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1. Introduction

In [5] Mallet-Paret studied the existence and some properties of the monotone
increasing solutions x : R → R of the limit boundary value problem (LBVP for
short)

−c x′(ξ) = F (x(ξ + r1), x(ξ + r2), . . . , x(ξ + rN )), (1.1)

lim
ξ→−∞

x(ξ) = −1, lim
ξ→∞

x(ξ) = 1, (1.2)

where c ∈ R and the quantities rj ∈ R, 1 ≤ j ≤ N , the so-called shifts, and the
nonlinearity F : R

N → R satisfy the following standing assumptions:

(i) N ≥ 2, r1 = 0 and rj 6= rk whenever 1 ≤ j < k ≤ N .

(ii) F : R
N → R is a continuously differentiable function such that the partial

derivatives DjF , 1 ≤ j ≤ N , are locally Lipschitz continuous.

(iii) DjF (u) > 0 whenever u ∈ R
N and 2 ≤ j ≤ N .

(iv) There exists q ∈ (−1, 1) such that the function Φ : R → R defined by

Φ(x) = F (x, x, . . . , x), x ∈ R,

satisfies the following conditions:

∗ Phone:+36 88 62 4227; Fax:+36 88 62 4521

Typeset by AMS-TEX

1



Φ(x) > 0 for x ∈ (−∞,−1) ∪ (q, 1),

Φ(x) < 0 for x ∈ (−1, q) ∪ (1,∞),

Φ(−1) = Φ(q) = Φ(1) = 0.

(v) We have that

Φ′(−1) < 0, Φ′(q) > 0, and Φ′(1) < 0.

Throughout the paper, the terms monotone increasing and monotone decreasing
are used as synonyms for nondecreasing and nonincreasing, respectively.

Note that assumption (iv) implies that the Eq. (1.1) has exactly three equilibria,
x = −1, x = q and x = 1. If c 6= 0 then Eq (1.1) is a functional differential equation
of mixed type (including both delayed and advanced arguments), while in the case
when c = 0 Eq. (1.1) reduces to a difference equation.

Under the above hypotheses, Mallet-Paret [5] gave the following asymptotic de-
scription of the monotone increasing solutions of LBVP (1.1)–(1.2).

Theorem 1.1. [5, Theorem 2.2] If c 6= 0 and x : R → R is a monotone increasing
solution of LBVP (1.1)–(1.2), then there exist C± > 0 and ε > 0 such that

x(ξ) =

{

−1 + C−e
λu
−

ξ +O(e(λ
u
−

+ε)ξ), ξ → −∞,

1 − C+e
λs
+ξ +O(e(λ

s
+−ε)ξ), ξ → ∞,

(1.3)

where λu
− ∈ (0,∞) is the unique positive eigenvalue of the linearization of Eq. (1.1)

about the equilibrium x = −1,

−cx′(ξ) =
N

∑

j=1

DjF (κ(−1)) x(ξ + rj), (1.4)

and λs
+ ∈ (−∞, 0) is the unique negative eigenvalue of the linearization of Eq. (1.1)

about the equilibrium x = 1,

−cx′(ξ) =
N

∑

j=1

DjF (κ(1)) x(ξ + rj), (1.5)

where
κ(x) = (x, x, . . . , x) ∈ R

N , x ∈ R. (1.6)

If c = 0 and x : R → R is a monotone increasing solution of LBVP (1.1)–(1.2),
then

lim
ξ→−∞

1

ξ
log(1 + x(ξ)) = λu

−, if rmax > 0,

lim
ξ→∞

1

ξ
log(1 − x(ξ)) = λs

+, if rmin < 0,

(1.7)

where
rmin = min

1≤j≤N
rj , rmax = max

1≤j≤N
rj ,

and λu
−, λs

+ have the same meaning as before.

Note that the existence and uniqueness of the eigenvalues λu
− and λs

+ is part of
the conclusion of the theorem.

Clearly, if c = 0, in the case of difference equations, the asymptotic formulas for
x(ξ) are not as sharp as in the the case when c 6= 0. Our aim in this paper is to
show that in the case c = 0 the limit relations (1.7) for the monotone increasing
solutions of LBVP (1.1)–(1.2) can be improved.
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2. Main Result

If c = 0 then there is an important difference between the cases of rationally
related shifts and rationally non-related shifts. Recall that the shifts rj , 1 ≤ j ≤ N ,
are rationally related if all ratios

rj

rk
, 1 ≤ j < k ≤ N,

are rational. In this case there exists ν > 0 such that all shifts rj , 1 ≤ j ≤ N , are
integer multiples of ν and Eq. (1.1) can be reduced to a higher order recurrence
equation. If the shifts in (1.1) are not rationally related, then no such reduction
seems to be possible and the problem becomes more difficult and interesting. In this
paper, we will restrict ourselves to the case c = 0 and rationally non-related shifts.
We will prove the following improvement of the limit relations (1.7) of Theorem 1.1.

Theorem 2.1. Suppose that c = 0 and the shifts rj, 1 ≤ j ≤ N , are not rationally
related. If x : R → R is a monotone increasing solution of LBVP (1.1)–(1.2) then
there exist constants C± > 0 such that

x(ξ) =

{

−1 + C−e
λu
−

ξ + o(eλu
−

ξ), ξ → −∞, if rmax > 0,

1 − C+e
λs
+ξ + o(eλs

+ξ), ξ → ∞, if rmin < 0,
(2.1)

where λu
− and λs

+ have the same meaning as in Theorem 1.1.

Before we give a proof of Theorem 2.1, we establish an auxiliary result for the
linear difference equation

N
∑

j=1

Aj(ξ)y(ξ + rj) = 0, (2.2)

where the shifts rj , 1 ≤ j ≤ N , satisfy condition (i) of Section 1 and the coeffi-
cients Aj : R → R, 1 ≤ j ≤ N , are locally integrable functions with the following
properties:

(a) There exist constants

αj , βj ∈ R, 1 ≤ j ≤ N,

αj > 0, 2 ≤ j ≤ N,
(2.3)

such that
αj ≤ Aj(ξ) ≤ βj , ξ ∈ R, 1 ≤ j ≤ N. (2.4)

(b) The limits
Aj± = lim

ξ→±∞
Aj(ξ), 1 ≤ j ≤ N, (2.5)

exist (in R), and the convergence is exponentially fast, that is, for some k > 0, we
have

Aj(ξ) = Aj± +O(e−k|ξ|), ξ → ±∞, 1 ≤ j ≤ N. (2.6)

(c) The sum of the limits in (2.5) is negative, that is,

AΣ± =

N
∑

j=1

Aj± < 0. (2.7)
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Recall that under condition (2.5) Eq. (2.2) is said to be asymptotically au-
tonomous as ξ → ±∞ and the constant coefficient equation

N
∑

j=1

Aj± y(ξ + rj) = 0 (2.8)

is called the limiting equation of (2.2) as ξ → ±∞. The eigenvalues of (2.8) are the
roots of the characteristic equation

∆±(s) = 0, where ∆±(s) =

N
∑

j=1

Aj± e
srj . (2.9)

The proof of Theorems 2.1 will be based on the following proposition.

Proposition 2.2. Suppose that the shifts rj, 1 ≤ j ≤ N , are not rationally related
and rmin < 0. Let y : [rmin,∞) → (0,∞) be a positive, monotone decreasing func-
tion satisfying Eq. (2.2) for ξ ≥ 0. Assume that conditions (2.3) and (2.4) hold
but only for ξ ≥ 0. Assume also that Eq. (2.2) is asymptotically autonomous as
ξ → ∞ and the convergence is exponentially fast in the sense that conditions (2.5)
and (2.6) hold but only for ξ → ∞. Finally, assume that the sum AΣ+ in (2.7) is
negative. Then there exists a constant C+ > 0 such that

y(ξ) = C+e
λs
+ξ + o(eλs

+ξ), ξ → ∞, (2.10)

where λs
+ is the unique negative eigenvalue of the limiting equation of (2.2) as

ξ → ∞.
The analogous result for the positive, monotone increasing solutions of Eq. (2.2)

on (−∞, 0] as ξ → −∞, namely

y(ξ) = C−e
λu
−

ξ + o(eλu
−

ξ), ξ → −∞, (2.11)

where C− > 0 and λu
− is the unique positive eigenvalue of the limiting equation

of (2.2) as ξ → −∞, also holds when rmax > 0, (2.3) and (2.4) are assumed for
ξ ≤ 0, (2.5) and (2.6) hold but only for ξ → −∞ and AΣ+ < 0 is replaced with
AΣ− < 0.

In the following lemmas we summarize some known results which will be used
in the proof of Proposition 2.2. The first result is a consequence of [5, Lemma 4.2]
and [5, Proposition 4.3].

Lemma 2.3. Suppose that the shifts rj, ≤ j ≤ N , are not rationally related and
rmin < 0. Assume that Aj+ > 0, 2 ≤ j ≤ N , and the sum AΣ+ in (2.7) is negative.
Then the characteristic function ∆+ defined by (2.9) has a unique negative root
denoted by λs

+. Moreover, this root is simple and all other roots of ∆+ have real
parts different from λs

+.
The analogous result for ∆− also holds when rmax > 0, Aj+ > 0, 2 ≤ j ≤ N , is

replaced with Aj− > 0, 2 ≤ j ≤ N , AΣ+ < 0 is replaced with AΣ− < 0 and λs
+ is

replaced with λu
−, the unique positive root of ∆−.

The next result was proved in [5, Proposition 5.4].
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Lemma 2.4. Suppose that rmin < 0 and let y : [rmin,∞) → (0,∞) be a positive,
monotone decreasing function satisfying Eq. (2.2) for ξ ≥ 0. Assume that con-
ditions (2.3) and (2.4) hold but only for ξ ≥ 0. Assume also that Eq. (2.2) is
asymptotically autonomous as ξ → ∞ in the sense that the limits in (2.5) exist but
only for ξ → ∞. Finally, assume the sum AΣ+ in (2.7) is negative. Then

lim
ξ→∞

1

ξ
log y(ξ) = λs

+, (2.12)

where λs
+ is the unique negative eigenvalue of the limiting equation of (2.2) as

ξ → ∞.
The analogous result as ξ → −∞ also holds when rmax > 0 and λs

+ is replaced
with λu

−, the unique positive eigenvalue of the limiting equation of (2.2) as ξ → −∞.

For some related results on asymptotically autonomous equations, see, e.g., [2],
[4], [6], [7], [8], [9].

We will also need two basic results from the theory of Laplace transform. The
first result, rediscovered in [5, Lemma 3.5] (see also [1]), is sometimes called as the
Pringsheim-Landau theorem (see, e.g., [10]).

Lemma 2.5. Suppose that y : [0,∞) → [0,∞) is a nonnegative measurable function
such that the abscissa of convergence σc of the Laplace transform

ỹ(s) =

∫ ∞

0

y(ξ)e−sξ dξ (2.13)

is finite. Then ỹ(s) cannot be extended as a holomorphic function to any neighbor-
hood of s = σc.

The basic tool in the proof of Proposition 2.2 will be the following variant of
Ikehara’s Tauberian theorem [10] (see [3, Proposition 2.3]).

Lemma 2.6. Let y : [0,∞) → (0,∞) be a positive, monotone decreasing function
such that its Laplace transform ỹ(s) converges in the half-plane Re s > σ for some
σ ∈ (−∞, 0). Assume that for some constant C the function

ỹ(s) −
C

s− σ
(2.14)

can be extended as a holomorphic function to a neighborhood of every point of the
vertical line Re s = σ. Then

lim
ξ→∞

y(ξ)e−σξ = C. (2.15)

Now we are in a position to give a proof of Proposition 2.2.

Proof of Proposition 2.2. Consider the case when ξ → ∞. Rewrite Eq. (2.2) as

N
∑

j=1

Aj+y(ξ + rj) = h(ξ), (2.16)
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where

h(ξ) =

N
∑

j=1

(Aj+ − Aj(ξ))y(ξ + rj).

Let σc be the abscissa of convergence of the Laplace transform ỹ(s) of the positive,
monotone decreasing solution y of (2.2). Conclusion (2.12) of Lemma 2.4 implies
that the Laplace transform ỹ(s) converges for s ∈ (λs

+,∞) and diverges for s ∈
(−∞, λs

+). Hence σc = λs
+. The asymptotic relations (2.6) and (2.12) imply that

the Laplace transform h̃(s) of h converges for Re s > λs
+ − k. Taking the Laplace

transform of Eq. (2.16), we obtain for Re s > λs
+,

∆+(s)ỹ(s) = ψ(s) + h̃(s),

with ∆+ as in (2.9) and

ψ(s) = −

N
∑

j=1

Aj+

∫ 0

−rj

y(ξ + rj)e
−sξ dξ.

Taking into account that ψ is an entire function, we obtain

∆+(s)ỹ(s) = f(s) for Re s > λs
+, (2.17)

where
f(s) = ψ(s) + h̃(s) is holomorphic for Re s > λs

+ − k. (2.18)

By Lemma 2.3, λs
+ is the only root of ∆+ on the vertical line Re s = λs

+. Therefore
(2.17) and (2.18) imply that ỹ(s) can be extended as a holomorphic function to a
neighborhood of every point of the vertical line Re s = λs

+ with the exception of
s = λs

+ by

ỹ(s) =
f(s)

∆+(s)
.

Since s = λs
+ is a simple root of ∆+ (see Lemma 2.3), the last identity shows that

ỹ(s) has at most simple pole at s = λs
+ so that the Laurent series of ỹ(s) at s = λs

+

has the form

ỹ(s) =
∞
∑

j=−1

Cj(s− λs
+)j whenever 0 < |s− λs

+| < ε, (2.19)

where ε > 0 is sufficiently small and

C−1 = Res
s=λs

+

f(s)

∆+(s)
=

f(λs
+)

∆′
+(λs

+)
. (2.20)

Therefore the function

ỹ(s) −
C−1

s− λs
+

has a removable singularity at s = λs
+ and the assumptions of Lemma 2.6 hold with

σ = λs
+ and C = C−1. By the application of Lemma 2.6 we conclude that

lim
ξ→∞

y(ξ)e−λs
+ξ = C−1.
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Thus, (2.10) holds with C+ = C−1. It remains to show that C−1 > 0. As a limit of
a positive function, C−1 ≥ 0. Suppose by the way of contradiction that C−1 = 0.
Then (2.19) implies that ỹ(s) can be extended as a holomorphic function to the
ε-neighborhood of s = λs

+ = σc contradicting Lemma 2.5. Thus, C−1 > 0.
The analogous result for solutions on (−∞, 0] can be obtained after a change of

variable ξ → −ξ. �

Based on Proposition 2.2, we can give a simple short proof of Theorem 2.1.

Proof of Theorem 2.1. We will consider only the case ξ → ∞, as the proof for ξ →
−∞ is similar. Let x : R → R be a monotone increasing solution of LBVP (1.1)–
(1.2). Then

y(ξ) = 1 − x(ξ), ξ ∈ R,

is a nonnegative, monotone decreasing function. From [5, Lemma 3.3], it follows
that y is positive. As shown in [5], y is a solution of the linear Eq. (2.2) with

Aj(ξ) =

∫ 1

0

DjF (tπ(x, ξ) + (1 − t)κ(1)) dt,

where
π(x, ξ) = (x(ξ + r1), x(ξ + r2), . . . , x(ξ + rN ))

and κ is defined by (1.6). This follows from the formula

F (v)−F (w) =

∫ 1

0

dF (tv + (1 − t)w)

dt
dt =

N
∑

j=1

(
∫ 1

0

DjF (tv+(1−t)w) dt

)

(vj−wj)

for any v, w ∈ R
N and from the fact that F (κ(1)) = Φ(1) = 0 (see condition (iv)

in Section 1). Assumption (iii) of Section 1 implies that conditions (2.3) and (2.4)
hold. From (1.2) and the continuity of the partial derivatives of F , it follows that
limits in (2.5) exist for ξ → ∞ and

Aj+ = DjF (κ(1)), 1 ≤ j ≤ N.

Thus, the limiting equation of (2.2) as ξ → ∞ coincides with the linearized equa-
tion (1.5) with c = 0. Choose δ > 0 such that λs

+ + δ < 0. Then the second limit
relation in (1.7) implies the asymptotic estimate

1 − x(ξ) = O(e(λ
s
++δ)ξ), ξ → ∞.

This, together with the local Lipschitz continuity of the partial derivatives DjF ,
1 ≤ j ≤ N , implies that the convergence in (2.5) is exponentially fast, namely,
condition (2.6) holds with k = −(λs

+ + δ) for ξ → ∞. Finally, the last inequality in
condition (v) of Section 1 implies that the sum AΣ+ in (2.7) is negative. Thus, we
have verified all hypotheses of Proposition 2.2. Therefore Proposition 2.2 applies
and its conclusion (2.10) is only a reformulation the limit relation (2.1) for ξ → ∞.

�

Acknowledgement

This research was supported in part by the Hungarian National Foundation for
Scientific Research (OTKA) Grant No. K 73274.

7



References
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equations, J. Differ. Equa. Applications (to appear).

9. M. Pituk, A Perron type theorem for functional differential equations, J. Math. Anal. Appl.
316 (2006), 24–41.

10. D. V. Widder, The Laplace Transform, Princeton Mathematical Series v. 6, Princeton Uni-

versity Press (Second Printing), Princeton, 1946.

8


