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Abstract. We consider the linear difference equation

x(t) =

N∑
j=1

ajx(t− rj), t ≥ 0,

where aj > 0, 1 ≤ j ≤ N , and the delays 0 < r1 < r2 < · · · < rN are not rationally

related in the sense that rj/rk is irrational for some j and k. It is shown that the large
time behavior of the continuous solutions can be described in terms of the unique

real root of the associated characteristic equation. The proof is based on Newman’s
Tauberian theorem.
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1. Introduction and the Main Results

In [20] we studied the linear difference equation with distributed delays

x(t) =

∫ 0

−r
x(t+ θ) dη(θ), t ≥ 0, (1.1)

where r > 0 and the kernel η : [−r, 0]→ R is a nonconstant nondecreasing function
normalized such that η(0) = 0 and η is continuous from the left at each θ ∈ (−r, 0].
The integral in (1.1) is a Riemann-Stieltjes integral. It is known [10] that for every
continuous function φ : [−r, 0]→ R such that

φ(0) =

∫ 0

−r
φ(θ) dη(θ)

Eq. (1.1) has a unique continuous solution x : [−r,∞)→ R with initial values

x(t) = φ(t), −r ≤ t ≤ 0. (1.2)
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The main result of [20] says that under the above assumptions the characteristic
equation

∆(s) = 0, ∆(s) = 1−
∫ 0

−r
esθ dη(θ)

has a unique real root λ, and if x is the solution of the initial value problem (1.1)
and (1.2), then the function

[0,∞) 3 t 7−→ x(t)e−λt ∈ R

is Cesàro-summable to a limit which can be expressed in terms of the initial func-
tion φ. More precisely, the limit relation

lim
t→∞

[
1

t

∫ t

0

x(τ)e−λτ dτ

]
=

1

∆′(λ)

∫ 0

−r

(
eλθ
∫ 0

θ

φ(τ)e−λτ dτ

)
dη(θ) (1.3)

holds.
Eq. (1.1) includes as a special case the equation with discrete delays

x(t) =
N∑
j=1

ajx(t− rj), t ≥ 0, (1.4)

where
aj > 0, 1 ≤ j ≤ N, (1.5)

and
0 < r1 < r2 < · · · < rN . (1.6)

Indeed, if we let r = rN and

η(θ) =
N∑
j=1

ajH(θ + rj), −r ≤ θ ≤ 0,

where H : R→ R is the step function defined by

H(t) =

{ −1 for t ≤ 0

0 for t > 0,

then Eq. (1.1) reduces to Eq. (1.4). Our aim in this paper is to show that for
Eq. (1.4) the asymptotic relation (1.3) can be improved. We will show that if
N ≥ 2, then the large time behavior of the solutions of (1.4) is determined by the
fact whether the delays in (1.4) are rationally related or not. Recall that the delays
rj > 0, 1 ≤ j ≤ N , are rationally related if all ratios

rj
rk
, 1 ≤ j ≤ N, 1 ≤ k ≤ N,

are rational numbers. It is easily seen that if the delays rj > 0, 1 ≤ j ≤ N , are
rationally related, then there exists ρ > 0 such that all delays are integer multiples
of ρ, that is

rj = njρ for some positive integer nj , 1 ≤ j ≤ N. (1.7)
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According to a result by Medina and the author [14], under condition (1.7) every
continuous solution x : [−rN ,∞)→ R of (1.4) satisfies the asymptotic relation

x(t)e−λt = p(t) + o(1), t→∞, (1.8)

where λ is the unique real characteristic root of (1.4) and p : R→ R is a continuous
ρ-periodic function which can be given explicitly in terms of the initial data (see
[14, Theorem 3] for details). By a characteristic root of (1.4), we mean a root of
the characteristic equation

h(s) = 0, h(s) = 1−
N∑
j=1

aje
−srj . (1.9)

As shown in [14], if (1.7) holds, then the transformation z = esρ reduces the char-
acteristic equation (1.9) to a polynomial equation and Eq. (1.4) can be regarded as
a higher order recurrence equation involving a parameter. If the delays in (1.4) are
not rationally related, then no such reduction seems to be possible and the analysis
of Eq. (1.4) is more difficult. In this paper, we will consider this interesting case of
rationally non-related delays. Our main result is the following improvement of the
asymptotic relation (1.3).

Theorem 1. Suppose that conditions (1.5) and (1.6) hold. Assume also that N ≥ 2
and the delays rj, 1 ≤ j ≤ N , are not rationally related. Let x : [−rN ,∞) → R be
a solution of Eq. (1.4) with initial values

x(t) = φ(t), −rN ≤ t ≤ 0, (1.10)

where φ : [−rN , 0]→ R is a continuous function such that

φ(0) =
N∑
j=1

ajφ(−rj). (1.11)

Then

lim
t→∞

[
x(t)e−λt

]
=

1

h′(λ)

N∑
j=1

aj

∫ 0

−rj
φ(θ)e−λ(θ+rj) dθ, (1.12)

where λ is the unique real root of the characteristic function h defined by (1.9).

Remark 1. It is easily verified that if the delays rj , ≤ j ≤ N , are rationally related
and ρ has the meaning from (1.7), then for every continuous ρ-periodic function
p : R→ R the function

x(t) = p(t)eλt, t ≥ −rN ,

where λ is the unique real characteristic root of (1.4), is a solution of Eq. (1.4).
Clearly, if p is nonconstant, then the limit in (1.12) does not exist. Thus, if the
delays in (1.4) are rationally related, then the limit in (1.12) in general does not
exist.
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Remark 2. A close look of Theorem 1 below shows that under the hypotheses of
the theorem the unique real characteristic root λ of Eq. (1.4) is dominant , that is,

Re s < λ for every characteristic root s 6= λ. (1.13)

For a class of neutral functional differential equations Frasson and Verduyn Lunel [7]
considered a similar situation and proved an asymptotic result analogous to (1.12).
However, it should be noted that instead of (1.13) Frasson and Verduyn Lunel [7]
required a stronger assumption. Namely, the existence of a “strictly dominant”real
characteristic root λ in the sense that there exists ε > 0, the so-called spectral gap ,
such that

Re s < λ− ε for every characteristic root s 6= λ. (1.14)

We emphasize that if the delays are rationally independent, then this stronger
condition (1.14) does not hold for Eq. (1.4). Indeed, results due to Henry [11]
and Avellar and Hale [1] imply that if the delays are rationally independent, then
Eq. (1.4) has a sequence of characteristic roots {sn}∞n=1 such that

λ > Re sn → λ as n→∞.

Consequently, although Eq. (1.4) can be regarded as a special case of neutral func-
tional differential equations (see [10]), Theorem 1 cannot be obtained from the
results by Frasson and Verduyn Lunel [7]. For similar qualitative results for func-
tional differential equations and finite dimensional difference equations, see [2 – 6],
[9], [16 – 19] and the references therein.

If the sum of the coefficients in Eq. (1.4) is one, then Theorem 1 reduces to the
following result on asymptotic constancy.

Theorem 2. Consider the difference equation

y(t) =
N∑
j=1

bjy(t− rj), t ≥ 0, (1.15)

where

bj > 0, 1 ≤ j ≤ N,
N∑
j=1

bj = 1, (1.16)

and the delays rj, 1 ≤ j ≤ N , satisfy condition (1.6). Assume also that N ≥ 2 and
the delays rj, 1 ≤ j ≤ N , are not rationally related. Let y : [−rN ,∞) → R be a
solution of Eq. (1.15) with initial values

y(t) = ψ(t), −rN ≤ t ≤ 0, (1.17)

where ψ : [−rN , 0]→ R is a continuous function such that

ψ(0) =
N∑
j=1

bjψ(−rj). (1.18)

Then

lim
t→∞

y(t) =

( N∑
j=1

bj

∫ 0

−rj
ψ(θ) dθ

)/( N∑
j=1

bjrj

)
. (1.19)

Remark 3. Suppose that (1.16) holds and the delays rj , 1 ≤ j ≤ N , are rationally
related. If ρ has the meaning from (1.7), then every continuous ρ-periodic function
is a solution of Eq. (1.15). Consequently, if the delays in (1.15) are rationally
related, then the solutions of (1.15) in general are not convergent as t→∞.
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2. Lemmas

As a preparation for the proof of Theorems 1 and 2, we establish some auxiliary
results.

Lemma 1. Suppose that conditions (1.6) and (1.16) hold. Assume also that N ≥ 2
and the delays rj, 1 ≤ j ≤ N , are not rationally related. Then s = 0 is a simple
root of the characteristic function

g(s) = 1−
N∑
j=1

bje
−srj , s ∈ C, (2.1)

associated with Eq. (1.15) and all other roots of g have negative real part.

Proof. By virtue of (1.16), we have

g(0) = 1−
N∑
j=1

bj = 0,

and

g′(0) =
N∑
j=1

bjrj > 0.

Thus, s = 0 is a simple root of g. Next we show that all roots of g have nonpositive
real part. Suppose by the way of contradiction that g(s) = 0 for some s ∈ C with
Re s > 0. Then

1 =

∣∣∣∣ N∑
j=1

bje
−srj

∣∣∣∣ ≤ N∑
j=1

|bje−srj | =
N∑
j=1

bje
−rjRe s <

N∑
j=1

bj = 1,

a contradiction. Thus, g cannot have a root with positive real part. It remains to
show that s = 0 is the only root of g on the imaginary axis Re s = 0. Suppose that
g(s) = 0 for some s ∈ C with Re s = 0. Let η = Im s so that s = iη, where i is the
imaginary unit. We need to show that η = 0. Since g(iη) = 0, we have

1 =

N∑
j=1

bje
−iηrj =

N∑
j=1

bj cos(ηrj)− i
N∑
j=1

bj sin(ηrj).

From this, we find that

1 =
N∑
j=1

bj cos(ηrj) ≤
N∑
j=1

bj = 1,

and therefore the last inequality must be an equality. Consequently,

cos(ηrj) = 1, 1 ≤ j ≤ N,
and hence

ηrj = 2mjπ for some integer mj , 1 ≤ j ≤ N. (2.2)

This implies that η = 0. Indeed, if η was different from zero, then (2.2) would
imply that

rj
rk

=
mj

mk

is rational for all j, k ∈ {1, . . . , N} contradicting the assumption that the delays
rj , 1 ≤ j ≤ N , are not rationally related. Thus, η = 0. �
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Lemma 2. Suppose that conditions (1.6) and (1.16) hold. Let y : [−rN ,∞)→ R be
the solution of the initial value problem (1.15) and (1.17), where ψ : [−rN , 0]→ R is
a continuous function satisfying (1.18). Then y is uniformly continuous on [0,∞)
and

sup
t≥0
|y(t)| ≤ max

−rN≤t≤0
|ψ(t)|. (2.3)

Proof. For every δ > 0 and for every positive integer n, define

ωδ(n) = sup{ |y(t2)− y(t1)| | t1, t2 ∈ [−rN , nr1], 0 < t2 − t1 < δ }.

From the triangle inequality

|y(t2)− y(t1)| ≤ |y(t2)|+ |y(t1)| whenever t1, t2 ∈ [−rN , nr1],

it follows that
ωδ(n) ≤ 2 max

−rN≤t≤nr1
|y(t)| <∞.

We will show that if δ < r1, then the sequence {ωδ(n)}∞n=1 is nonincreasing. Sup-
pose that δ ∈ (0, r1) and n is a fixed positive integer. Choose t1, t2 ∈ [−rN , (n+1)r1]
such that 0 < t2 − t1 < δ. Two cases may occur depending on whether t2 ≤ nr1 or
nr1 < t2 ≤ (n+ 1)r1.

Case 1. Suppose that t2 ≤ nr1. Since t2 − t1 > 0, we have that t1 < t2 ≤ nr1.
From the definition of ωδ(n), we obtain

|y(t2)− y(t1)| ≤ ωδ(n). (2.4)

Case 2. Now suppose that nr1 < t2 ≤ (n + 1)r1. Taking into account that
0 < t2 − t1 < δ, we have

t2 > t1 > t2 − δ > nr1 − δ ≥ r1 − δ > 0.

Consequently, we can use Eq. (1.15) to obtain

y(t2)− y(t1) =
N∑
j=1

bjy(t2 − rj)−
N∑
j=1

bjy(t1 − rj) =
N∑
j=1

bj
(
y(t2 − rj)− y(t1 − rj)

)
.

Hence

|y(t2)− y(t1)| ≤
N∑
j=1

bj |y(t2 − rj)− y(t1 − rj)|. (2.5)

For each j ∈ {1, . . . , N}, we have

t1 − rj < t2 − rj ≤ t2 − r1 ≤ (n+ 1)r1 − r1 = nr1

and
(t2 − rj)− (t1 − rj) = t2 − t1 ∈ (0, δ).

This, together with the definition of ωδ(n), implies

|y(t2 − rj)− y(t1 − rj)| ≤ ωδ(n), 1 ≤ j ≤ N.
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Consequently, the right-hand side of (2.5) is not greater than

N∑
j=1

bj ωδ(n) = ωδ(n).

Thus, in both Cases 1 and 2, Inequality (2.4) holds. Since t1, t2 ∈ [−rN , (n+ 1)r1],
0 < t2 − t1 < δ, were arbitrary, this implies

ωδ(n+ 1) ≤ ωδ(n).

In particular,
ωδ(n) ≤ ωδ(1) for every positive integer n. (2.6)

Using (2.6), we can easily show that y is uniformly continuous on [0,∞). Let ε > 0
be given. Since y is continuous on the compact interval [−rN , r1], it is uniformly
continuous there. Consequently, there exists δ > 0 such that

|y(t2)− y(t1)| < ε

2
whenever t1, t2 ∈ [−rN , r1] and 0 < t2 − t1 < δ. (2.7)

Without loss of generality, we may (and do) assume that δ < r1. From (2.7), we
obtain

ωδ(1) ≤ ε

2
. (2.8)

Suppose that t1, t2 ∈ [0,∞) and 0 < t2 − t1 < δ. Choose a positive integer n
such that n ≥ t2/r1 so that t1 < t2 ≤ nr1. From the definition of ωδ(n) and
Inequalities (2.6) and (2.8), we find that

|y(t2)− y(t1)| ≤ ωδ(n) ≤ ωδ(1) ≤ ε

2
< ε.

Since ε > 0 was arbitrary, this proves that y is uniformly continuous on [0,∞).
It remains to show (2.3). Define

M = max
−rN≤t≤0

|ψ(t)|.

Let ε > 0. We claim that

|y(t)| < M + ε for all t ≥ 0. (2.9)

Suppose by the way of contradiction that (2.9) does not hold. Since |y(0)| =
|ψ(0)| ≤M < M + ε, there exists t1 > 0 such that

|y(t)| < M + ε for all t ∈ [0, t1) and |y(t1)| = M + ε.

From this and Eq. (1.15), we obtain

M + ε = |y(t1)| =
∣∣∣∣ N∑
j=1

bjy(t1 − rj)
∣∣∣∣ ≤ N∑

j=1

bj |y(t1 − rj)| <
N∑
j=1

bj(M + ε) = M + ε,

a contradiction. Consequently, (2.9) holds and hence

sup
t≥0
|y(t)| ≤M + ε.

Conclusion (2.3) follows by letting ε→ 0 in the last inequality. �

The proof of our main results will be based on Newman’s Tauberian theorem
for the Laplace transform (see [13, Chap. XVI, Lemma 2.2] or [12, Sec. 1.2]). For
the readers’ convenience, we state it in Lemma 3 below. It is noteworthy that
Newman’s beautiful result can be used to give a simple short proof of the famous
Prime Number Theorem (see [12], [13, Chap. XVI] or [15] for details).
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Lemma 3. Let z : [0,∞) → R be a continuous and bounded function so that the
Laplace transform

z̃(s) =

∫ ∞
0

e−stz(t) dt

is well-defined and holomorphic in the open half-plane Re s > 0. Suppose that z̃
can be extended as a holomorphic function to a neighborhood of every point on the
imaginary axis. Then the improper Riemann integral∫ ∞

0

z(t) dt (2.10)

converges and is equal to z̃(0).

We will also need the following variant of a result due to Barbălat.

Lemma 4. Let z : [0,∞) → R be a continuous function such that the improper
Riemann integral (2.10) converges. If z is uniformly continuous on [0,∞), then

lim
t→∞

z(t) = 0.

Lemma 4 follows from [8, Lemma 1.2.3] applied to the function g : [0,∞) → R
defined by g(t) =

∫ t
0
z(τ) dτ for t ≥ 0.

3. Proofs of the Main Results

First we give a proof of Theorem 2.

Proof of Theorem 2. By Lemma 2, the solution y of the initial value problem (1.15)
and (1.17) is bounded on [0,∞). Consequently, the Laplace transform

ỹ(s) =

∫ ∞
0

e−sty(t) dt

is well-defined and holomorphic in the open half-plane Re s > 0. Taking the Laplace
transform of both sides of Eq. (1.15) and using the shifting property, we find that

ỹ(s) =

N∑
j=1

bj

(
e−srj ỹ(s) +

∫ 0

−rj
ψ(θ)e−s(θ+rj) dθ

)

whenever Re s > 0. Hence

ỹ(s)g(s) = f(s) whenever Re s > 0, (3.1)

where g is the characteristic function given by (2.1) and

f(s) =
N∑
j=1

bj

∫ 0

−rj
ψ(θ)e−s(θ+rj) dθ.
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By Lemma 1, all roots of g have nonpositive real part. Consequently, (3.1) can be
written in the form

ỹ(s) =
f(s)

g(s)
whenever Re s > 0. (3.2)

Clearly, both f and g are entire functions. Further, according to Lemma 1, s = 0
is the only root of g on the imaginary axis and g′(0) 6= 0. This, together with (3.2),
implies that ỹ can be extended as a holomorphic function to a neighborhood of
every point on the imaginary axis with the possible exception of s = 0 at which
ỹ = f/g has at most simple pole. This means that the Laurent series of ỹ = f/g
at s = 0 has the form

ỹ(s) =
f(s)

g(s)
=

∞∑
j=−1

Cjs
j whenever 0 < |s| < ε, (3.3)

where ε > 0 is sufficiently small and

C−1 = Res
s=0

f(s)

g(s)
=
f(0)

g′(0)
=

( N∑
j=1

bj

∫ 0

−rj
ψ(θ) dθ

)/( N∑
j=1

bjrj

)
. (3.4)

Define
z(t) = y(t)− C−1, t ≥ 0. (3.5)

By Lemma 2, y and hence z is bounded and uniformly continuous on [0,∞). Fur-
ther, taking the Laplace transform of z, we find that

z̃(s) = ỹ(s)− C−1
s

whenever Re s > 0. (3.6)

As noted before, ỹ and hence z̃ can be extended as a holomorphic function to a
neighborhood of every nonzero point on the imaginary axis. Moreover, from (3.3)
and (3.6), we see that z̃ can be extended as a holomorphic function also to the
ε-neighborhood of s = 0 by

z̃(s) =
∞∑
j=0

Cjs
j whenever |s| < ε.

By the applications of Newman’s theorem (see Lemma 3), we conclude that the
improper integral (2.10) converges. As noted before, z is uniformly continuous on
[0,∞) and therefore Barbălat’s lemma (see Lemma 4) implies that

lim
t→∞

z(t) = 0.

Hence
lim
t→∞

y(t) = C−1,

which, in view of (3.4), is equivalent to (1.19). �

Using Theorem 2, we can give a short proof of Theorem 1.
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Proof of Theorem 1. Let h be the characteristic function defined by (1.9). By virtue
of (1.5), we have

h′(τ) =

N∑
j=1

ajrje
−τrj > 0 for all τ ∈ (−∞,∞).

Consequently, h is strictly increasing on (−∞,∞). Since

lim
τ→−∞

h(τ) = −∞ and lim
τ→∞

h(τ) = 1,

h has a unique real root λ. Let x be the solution of (1.4) with initial values (1.10).
Define

y(t) = x(t)e−λt, t ≥ −rN .

Then y is a solution of the initial value problem (1.15) and (1.17) with

bj = aje
−λrj , 1 ≤ j ≤ N,

and
ψ(t) = φ(t)e−λt − rN ≤ t ≤ 0.

It is easily verified that the hypotheses of Theorem 2 are satisfied. By the applica-
tion of Theorem 2, we conclude that (1.19) holds which is only a reformulation of
conclusion (1.12) of Theorem 1. �
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20. M. Pituk, Cesàro summability in a linear autonomous difference equation, Proc. Amer. Math.

Soc. 133 (2005), 3333–3339.

11


