Partitioning the bases of the union of matroids

Csongor Gy. Csehi * $\dagger \quad$ András Recski * \dagger

Abstract

Let $B=\cup_{i=1}^{n} B_{i}$ be a partition of base B in the union (or sum) of n matroids into independent sets B_{i} of M_{i}. We prove that every other base B^{\prime} has such a partition where B_{i} and B_{i}^{\prime} span the same set in M_{i} for $i=1,2, \ldots, n$.

Keywords: matroid theory, union of matroids

1 Introduction

For the definitions and notations in matroid theory the reader is referred to [5] or [6]. In particular, let E denote the common underlying set of every matroid and let $r_{1}, r_{2}, \ldots, r_{n}$ denote the rank functions of the matroids $M_{1}, M_{2}, \ldots, M_{n}$, respectively. Throughout M will denote the union (or sum) $\vee_{i=1}^{n} M_{i}$ of these matroids, and R will denote the rank function of M. A subset $X \subseteq E$ is independent in M if and only if it arises as $X=\bigcup_{i=1}^{n} X_{i}$ with X_{i} independent in M_{i} for each i. Recall that

$$
R(X)=\min _{Y \subseteq X}\left[\sum_{i=1}^{n} r_{i}(Y)+|X-Y|\right]
$$

by the fundamental results of [1] and [4].
An element of the underlying set E of a matroid is a loop if it is dependent as a single element subset, and it is a coloop if it is contained in every base. We shall need the following observation ([3], independently rediscovered in [2]):

Proposition 1 If M has no coloops, then $R(E)=\sum_{i=1}^{n} r_{i}(E)$.
The weak map relation is defined as follows: the matroid B is freer than A (denoted by $A \preceq B)$ if every independent set of A is independent in B as well. Clearly $M_{j} \preceq \vee_{i=1}^{n} M_{i}$ for every $j=1,2, \ldots, n$ and $A \preceq B$ implies $A \vee C \preceq B \vee C$ for every C.
Let $\sigma_{i}(X)$ denote the closure of a set $X \subseteq E$ in M_{i}, that is, $\sigma_{i}(X)=\left\{e \mid r_{i}(X \cup\{e\})=\right.$

[^0]

Fig. 1.
$\left.r_{i}(X)\right\}$. Let $\sigma(X)$ denote the closure of X in M. A set $X \subseteq E$ is closed if $\sigma(X)=X$. The closed sets are also called flats. In particular, the set of loops, that is $\sigma(\emptyset)$ is the smallest and E is the largest flat. We shall need the following easy property of the closure function:

Proposition 2 Let $S_{1}, S_{2} \subseteq E$ be independent subsets with $\sigma\left(S_{1}\right)=\sigma\left(S_{2}\right)=S$. Let, furthermore, $S_{0} \subseteq E$ so that $S \cap S_{0}=\emptyset$ and $S_{1} \cup S_{0}$ is independent. Then $S_{2} \cup S_{0}$ is also independent.

Proof: Observe that $\left|S_{1}\right|=\left|S_{2}\right|$ since both are independent and span the same subset S. Indirectly suppose that $r\left(S_{2} \cup S_{0}\right)<\left|S_{2}\right|+\left|S_{0}\right|=\left|S_{1}\right|+\left|S_{0}\right|=\left|S_{1} \cup S_{0}\right|$. Since $S_{1} \cup S_{0}$ is independent, there exists an element $x \in S_{1}-S_{2}$ so that $r\left(S_{2} \cup S_{0} \cup\{x\}\right)>r\left(S_{2} \cup S_{0}\right)$. However, $x \in S_{1} \subseteq S=\sigma\left(S_{2}\right)$ implies that $r\left(S_{2} \cup\{x\}\right)=r\left(S_{2}\right)$, a contradiction.

2 Partitioning the bases

Let B be a base of M. The partition $B_{1}, B_{2}, \ldots, B_{n}$ of B is a good partition if B_{i} is independent in M_{i} for $i=1,2, \ldots, n$.
Let $F_{i}=\sigma_{i}\left(B_{i}\right)$ for every i. This collection of flats $F_{1}, F_{2}, \ldots, F_{n}$ depends on the actual good partition of B, as illustrated by the following example.

Example 3 If M_{1} and M_{2} are the cycle matroids of the graphs G_{1} and G_{2} of Figure 1, respectively, then M will be the cycle matroid of the graph of Figure 2. The base $B=$ $\{1,2,4,5,6,7\}$ of M has 54 good partitions, see the first two columns of Table 1, where each row represents six good partitions (put $a, b \in\{1,2,3\}, a \neq b$ in every possible way). These good partitions lead to 9 different collections of flats, see columns 3 and 4 of Table 1.

Table 1

	B_{1}	B_{2}	F_{1}	F_{2}
1	$\{a, 4,6,7\}$	$\{b, 5\}$	E	$\{1,2,3,5\}$
2	$\{a, 5,6,7\}$	$\{b, 4\}$	E	$\{1,2,3,4\}$
3	$\{a, 4,6\}$	$\{b, 5,7\}$	$E-\{7\}$	$E-\{4\}$
4	$\{a, 4,7\}$	$\{b, 5,6\}$	$E-\{6\}$	$E-\{4\}$
5	$\{a, 5,6\}$	$\{b, 4,7\}$	$E-\{7\}$	$E-\{5\}$
6	$\{a, 5,7\}$	$\{b, 4,6\}$	$E-\{6\}$	$E-\{5\}$
7	$\{a, 6,7\}$	$\{b, 4,5\}$	$E-\{4,5\}$	$E-\{6,7\}$
8	$\{a, 6\}$	$\{b, 4,5,7\}$	$\{1,2,3,6\}$	E
9	$\{a, 7\}$	$\{b, 4,5,6\}$	$\{1,2,3,7\}$	E

Fig. 2.
Surprisingly if we consider any other base of the union, the list of the possible collections of flats will always be the same.

Theorem 4 Let $M_{1}, M_{2}, \ldots, M_{n}$ be matroids and let M be their union. Let B be a base of M with a good partition $B_{1}, B_{2}, \ldots, B_{n}$. For any base B^{\prime} of M there is a good partition $\cup_{i=1}^{n} B_{i}^{\prime}$ so that $\sigma_{i}\left(B_{i}\right)=\sigma_{i}\left(B_{i}^{\prime}\right)$ for $i=1,2, \ldots, n$.

Proof: Suppose that B^{\prime} is a base of the union with a good partition $X_{1}, X_{2}, \ldots, X_{n}$.
Let A denote the set of the non-coloop elements of the union. B^{\prime} is independent in the union so $\left|B^{\prime} \cap A\right|=R\left(B^{\prime} \cap A\right)$. Clearly $R\left(B^{\prime} \cap A\right)=R(A)$ since B^{\prime} is a base in the union, and $\sigma(A)=A$. According to Proposition $1 \sum_{i=1}^{n} r_{i}(A)=R(A)$. Now $r_{i}(A) \geq r_{i}\left(X_{i} \cap A\right)$ since $X_{i} \cap A \subseteq A$, and $r_{i}\left(X_{i} \cap A\right)=\left|X_{i} \cap A\right|$ since X_{i} is independent in M_{i}. These together give the following:

$$
\left|B^{\prime} \cap A\right|=R\left(B^{\prime} \cap A\right)=R(A)=\sum_{i=1}^{n} r_{i}(A) \geq \sum_{i=1}^{n} r_{i}\left(X_{i} \cap A\right)=\left|B^{\prime} \cap A\right|
$$

Since the two sides are equal, the inequality must be satisfied as equality, so $r_{i}(A)=$
$r_{i}\left(X_{i} \cap A\right)$. This means that every good partition $X_{1}, X_{2}, \ldots, X_{n}$ of a base B^{\prime} of the union will satisfy $\sigma_{i}\left(A \cap X_{i}\right)=A$, that is, $X_{i} \cap A$ spans A in M_{i} for $i=1,2, \ldots, n$.
These results are true for B, too, so $B_{i} \cap A$ spans A in M_{i} for $i=1,2, \ldots, n$. All the coloops of M are in $B \cap B^{\prime}$, this way we can get a good partition of B^{\prime}, namely $B_{i}^{\prime}=\left(X_{i} \cap A\right) \cup\left(B_{i} \backslash A\right)$ according to Proposition 2. This partition satisfies the requirements of Theorem 4.

3 Weak maps with the same union

Let B be an arbitrary base of M with an arbitrary good partition $\cup_{i=1}^{n} B_{i}$. Let $F_{i}=\sigma_{i}\left(B_{i}\right)$ for every i and let M_{i}^{\prime} be obtained from M_{i} by replacing all the elements of $E-F_{i}$ by loops. (That is, M_{i}^{\prime} has ground set E and $X \subseteq E$ is independent in M_{i}^{\prime} if and only if $X \subseteq F_{i}$ and X is independent in M_{i}.)

Proposition 5 If $M^{\prime}=\vee_{i=1}^{n} M_{i}^{\prime}$ then $M^{\prime}=M$.

Proof: Clearly $M_{i}^{\prime} \preceq M_{i}$, and therefore $M^{\prime}=\vee_{i=1}^{n} M_{i}^{\prime} \preceq \vee_{i=1}^{n} M_{i}=M$.
On the other hand we have to prove that any independent set X of M is independent in M^{\prime} as well.
Let B^{\prime} be a base of M, containing X. By Theorem 4, there exists a good partition $\cup_{i=1}^{n} B_{i}^{\prime}$ of B^{\prime} so that $\sigma_{i}\left(B_{i}^{\prime}\right)=F_{i}$ for every i. Since B_{i}^{\prime} is independent in M_{i}^{\prime}, so is $B_{i}^{\prime} \cap X$. Hence $X=\cup_{i=1}^{n}\left(B_{i}^{\prime} \cap X\right)$ is independent in M^{\prime}, as requested.

Example 6 illustrates Proposition 5.

Example 6 Let M_{1} and M_{2} be the cycle matroids of the graphs G_{1} and G_{2} of Figure 1, as in Example 3. Consider the pair of flats $E,\{1,2,3,5\}$ as in the first row of Table 1. The corresponding restricted matroids $M_{1}^{\prime}, M_{2}^{\prime}$ are represented by the graphs of the first row of Figure 3. One can easily see that $M_{1}^{\prime} \vee M_{2}^{\prime}$ is still the cycle matroid of the graph of Figure 2. Similarly, the pairs of flats, given by rows 3 and 9 of Table 1 lead to the second and third rows of Figure 3, respectively.

References

[1] J. Edmonds, Minimum partition of a matroid into independent subsets J. Res. Nat. Bur. Stand. (1965) 69B, 67-72.

Fig. 3.
[2] A. K. Kelmans, M. V. Lomonosov, and V. P. PolesskiI, On minimum coverings in matroids Problemy Peredachi Informatsii (1976) 12/3, 94-107.
[3] L. Lovász and A. Recski, On the sum of matroids, Acta Math. Acad. Sci. Hungar. (1973) 24, 329-333.
[4] C. St. J. A. Nash-Williams, On applications of matroids to graph theory, Theory of Graphs Intern. Symposium (1967) 263-265.
[5] J. Oxley, Matroid Theory, Second Edition, Oxford University Press (2011)
[6] A. Recski, Matroid Theory and its Applications in Electric Network Theory and in Statics, Springer, Berlin (1989)

[^0]: * Department of Computer Science and Information Theory, Budapest University of Technology and Economics, Múegyetem rkp. 3-9, H-1521 Budapest, Hungary, cscsgy@cs.bme.hu, recski@cs.bme.hu
 \dagger Research is supported by grant No. OTKA 108947 of the Hungarian Scientific Research Fund. The reviewer's remarks are greatly appreciated.

