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Abstract

Recently, Xiao, Srivastava and Zhang (see [10]) have introduced a new
refinement of the discrete Jensen’s inequality for mid-convex functions.
We give and discuss the weighted form of their results. This leads to some
new inequlities and limit formulas. We illustrate the scope of the results by
applying them to introduce and study some new quasi-arithmetic means.
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1 Introduction and the main results

The different forms of Jensen’s inequality have fundamental importance for
many developments in mathematics. In this paper we consider the discrete
Jensen’s inequality:

Theorem A. (see [1]) Let C be a convex subset of a real vector space X, and
{z1,...,2,} be a finite subset of C, where n > 1 is fized. Let p1,...,p, be

n
nonnegative numbers with P, := ij > 0. If f:C — R is either a convex
Jj=1
or a mid-convex function and in the latter case the numbers p; (1 < j < n) are
rational, then

1 & 1 o
e > iy | < B > pif (). (1)
noi noi
The function f : C' — R is called convex if

f(owc—i—(l—a)y)Saf(x)—i—(l—a)f(y), m,yEC, 0<a<l,

and mid-convex if

F(55Y) < 3@+ 36). awec

We denote by N and N the set of nonnegative integers, and positive integers,
respectively.
Discrete distribution: this means that pq,...,p, are nonnegative numbers

n
with Y " p; =1.
j=1

Recently, Xiao, Srivastava and Zhang (see [10]) have introduced a new refine-
ment of the discrete Jensen’s inequality for mid-convex functions. Their results
were motivated by the reformulation of the classical refinements in the papers
[8] and [9]. As an illustration, consider the next inequality from [9]:

Theorem B. Let C be a convexr subset of a real vector space X, and let f :
C — R be a mid-convex function. If ©; € C (i=1,...,n), and

_ 1 i I, 7}
Bk,n = (n+k—l) Z f(xl A xk), k€N+7

k 1<i1<..<ip<n

then

1 " _ _ _ 1 n
f<nrzlxz> SSBk+17”§Bk)"—SBlvn:EZf(xz)

The expression Bkm can be rewritten in the form

_ 1
Biyn = " f i
G NRA?
k i1+ A=k j=1
ijeN;  1<j<n



Inspired by this interpretation of Bk’m Xiao, Srivastava and Zhang have ob-
tained the following result:

Theorem C. (see [10]) Let C be a convex subset of a real vector space X, and
{z1,...,z,} be a finite subset of C, where n > 1 is fized. If f:C — R is a
mid-convex function, and

1 1 -
Fpp = G > T iz |, keNy, (2
i=1

k—1 i14...+ipn=n+k—1
ijENL; 1<j<n

then

(b) _
Fk,n < Bk,n7 ke N+.

The limit of the constructed increasing sequence is also determined. We
recall this result too:

Theorem D. (see [10]) Let C be a convex subset of a real vector space X, and
{z1,...,2,} be a finite subset of C, where n > 1 is fized. Suppose f:C — R
18 a mid-convex function. Define the function g on the set

n—1

Epi=S (tr, o tn 1) RS 4, <1, 4,20, j=1,...,n=1p (3)
j=1

by
n—1 n—1
g(tl,...,tn_l) =f th$j+ I—th T
j=1 j=1

If g is integrable over E,, then

lim ka = khm Bk,n = (TZ — 1)'/9 (tl,. .. ,tn_l)dtl .. .dtn_l.

k—o0
E"Vl

In Theorem C and D the discrete uniform distribution is used. The purpose
of this paper to give and discuss the weighted versions of Theorem C and D for
convex and mid-convex functions.

There are many papers on the refinements of the discrete Jensen’s inequality.

In particular, the weighted version of Theorem B has been discovered by Horvéth
and Pecari¢ [4]:



Theorem E. Let C be a convex subset of a real vector space X, and {x1,...,2,}
be a finite subset of C, where n > 1 is fized. Let py,...,pn be a discrete dis-
tribution, where p; (1 < j < n) is positive. If f:C — R is either a convex or
a mid-convex function and in the latter case the numbers p; (1 < j < n) are
rational, and

1 : 1
B := W Z sz‘j / % Zpijxij

k=1 /) 1< <..Zipg<n \j=1 Jj=1
E Pi;

1 - 1 il
:m Z Zijpj nizijpjxj , keNg,

k—1 i1+...+in=k \j=1 taop. I=1
ijEN; 1<j<n Jpj

then

n n
f ijxj S-~-SBk+1,n§Bk,nS-~-SBl,n:ijf($j)7 keN-‘r'
j=1 j=1

This result makes it possible to obtain the generalized form of Theorem C
(b). A method has been developed to refine the discrete Jensen’s inequality by
Horvath [3]. The results in [3] include those considered in [4], but the method
can not be applied to solve the present problem (for further details see [2]).
In [2], a different approach led to a parameter dependent refinement, whose
construction is similar to (2) in Theorem C. However, the treatment of the
problem in [2] is totally different from that in [10].

Our main results in this paper are as follows. First, we generalize Theorem
C. Moreover, we compare the expressions Fy, ,,, Bi, and G, (see 4).

Theorem 1 Let C be a convex subset of a real vector space X, and {z1,...,2,}
be a finite subset of C, where n > 1 is fixed. Let p1,...,pn be a discrete distri-
bution. Assume f: C — R is either a convex or a mid-convex function and in
the latter case the numbers p; (1 < j <n) are rational. Define

1 - 1 <
Gk’n::W Z Zijpj f nizijpjxj ,  keN.

k=1 J i1+ . +ip=nt+k—1 \j=1 taom. I=1
ij€Np;  1<j<n Jp]
Jj=1

(4)
Then



(a)

n n
f ijxj :Gl,nS'HéGk,nSGkJrl,n§~~~§ijf(xj)'
i=1 i=1

(b)
Fk,n < Gk,na ke N+.

(c) If the numbers py, ..., py are positive, then

kan < Bk,n» ke N+.

Remark 2 It is easy to see that in case pj (1<j<n)

1
n

Gk:,n = Fk,na ke N-i—a
s0 Gy, is the weighted form of Fy, .

Next, we extend Theorem D.

Theorem 3 Let C be a convex subset of a real vector space X, and {x1,...,zn}
be a finite subset of C, where n > 2 is fized. Let p1,...,pn be a discrete distri-
bution with positive p;’s (1 < j < n). Assume f:C — R is convex. Define the
function h on the set E, (see 3) by

n—1 n—1
h(ty,.otnoa) = [ D tipi+ [ 1=t | pn (5)
j=1 j=1
1 n—1 n—1

n—1 n—1 z:ltjpjxj +1- 2:1 tj | PnTn
Stip+ (1=t | pa N i=
j=1

(a) The function h is convex on E,, and it is Riemann integrable over E,,.

(b)

lim Gk,n = lim Bk,n = n'/h (tl, . ,tnfl) dtl e dtnfl.
k—oo k—oo
En

2 Discussion and applications

Xiao, Srivastava and Zhang seems to have regarded it as evident that the proof
of Theorem D is valid for every integral concept. What does integrable mean in



Theorem D? The proof of Theorem 3 actually uses the Riemann integrability
of h over E,,, but then f is essentially convex as the following result shows.
For a fixed subset {z1,...,2,} of C, only the restriction of f to the set

n n
H .= ZO&jZCjEC|ZOéj:1, ajZO,j:L...,n
j=1 j=1

is important in Theorem 1 and 3.

Lemma 4 Let C be a convex subset of a real vector space X, and {x1,...,2,} be
a finite subset of C, wheren > 2 is fized. Let py,...,pn be a discrete distribution
with positive p;’s (1 < j <n). Assume f : C — R is mid-convez. If the function
h in (5) is Riemann integrable over E,, then f is convex on the set

Hi={) oz €Cl)y aj=1 a;>0,j=1....n
j=1 j=1
Proof. Let

p:=min{p1,...,pn}.
Then p > 0 and

n—1 n—1
thpj-i- 1—th pn2p, (t1,...,tp-1) € By
j=1 j=1

Therefore, recalling the definition of h

1 n—1 n—1
n—1 n—1 J; tjpjxj +11- ; tj Pnln (6)
thpj +11=) tj]pn
j=1 j=1
1
S];h(tlv"'atnfl)a (tla"wtnfl)GErr

By Lemma 9, the function

t
(tl,...,tnfl) — 101 5
n—1 n—1
Dtipi+ (1=t | po
j=1 j=1



n—1
1- Z tj Pn
j=1

tnflpnfl

b
n—1 n—1

Tl n—1
Z tipj + | 11— Z tj | Pn Z tipj+ (1= _tj|Pn
j=1 j=1 j=1

1

<.
Il

maps F, onto the set
n
(al,...,an)eR"|Zaj:1, a; >0, j=1,...,np,
j=1

and hence (6) and the Riemann integrability of h over E,, (h is bounded on E,,)
show that f is bounded above on H.
Since f is mid-convex, the function & defined on E,, by

n—1 n—1
}_l(tl,...,tn_l)iif thl'j+ 172% In
j=1 j=1

is also mid-convex on E,. Because f is bounded above on H, h is bounded
above on E,,. These two properties of h, together with the Bernstein-Doetsch
theorem (see [5]) give that h is convex on the interior of E,,, and therefore f is
convex on H.

The proof is complete. =

As an application we introduce some new quasi-arithmetic means (about
means see [7]) and study their monotonicity and convergence.

Definition 5 Let I C R be an interval, ; € I (1 < j < n), p1,...,pn be a
discrete distribution, and let ¢, ¢ : I — R be continuous and strictly monotone
functions. We define the quasi-arithmetic means with respect to (4) by

1 n
My (k) =y | > > i (7)

( k—1 )i1+...+in:n+k—1 j=1
ijENL;  1<j<n

_ 1
(Yop™) nizszj@(xj) , keN;.

E :Z]pj
j=1

Some other means are also needed.



Definition 6 Let I C R be an interval, x; € I (1 <j <n), and p1,...,pn be a
discrete distribution. For a continuous and strictly monotone function z : I — R
we introduce the following mean

M, =271 ijz(mj) . (8)

We now prove the monotonicity of the means (7) and give limit formulas.

Proposition 7 Let I C R be an interval, let x; € I (1 <j<n), letpi,...,pn
be a discrete distribution, and let ¢, ¢ : I — R be continuous and strictly
monotone functions. Then
(a)
szquwkp(l)S...SMw#p(k)S...SMw7 k€N+7
if either 1 o @1 is convex and v is increasing or 1 o @
decreasing.

(b)

18 concave and ) s

Mcp:Md),ap(]-) ZZM#,W(]C)ZZM,/,, k€N+,

if either v o ¢~ ' is convexr and v is decreasing or 1 o !

IMCreasing.
(¢) Moreover, in both cases

is concave and Y s

klirn My o(k) =" n!/h(tl,...,tn,l)dtl...dtn,l ,
En

where the function h is defined on the set E,, (see 3) by

n—1 n—1
h(t17~-~7tn—1) = thpj+ 1_th Pn (woﬁail)
j=1 j=1

n—1 n—1
1
> tipiela) + [ 1=t | pae(an)
j=1

n—1

n—1

j=1
dotipit (1=t | P
j=1 j=1

Proof. Theorem 1 (a) can be applied to the function ¢ o =1, if it is convex

(—1pop~1, ifit is concave) and the n-tuples (p(x1),. .., o(x,)), then upon taking
¢!, we get (a) and (b). (c) comes from Theorem 3 (b;). m
As a special case we consider the following example.



Example 8 If I :=]0,00[, ¥ :=In and () := z (x €]0,00[), then by Proposi-
tion 7 (b), we have the following sharpened version of the weighted arithmetic
mean - geometric mean inequality: for every x; >0 (1 <j<n) and k € Ny

n

. )

n (n+k—1) Z’Ljpj
ST k=1) =1

n § :ZJpJCEJ

=1

> piwy > II

=1

n
i14...+ip,=n+k—1 L
L 1<i<n E :ijj

Jj=1

n
> i,
> | | T
j=1

Moreover, by Proposition 7 (c)

n

n (n«#i—l) : ijpj
. ) k-1 ) S
§ :ijjxj
. j=1
m ] S
k—oo | -
i1+ Fin=n+k—1 § z',pA
ijeNy;  1<j<n I
j=1
= exp n!/h(tl,...,tn_l)dtl...dtn_l s

EVL
where the function h is defined on the set E,, (see 3) by

n—1 n—1
h(ty,..otno1) o= | > tipj+ (1= _t; | pa
j=1 Jj=1

.1In 1 Z tipjz; + [ 1— Z tj | Pnn

3 Preliminary results and the proofs

Lemma 9 Let pi,...,p, be a discrete distribution with positive p;’s (1 < j <
n), and let q1,...,q, be another discrete distribution. Then there is a discrete
distribution tq,...,t, such that

t4 .
¢:qi, i=1,...,n. (9)

n
> tip
j=1



Proof. At this proof the Perron-Frobenius theory comes into play (see [6]).
Suppose g; > 0 (1 < j < n). Consider the n x n matrix

a1 g - Q1
q2 q2 ... Q2
A= . . . .
n 4dn ... Qn

n
Since A is positive and Z g; = 1, the Perron-Frobenius eigenvalue of A is 1.
j=1
Then there exists an eigenvector (v1,...,v,) of A corresponding to the eigen-
value 1 such that v; > 0 (1 < j <n). It follows that (v1,...,v,) is a positive
solution of the system of equations

T
n

>

j=1

It is easy to see that we can abandon the supplementary hypothesis on g¢;
(1 <j<mn)ifgi >0 (1 <j < n), then (10) has a nonnegative solution
(v1,...,v,) different from (0,...,0). In this case

G )
P17...,p71

is a solution of (9). We have from this that

=q, 1=1,...,n. (10)

1 V;

= r 7'7
St
pj
j=1

t; izl,...,n

is appropriate.
The proof is complete. m
Proof of Theorem 1. We introduce the following set:

)

S =1 (i1, i) ENY D ij=n+k—1p, keN.

j=1
(a) Since S1., = {(1,...,1)}
f (ZPWQ}) = Gl,n~
v=1

Next, we prove that

Gk,’n < Gk+1,7L7 ke N+-

10



Let k € Ny be fixed. First we note that
n+k—-1\ (n+k\ k
k-1 N kE Jn+k’

(iu - 1)7 (ila'--ain) € Sk+1,n

and therefore

T
M-

u=1

implies

1 1 .
Gk+1,n = Wm Z (uz_l (Zu - 1)

k-1 (415,00 ) ESk+1,n

n

n
. 1 .
: (g ZvPv) f n § LyPu Ty
v=1 ivpv v=1

v=1

By introducing
Jui=ty,—1, w=1,....n, (i1,...,in) € Skt1n,
we have that

1 1 SceY
Gk+1,n = Wm Z (Z Ju <Z]vpv +Pu>

k—1 (J1seeesJn)ESk,n \u=1 v=1

1 -~
! - (Z JuPvTy + puxu> : (11)
(Z Jopo + pu> o
v=1

It is easy to observe that

Z.ju (Zjvpv +pu> = (n+k)z.jvpva (jlv"'vjn) S Sk,na (12)
u=1 v=1 v=1

and

ZJ“ <Z JoPvTo +pu$u> = (n + k) Zjvpvxva (jla cee 7]n) € Sk,n' (13)
u=1 v=1

v=1

With the help of the discrete Jensen’s inequality (either Theorem A (a) or
(b)) (11), (12) and (13) yield

1 1 —
Gri1n > Wm Z <(TL + k) Zj”p”
v=1

k—1 (jl,-an)ESk,n

11



1 n . n .
f - Z Ju (Z JvPv Ty + DPuTy
(e B)S g, N

= (n_i_lk_l) Z (Z jvpv) f % Zjvpvxv = Gk’,n-
k=17 (j1,.-jn)ESk,n \v=1 Zjvpv v=1

v=1

It remained to prove that
n
Gin <Y pof (x), keN,.
v=1

We can apply the discrete Jensen’s inequality (either Theorem A (a) or (b))
again, which insures

1 -
Gin = 7(n+k_1) E ( g zvpv> f Ty
(i1,

k=1 i150eesin)ESk,n \U=1 § iupv v=1

v=1

1 n
< W Z ivpo f
(41,

k—1 i1, yin ) ESk,n V=1

= n+k 1 Z Z .vpvf(xv)y k€N+.

V=1 (i1,...,in)ESk,n

Since the set Sy, has ("ZEIQ) elements

) " n+k—1
e S Y ipf () = i z( )pvmv)
- 'U:l

k-1 v= 1(711) 7'Ln)eskn

:Zp’uf(mv)a keNy.
v=1

(b) Let 7;(j) be the unique integer from {1,...,n} for which

mi(j)=i+j—1 (mod n), i,j=1,...,n.

Then the functions m; (i = 1,...,n) are permutations of the numbers 1,..., n.
Clearly, Y pr,y =1 (i =1,...,n), and m;(j) = m;(i) (i,j =1,...,n).
j=1

12



Fix k € Ny. The previous establishments imply

k—1 150500 ) €ESk,n

1

k=1 i15eeeyin)ESk,n u=1 \v=1 k—1

>, f mz pru(wzwz Pmt L

(ila-»-»in)esk,n w=1 v=1 E pﬂ_u w)zw

Noting that

> <2Pm(w>iw> =Y dw=n+k-1,

u=1 \w=1 w=1
the discrete Jensen’s inequality (either Theorem A (a) or (b)) can be applied in
(14), and we get

(i17-~~ 'L‘n)esk‘n u=1

n n n .
= n+k 1 %Z Z Zpﬂu(w)i“’f ZM%’
u=1l | (i1,...,in)ESk,n w=1 v=1 Z pﬂ-“(w)iw
w=1
Since m,, (w =1,...,n) is a permutation of the numbers 1, ..., n, and 7, (Sk,n) =
Sgn (w=1,...,n) we can see that for every fixed u € {1,...,n}

n

Z Zpﬂ'u(w)iwf Z va

; 1 =1 =1 E -
(7‘17~~a7'n)€sk,nw v pﬂ_u(w)zw

Up’Ux’U

= Z (Z 7;vpv) f
(i15eein)ESk,n \V=1

n
: v=1
E LyPo
v=1

13



(c) Fix k € Ny. By the definition of G411,

Gk+1,n = (nik) Z (Z i’UPU) f n ! Zivpvxu
(i1

1500 in)€Skt1,n \V=1 E TyDy v=t

v=1

= (n_zk) 4 Z (Z (iv — 1) po + 2]%)

-f n ! n (Z 1) poy + Zp#%)

v=1 v=1

1 n
-y (z)
( ) J1+-..+in=k \v=1

J1EN; 1<i<n

n
1 n Zjvpvxv n
-f I — Z]vpv n + vaxv
> depe+1 |07 > gepy U7
v=1 v=1

In this situation the discrete Jensen’s inequality (either Theorem A (a) or
(b)) implies that

1
Gk+1,n S ntk
Gy
5 (zj,,pu) |+ (zwu)
sl B Jupu” !
v=1

=(,,L_1H€) > (i%m)f

Ty
k i1t+...+in=k =1
_f,leJ&; +1j§zgn v JvPv
v=1
(nJrkfl) n
k
+ (n+k) f va$v .
k v=1

14



From this, by means of Theorem E, we get
1 (nJrk 1)
Gk+1,n S ( n <1 + n
(") ("iE)

n 1 n
Z (Zjv]%) f n_ Zjvpvxv = Bk/ﬂ'
PR Nr Jopo Ut

v=1

Combining this and (a) yields finally

Gin < Gigin < B, keNy.

The proof is complete. ®
Proof of Theorem 3. (a) E, is obviously a convex set, and by using the
convexity of f, some elementary computation shows that h is convex. Since f
is bounded on the convex set

n n
ZO(jl‘jEX‘ZO[j:L ajz(), j=1...,np,

h is bounded too. The convexity of h implies that it is continuous on the interior
of E,,. The previous two establishments, together with the fact that the measure
of the boundary of E, is 0, yield that h is Riemann integrable over F,,.

(b) Fix k € N,.

By the definition of G, ,,, elementary considerations show that

1 o ey
Gl = m Z > igpi | £ D ims
B o S S0
=1
(n+k—2)"""2
n.
Fh+1) .. (ntk—3)

k  k4+1—iq E+2—(i1+i2) n+k—2—(i1+...4in—2)

PP NP VDD

i1=1 12=1 ig=1 ip_1=1

.(n—&-k‘

n—1 . n—1

’Lj ’ij
L B 1— —7 | pa
;n+k—lpj+ ;n+k—1 p

15



n—1 n—1

Z peesy 2L Rl Z nTh—1 | Pnn

f Jj=1 Jj=1
n—1 n—1
A + 11— 4y
E :n+k—1p] E :n-i-k—l Dn
Jj=1 j=1

Since h is Riemann integrable, the result for the sequence (Gy, ) follows
from this and from

1—1 1 1

1=1,...

k.
n—i—k—2<n—|—k—1<n—&—l€—27 L

Similarly, according to the definition of By, ,,, we have

1 n 1 n
Byn = (Ga] > doipi | | Zijpﬂ«”j

k—1 i1+...+in=k =1 P J=1
i315+N; +12San J 15D; J
Jj=1
n—1 k k—ip k—(i1+1i2) k—(i1+...+Fin—2)
"o SID D SNTEEDS
_ n
(k+1) (n+k 1 11=012=0 13=0 ip—1=0
n—1
ZQ g+ | 1— 4 x
n—1 n—1 . & PiTj 7 | PnTn

1

.
I

ij 15
Tt | 1= | f

n—1 —
j=1 j=1 ;i
> Epit Z TP
=1 =1
By taking into account the Riemann integrability of h and

i i i1
— < —<—— i=0,...,k,
E+l ok Skt TV

we have the result for the sequence (By,,). ®
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