important conclusion can 

be drawn from these information: (i) the fact that AIC and BIC is smaller in the case of the 

original Alvarez Model compared to the TRE model confirm that a model which account for 

technological differences suit better to these dataset; (ii) the fact that AIC and BIC is even 

smaller in the case of the reformulated Alvarez model compared to the original Alvarez model 

confirm that it is also important to consider the possible correlation between TE and the 

input variables. As the model selection criteria suggest that the modified Alvarez Model is the 

preferred specification, the following examinations will be based only on this model. 

In the next step of our analysis we examine the effect of constraints. Before discussing the 

different parameter estimates with and without constraints we check how many percent of 

the observation are consistent in the case of the models with and without constraints. We also 

check the number of binding restrictions. The results are presented in Table 3.  

                                                        
5 Also known as Schwarz criterion (SBC or SBIC). 

u 

h(x) u 
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Table 3 

Check for theoretical consistency (% of observations, number) 

 
Mono-

tonicity 
Quasi-

concavity 
consiste

nt 

binding 
restrictions 

linear nonlinear 

MA_without 
constraints 

88% 75% 73% -  

MA_ with 
constraints 

97% 93% 92% 7 3 

Note: MA refers to the modified Alvarez model.  
Source: Own estimation 

 

Table 3 reveals that the percentage of consistent estimates increased substantially. 

Despite the fact that we estimated the model with a great number of restrictions, only 10 

restrictions in total were binding.  

Table 4 

Parameter Estimates- The effect of constraints 

 
MA_without 
constraints 

MA_with 
constraints 

Difference 
(%)+ 

Constant 0.2412 *** 0.2513 *** 4.0% *** 
T  0.0283 *** 0.0288 *** 1.7% *** 
TT  0.0176 *** 0.0176 *** 0.0%   
A 0.0735 *** 0.0750 *** 2.0% *** 
L 0.1768 *** 0.1748 *** -1.1% *** 
K 0.1423 *** 0.1397 *** -1.9% *** 
V 0.5711 *** 0.5716 *** 0.1%   
A*T 0.0001   0.0007  85.7% *** 
L*T -0.0003   0.0021  114.3% *** 
K*T 0.0073 * 0.0070 ** -4.3% *** 
V*T -0.0092   -0.0116 ** 20.7% *** 
AA 0.0102   0.0087  -17.2% *** 
LL 0.1263 ** 0.0882 ** -43.2% *** 
KK 0.0713 *** 0.0481 *** -48.2% *** 
VV 0.023   -0.0147  256.5% *** 
AL -0.0771 *** -0.0592 *** -30.2% *** 
AK 0.0104   0.0082  -26.8% *** 
AV 0.0512 ** 0.0416 ** -23.1% *** 
LK -0.0075   -0.0063  -19.0% *** 
LV -0.0569   -0.0324  -75.6% *** 
KV -0.0507 ** -0.0300 *** -69.0% *** 
AM 0.179 *** 0.1746 *** -2.5% *** 
AM_T 0.0178 *** 0.0173 *** -2.9% *** 
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AM_A 0.0267 *** 0.0240 *** -11.3% *** 
AM_L 0.0148 ** 0.0155 *** 4.5% *** 
AM_K 0.0006   0.0025  76.0% *** 
AM_V -0.0697 *** -0.0714 *** 2.4% *** 
SV 0.1671 *** 0.1681 *** 0.6% *** 
SU 2.0828 *** 2.1287 *** 2.2% *** 

 2.232  2.211  0.9%  

 
Note: The significance of the difference was tested with a Welch t-test (Ruxton 2006). 
Source: Own estimation 

 

Including the restrictions in the estimation changes all parameter values. This is 

astonishing since only a few constraints were found binding. Our interpretation is that the 

binding constraint forms an envelope of all parameter constraints that forces the variation in 

the optimal parameters. The changes in in the first order parameters are very marginal 

compared to the changes in the second order parameters. The change of the second order 

parameter often exceeds often 30 % in one case even more 250 %. This confirms that is 

mainly the relation of the values in the matrix Bkk that determines whether the results are 

theoretically consistent or not. This concerns not only the pure absolute value of the 

parameter estimated but in many cases also the sign. 

Moreover, the value of λ in the modified Alvarez model with constraints is the more or 

less the same than in the other models presented here. Together with a stable value of AM_T 

this implies that the distribution of inefficiency is similar to the histogram in Figure 1.  

In the following we restrict our attention to the model with constraints. First, we move to 

the regional distribution of estimated efficiencies (Figure 2). In general the inefficiencies are 

very low, e.g. much of the variation of output is explained by technology and by the impact of 

unobserved heterogeneity. There are hardly seen regional differences in the data. The only 

pronounced effects in inefficiency are the pronounced reduction in efficiency in the year 2007 

and 2009. These years we observed severe weather conditions which affected all regions in 

Hungary similarly. Moreover, there is a negative trend in efficiency over time. This can be 

seen in connection with the high impact of technical change in Hungarian grain production. 

The frontier is determined by the farms which apply the most modern technology. Farmers 

who hesitate do adopt these are falling more and more behind or show greater inefficiencies.  
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Figure 2 

Regional development of inefficiencies, 2004-2009 

 
Source: Own estimation 

 

It was already mentioned in the theoretical part of the paper that heterogeneity might 

have a greater impact on production than inefficiency. In order to check this conjecture the 

share of heterogeneity and inefficiency on the variation of output has been calculated (Figure 

3). The results confirm that heterogeneity is much more important than inefficiency. The 

latter is only responsible for 5 – 20 % of the total variance of these sources. Not considering 

heterogeneity in the estimation can lead to totally wrong policy recommendation. Moreover, 

because of the expected overestimation of efficiency when neglecting heterogeneity, the 

policies may not only direct in the wrong direction, the impact on increasing efficiency 

measure may be overestimated as well. The increased impact of inefficiency at the end of the 

investigation period can be seen, as explained in the last paragraph, as a consequence of the 

high rate of technical change in the sector (see Table 4) and/or the severe weather condition 

at the end of the investigation period. 
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Figure 3 

Joint impact of the variance of heterogeneity and efficiency 

 
Source: own estimation 

 

Having demonstrated the importance of heterogeneity for the variation of output it 

remains to discuss its impact on production and its sources in more detail. First, Figure 4 

given the distribution of estimated m* in the dataset. According to our assumption (see 

Section 3) the mean of m* is about zero and ranges from -3 to +3. The kernel density 

estimation has not exact the form of a standard normal distribution, however, given that it is 

the results of a simulation process, the deviation appear acceptable 

Figure 4 

Density of m* in the sample 
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Kernel density estimate of m* 

Source: own estimation 
 

In the following we will investigate the source of heterogeneity in more detail. For this, we 

will refer to two partial productivities which can be viewed as indicator of the natural and 

economic factor of location.  
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Figure 5 shows the development of land productivity in the Hungarian regions (NUTS 2 

level) over the investigation period. In this figure land productivity in the regions is measured 

relative to the average land productivity in the sample. Two regions shows below average 

land productivities: Northern Hungary and Central Hungary. The other regions have above 

average productivities with the highest in Southern Transdanubia. In this regions land 

productivity was about 20% higher than average. One more thing has to be considered: The 

ordering of the regions according to land productivity remains relatively constant over the 

years. This suggests that our conjecture that we could assume a constant term for the impact 

of heterogeneity is supported by the data. 

Figure 5 

Development of relative land productivity by region, 2004-2009 

 
Source: own calculations 

 

Figure 6 provides more details of the technologies used in Hungarian grain production. It 

relates the three indicators labour productivity (Y/A), land productivity (Y/B) and land-man 

ratio (B/A) for all regions over time according to (Herlemann and Stamer 1958, Hayami and 

Ruttan 1971): 

   

or in log terms: 

  

Land productivity can be seen as an indicator for the natural condition of location. This 

indicator reflects basically soil conditions, sufficient water and sunshine etc. However, land 

productivity is also influenced by the level of economic development through the availability 

of sufficient production enhancing inputs like fertilizer or pesticide, however, given the 

homogeneous institutional conditions in Hungary it can be assumed that this impact is of 
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minor importance for land productivity differences across regions. On the other hand 

differences in labour productivity can be more regarded as a consequence of the economic 

conditions of location. The opportunity cost of labour determines how much labour will be 

devoted to this sector. Moreover, in combination with factor prices the land man ratio 

determines the capital to labour ratio in the sector which not at least depend on the economic 

infrastructure in the region (Herlemann and Stamer 1958). However, we admit that the 

relation between economic condition of location and labour productivity is much weaker than 

between natural condition and land productivity. Differences in labour productivity can be 

also the consequence of various farm structures: usually large scale agriculture is less labour 

intensive than small scale agriculture but much more mechanized. The dual structure 

agricultural structure in Hungary provides some support for this interpretation. Given the 

lack of data unfortunately we are not able to dig deeper into this problem. However, 

independently whether the high land man ratio is the results of economic forces or whether 

the farm structures are due to political (institutional) decision, a higher labour productivity 

can be viewed as in indicator of better performance.  

Figure 6 

Partial productivities and man land ratio in Hungarian grain production 2005-
2008 by regions 

 
Note: Y/A land productivity; Y/B land productivity; B/A land man ratio 

all variables are normalized by the geometric average of the total sample 
Source: own calculations 
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The numbers in Figure 6 represent 3 year averages. This calculation was conducted to 

eliminate outliers. Like in Figure 5 all number are in relation to the sample average. Thus on 

the horizontal axis, numbers larger than zero indicate above average land man ratios. A 

similar interpretation holds for the vertical axes for land productivity. The dashed line 

represents average labour productivity. Above this line are regions with higher labour 

productivities6. The figure confirms what has been deduced form the previous figure. Land 

productivity in Central Hungary and Northern Hungary is poorer than in the other regions. 

However, in Central Hungary the land man ratio is lower than in Northern Hungary. As a 

result, labour productivity in this region is the lowest of all Hungarian regions. A poor labour 

productivity is also observed in the Southern Great Plains. However, together with a low land 

ratio this allows nevertheless an above average land productivity. The region with a relatively 

high land and labour productivity and a high land man ratio is the Northern Great Plains. 

The high land man ratio suggests that agriculture or grain production is much more labour 

incentive than in other regions, especially the Southern Great Plains. The same holds for 

grain production in Northern Hungary.  

In Figure 7 we investigate how the heterogeneity affected Hungarian agriculture. Central 

Hungary is the region where land and labour productivity were the lowest in our sample. This 

finds its expression in the highest negative m* values. North Hungary is similar. However, 

the labour productivity is higher than in Central Hungary. Accordingly, the m* value in this 

region are also negative, but also a bit higher than in Central Hungary. The highest m* values 

were found for the two Great Plains regions. In the northern part we have a high labour 

productivity, however, a low land productivity. The partial productivities in the southern part 

are opposite to the northern part: high land productivity and low labour productivity. In this 

region we found the highest value for m*. Another region with above average of m* value in 

Central Transdanubia. This region is characterized by above average land productivity and 

average labour productivity. Western Transdanubia doesn't fit into this pattern. Labour and 

land productivity are both relatively high but the average value of m* is only at an average 

level. 

                                                        
6  The solid line represents labour productivity about 25% higher than average labour productivity. The dotted 

line correspondingly a labour productivity about 25% lower than the average. 
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Figure 7 

Distribution of heterogeneity over Hungarian regions 

 
Source: Own estimation 

 

This analysis provide strong support for the view that unobserved heterogeneity can be 

regarded as an indicator the favourability of the regions in terms of their natural und 

economic conditions of production (Sec. 3). However, some part of the variation of m* is not 

explained this interpretation. In the model it was assumed that m* has a mean of zero and a 

variance of 1. Mean of zero is quite well captured since the estimated value of m* is around 

zero. However the variance is widely underrepresented and by far not homogeneous among 

the regions. Despite the differences are large enough that many pairwise comparison 

provided significant results. (see Appendix).  

To sum up, land and labour productivities may provide some explanation of the variance 

of heterogeneity. The explanatory power of these two indicators appears to be relatively high 

but not sufficient. The actual value of m* depend on important other factor which might not 

be covered by natural and economic conditions. One candidate is that m* captures the 

distribution of management abilities of farmers (Alvarez et al. 2004). However, what are the 

reasons for different m* among farms cannot be uniquely decided form our analysis. More 

analyses are necessary to distinguish among the various sources of m*. 

CONCLUSION 

The goal of this paper is to model technological differences among farms and check how the 

consideration of technological heterogeneity affects structural parameters and technical 

efficiency. In order to model technological differences we used an RPM, which was originally 

proposed by Alvarez et al., 2014. However, the original version of the model might give 
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biased result, because of the possible correlation between input variables and technical 

efficiency. Therefore, our first aim was to reformulate the model in such a form which avoids 

this possible correlation. Our second aim was to compare the results of the reformulated 

model with the original Alvarez model and with the TRE model, which can be seen as a 

restricted version of an RPM, where heterogeneity affects only the intercept, i.e. it is able to 

separate heterogeneity and technical efficiency, but insufficient to capture underlying 

variation in technology. Our third aim was to examine how the fulfilment of theoretical 

consistency influence the results. Our examination has a number of interesting 

methodological and agricultural policy implications. 

The results revealed that in addition to the separation of unobserved heterogeneity and 

TE, the consideration of technological heterogeneity is also important and has significant 

effect on parameter estimates and TE. Our results showed that the interaction of unobserved 

heterogeneity was significant not only with the constant, but also with observed inputs and 

technological change, which reveal that heterogeneity influence also the applied technology 

and technological change. This suggest that a model which is able to estimate these different 

technologies and changes might lead to more adequate policy implication.  

The comparison of the (1) modified Alvarez model with the (2) original Alvarez and (3) 

TRE model showed that TRE and the original Alvarez model give similar results which imply 

that the original Alvarez model might not capture well the underlying technological 

differences. In contrast, the modified Alvarez model yields substantially different results, 

suggesting that this model might estimate it better. Model selection criteria also suggest that 

the modified Alvarez Model is the preferred specification among the estimated models. 

The modified Alvarez model yields reasonable results also in terms of technical 

(in)efficiency. The technical inefficiency estimates are much lower in this model. From our 

point of view this results is very convincing, While in the other two model a large share of the 

farm have efficiency lower than 25% (e-u, u > .3) but the shares of firm with low efficiency 

reduces to a marginal fraction in this model. Given the farms are operating in a homogeneous 

institutional environment the wide span of inefficiencies are difficult to justify. Moreover, the 

parameter value for intermediate inputs in the modified Alvarez is much closer to the actual 

value of intermediate input share on total revenues provided by the data. Thus we conclude 

that the modified Alvarez model depicts the inefficiency much more appropriately than the 

two other models.  

The comparison of the modified Alvarez model with and without constraints showed that 

in the model with constraints the percentage of consistent estimates increased substantially, 

suggesting that these results can be interpreted even more adequately. The inclusion of the 

restrictions changes all parameter estimates. However, the changes in the first order 

parameters are very marginal compared to the changes in the second order parameters. The 
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change of the second order parameters often exceed 30% in one case even more, 205%. This 

confirms that is mainly the relation of the values in the matrix Bkk that determines whether 

the results are theoretically consistent or not.  

As the model with restrictions give theoretically more consistent result, we focused only 

on these results to examine some empirical question with important policy implication, 

especially we focused on regional differences and potential factors which determine 

unobserved heterogeneity. 

In general the inefficiencies are very low, e.g. much of the variation of output is explained 

by technology and by the impact of unobserved heterogeneity. There are hardly seen regional 

differences in the data. Moreover, there is a negative trend in efficiency over time. This can be 

seen in connection with the high impact of technical change in Hungarian grain production. 

The frontier is determined by the farms which apply the most modern technology. Farmers 

who hesitate do adopt these are falling more and more behind or show greater inefficiencies. 

This means at the same time also that there is a divergence among Hungarian farms. 

The results showed that heterogeneity has much more important effect on the variance of 

output than inefficiency. The latter is only responsible for 5 – 20 % of the total variance of 

these sources. This clearly confirm that not considering heterogeneity in the estimation can 

lead to totally wrong policy recommendation. Moreover, because of the expected 

overestimation of inefficiency when neglecting heterogeneity, the policies may not only direct 

in the wrong direction, the impact on increasing efficiency measure may be overestimated as 

well. For instance, the increased impact of inefficiency at the end of the investigation period 

can be seen as a consequence of the high rate of technical change in the sector and/or the 

severe weather condition at the end of the investigation period. 

Our results confirms that unobserved heterogeneity can be regarded as an indicator the 

favourability of the regions in terms of their natural und economic conditions of production. 

In fact, a large part of the variation of m* can be seen to be explained this interpretation. 

Variations of land and labour productivities may provide a good explanation of the variance 

of heterogeneity. However, the explanatory power of these two indicators appears to be not 

sufficient. Consequently, the modelled heterogeneity effect (m*) capture not only the natural 

and economic conditions but important other factors too. One candidate is that m* captures 

the distribution of management abilities of farmers (Alvarez et al. 2004). However, the 

determinants of different m* among farms cannot be uniquely decided form our analysis. 

More analyses are necessary to distinguish among the various sources of m*. 
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Appendix 1 

Significance of regional differences 

  
Regional 
mean of 

m* 

Standard 
deviation 
of m* in 

the region 

Number of 
enterprise

s in the 
region 
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Central Hungary -0.3596 0.7275 53 
Central 
Transdanubia 0.0373 0.6694 72 *** 
Western 
Transdanubia -0.0045 0.8554 82 *** 

 Southern 
Transdanubia -0.1208 0.6292 102 ** * 

 Northern Hungary -0.2193 0.8582 62  ** 
  Northern Great 

Plains 0.0516 0.8707 117 *** 
  

* * 
Southern Great 
Plains 0.1013 0.7767 176 

*** 

  
*** *** 

 

Source: own calculations 
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