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Abstract. We consider orbits of compact linear operators in a real Banach

space which are nonnegative with respect to the partial ordering induced

by a given cone. The main result shows that under a mild additional
assumption the local spectral radius of a nonnegative orbit is an eigenvalue

of the operator with a positive eigenvector.

1. Introduction and the main result

Let (X, ‖ · ‖) be a real Banach space. The symbol B(X) denotes the space
of bounded linear operators in X equipped with the operator norm. By the
spectrum of T ∈ B(X), denoted by σ(T ), we mean the spectrum of the com-
plex extension TC : XC → XC, where XC is the complexification of X, the
set of formal pairs x + iy with x, y ∈ X equipped with the norm ‖x + iy‖ =
max0≤t≤2π ‖(sin t)x + (cos t)y‖, and TC(x + iy) = Tx + iTy. A similar remark
holds for the eigenvalues of T ∈ B(X). The set of eigenvalues, the so-called point
spectrum of T ∈ B(X), is denoted by σp(T ). The spectral radius of T ∈ B(X)
is defined by r(T ) = maxλ∈σ(T ) |λ|. Note that according to Gelfand’s formula

r(T ) = lim
n→∞

n
√
‖Tn‖

for every T ∈ B(X). An operator T ∈ B(X) is called compact if the closure
of T (B) is compact, where B denotes the unit ball in X. The space of compact
operators in X will be denoted by K(X). It is known that if T ∈ K(X), then
every nonzero element of the spectrum σ(T ) is an eigenvalue of T . Hence

r(T ) = max
λ∈σp(T )

|λ| whenever T ∈ K(X) and r(T ) > 0. (1.1)

A set K ⊂ X is called a cone if conditions (i), (ii), and (iii) below hold.

(i) K is a nonempty, convex and closed subset of X,
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(ii) tK ⊂ K for all t ≥ 0, where tK = {tx | x ∈ K},
(iii) K ∩ (−K) = {θ}, where −K = {−x | x ∈ K}.

Let K ⊂ X be a cone. Then K induces a partial ordering ≤K on X by x ≤K y if
and only if y−x ∈ K. An element x ∈ X is called K-nonnegative if θ ≤K x. An
operator T ∈ B(X) is called K-nonnegative if θ ≤K x implies θ ≤K Tx. Clearly,
x ∈ X is K-nonnegative if and only if x ∈ K, and T ∈ B(X) is K-nonnegative
if and only if T (K) ⊂ K. Recall that a cone K ⊂ X is total if cl(K −K) = X,
where cl(K −K) denotes the closure of the set K −K = {x− y | x, y ∈ K }.

Krein and Rutman [5] proved the following result about the spectral radius
of positive compact operators (see also [4] and [8] for secondary sources).

Theorem 1.1. Suppose that (X, ‖ · ‖) is a real Banach space and K ⊂ X is
a total cone. Assume also that T ∈ K(X) is a K-nonnegative operator with
r(T ) > 0. Then there exists v ∈ K \ {θ} such that Tv = r(T )v so that r(T ) ∈
σp(T ).

Note that in the finite dimensional case X = Rn and K = Rn+ Theorem 1.1
implies the Perron-Frobenius theorem stating that the spectral radius of a non-
negative n× n matrix A is always an eigenvalue of A with a nonnegative eigen-
vector (see, e.g., [1]).

In this paper we will prove an analogue of Theorem 1.1 for the local spectral
radius corresponding to a nonnegative orbit of T ∈ K(X). By an orbit of
T ∈ B(X), we mean a sequence {Tnx}∞n=0, where x ∈ X is a given vector. The
local spectral radius of T ∈ B(X) at x ∈ X is denoted by r̄(T ;x) and is defined
by

r̄(T ;x) = lim sup
n→∞

n
√
‖Tnx‖. (1.2)

Note that r̄(T ;x) describes the exponential growth of the orbit {Tnx}∞n=0. Its
logarithm is the Lyapunov exponent. Define also

r(T ;x) = lim inf
n→∞

n
√
‖Tnx‖. (1.3)

Evidently, r(T ;x) ≤ r̄(T ;x). It is known that if T is merely bounded, then
the last inequality may be strict (see [6] for details and further related results).
However, if T is compact, then r(T ;x) = r̄(T ;x) for all x ∈ X and the following
analogue of Conclusion (1.1) holds.

Theorem 1.2. Suppose that (X, ‖ · ‖) is a real Banach space and T ∈ K(X).
Then for every x ∈ X the limit

r(T ;x) = lim
n→∞

n
√
‖Tnx‖ (1.4)

exists. Furthermore, if r(T ;x) > 0 for some x ∈ X, then r(T ;x) is the modulus
of one of the eigenvalues of T , that is,

r(T ;x) = |λ| for some λ ∈ σp(T ).
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Theorem 1.2 follows from Corollary B.3 from Appendix B of [2] and from the
Riesz-Schauder theory of compact linear operators.

Our main result is the following theorem.

Theorem 1.3. Suppose that (X, ‖ · ‖) is a real Banach space, K ⊂ X is a cone
and T ∈ K(X). Assume also that for some x ∈ X conditions

Tnx ∈ K for all n = 0, 1, 2, . . . (1.5)

and

r(T ;x) > 0 (1.6)

hold. Then there exists v ∈ K \ {θ} such that Tv = r(T ;x)v so that r(T ;x) ∈
σp(T ).

Note that in contrast with Theorem 1.1, in Theorem 1.3 we do not require the
K-nonnegativity of operator T . We assume merely that the orbit {Tnx}∞n=0 is
K-nonnegative (see (1.5)). For the finite dimensional analogue of Theorem 1.3
for Poincaré difference equations, see [7].

2. Proof

Before we present the proof of Theorem 1.3, we recall some facts from the
spectral theory of bounded linear operators (see Chapter VII of [3]) and we
establish some lemmas.

Suppose that (X, ‖ · ‖) is a complex Banach space and T ∈ B(X). Let σ be
a closed isolated subset of the spectrum σ(T ). The spectral projection (Riesz
idempotent) of T corresponding to σ is denoted by Pσ and is defined by

Pσ =
1

2πi

∫
Γ

(z − T )−1 dz, (2.1)

where Γ is any positively oriented Jordan system such that

σ ⊂ ins Γ and σ(T ) \ σ ⊂ out Γ,

where ins Γ and out Γ denote the inside of Γ and the outside of Γ, respectively (see
Chapter VII, Section 6.9 of [3]). The bounded linear operator Pσ has properties

P 2
σ = Pσ, (2.2)

and

PσT = TPσ. (2.3)

The set Pσ(X) is called the generalized eigenspace of T corresponding to σ.
It follows from (2.3) that T maps Pσ(X) into itself and if Tσ = T |Pσ(X), the
restriction of T onto Pσ(X), then the spectrum of Tσ : Pσ(X) → Pσ(X) is σ,
that is,

σ(Tσ) = σ. (2.4)
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Assume in addition that T ∈ K(X), i.e. T is compact. Then every λ ∈ σ(T )\{0}
is an eigenvalue of T and for every ε > 0 the set {λ ∈ σ(T ) | |λ| ≥ ε} ⊂ σp(T ) is
finite. It is known that each λ ∈ σ(T ) \ {0} is a pole of the resolvent (z − T )−1

and the generalized eigenspace P{λ}(X) is finite dimensional (see Corollary 7.8
of [3]). Now suppose that σ ⊂ σ(T )\{0} is a finite set. By the Residue Theorem,
we have

Pσ =
∑
λ∈σ

P{λ}

and therefore the generalized eigenspace Pσ(X) is also finite dimensional. Fur-
thermore, since 0 /∈ σ, in this case operator Tσ : Pσ(X)→ Pσ(X) is invertible.

As noted on p. 799 of [8], if T ∈ B(X) and

σ(T ) = σ1 ∪ σ2 ∪ · · · ∪ σk, (2.5)

where σ1, σ2, . . . , σk, are pairwise disjoint closed isolated subsets of σ(T ), then
X can be decomposed into the direct sum

X = Pσ1
(X)⊕ Pσ2

(X)⊕ · · · ⊕ Pσk(X). (2.6)

If (X, ‖ · ‖) is a real Banach space and T ∈ B(X), then the spectral projec-
tion Pσ can be defined as in (2.1) for the complex extension TC. If we consider
only sets σ ⊂ σ(T ) which are symmetric with respect to the real axis, then the
restriction of Pσ onto X is a projection operator on X and the set Pσ(X) is
called the generalized real eigenspace of T corresponding to σ. Finally, if each
σj , 1 ≤ j ≤ k, in (2.5) is symmetric with respect to the real axis, then the
splitting result (2.6) remains valid for real Banach spaces.

Now we establish a lemma will play an important role in the proof of Theo-
rem 1.3.

Lemma 2.1. Let (X, ‖ · ‖) be a real Banach space and T ∈ K(X). Suppose that
for some x ∈ X conditions (1.5) and (1.6) hold. Define

σ− = {λ ∈ σ(T ) | |λ| < r(T ;x) }, (2.7)

σ0 = {λ ∈ σ(T ) | |λ| = r(T ;x) }, (2.8)

and
σ+ = {λ ∈ σ(T ) | |λ| > r(T ;x) } (2.9)

so that
σ(T ) = σ− ∪ σ0 ∪ σ+ (2.10)

and
X = Pσ−(X)⊕ Pσ0

(X)⊕ Pσ+
(X). (2.11)

Let
K0 = K ∩ Pσ0

(X). (2.12)

Then there exists x0 ∈ K0 with ‖x0‖ = 1 such that

Tnx0 ∈ K0 for all n = 0, 1, 2, . . . . (2.13)
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The proof of Lemma 2.1 will be based on the following simple result.

Lemma 2.2. Let (X, ‖ · ‖) be a Banach space and T ∈ B(X). Then for every
x ∈ X, we have

r̄(T ;x) ≤ max
λ∈σ(T )

|λ|. (2.14)

If dimX <∞ and T ∈ B(X) is invertible, then for every x ∈ X \ {θ}, we have

r(T ;x) ≥ min
λ∈σ(T )

|λ| > 0. (2.15)

Proof. Conclusion (2.14) follows immediately from the obvious inequality

‖Tnx‖ ≤ ‖Tn‖‖x‖, x ∈ X, n ≥ 0,

and Gelfand’s spectral radius formula.
Suppose that dimX < ∞ and T ∈ B(X) is invertible. Then σ(T ) = σp(T ),

0 /∈ σ(T ), and the spectrum of T−1, the inverse of T , is given by

σ(T−1) = {λ−1 | λ ∈ σ(T ) }.

Hence

r(T−1) = max
λ∈σ(T )

|λ|−1 =
1

minλ∈σ(T ) |λ|
.

This, combined with Gelfand’s spectral radius formula, yields

lim
n→∞

n
√
‖T−n‖ =

1

minλ∈σ(T ) |λ|
,

where T−n = (T−1)n for n ≥ 0. Choose ε > 0. The previous limit relation
implies

‖T−n‖ <
(

1

minλ∈σ(T ) |λ|
+ ε

)n
for all large n. This, together with the inequality

‖x‖ = ‖T−nTnx‖ ≤ ‖T−n‖‖Tnx‖, x ∈ X, n ≥ 0,

implies

‖Tnx‖ ≥ 1

‖T−n‖
‖x‖ ≥

(
1

minλ∈σ(T ) |λ|
+ ε

)−n
‖x‖

for all x ∈ X and n sufficiently large. The last inequality implies that if x ∈
X \ {θ}, then

r(T ;x) ≥
(

1

minλ∈σ(T ) |λ|
+ ε

)−1

.

(The existence of the limit r(T ;x) (see (1.4)) follows from Theorem 1.2 since
every linear operator in a finite dimensional Banach space is compact.) Letting
ε→ 0 in the last inequality, we obtain (2.15). �
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Remark 1. The result of Lemma 2.2 is not really new. Conclusion (2.15) is in
fact a corollary of Theorem 1.2 of [7]. We have included the above proof only
for the readers’ convenience.

Now we give a proof of Lemma 2.1.

Proof of Lemma 2.1. Define

yn =
Tnx

‖Tnx‖
, n ≥ 0. (2.16)

By virtue of (1.6), the sequence {yn}∞n=0 is well-defined. Clearly, ‖yn‖ = 1 for
all n ≥ 0 and hence

‖Pσ0yn‖ ≤ ‖Pσ0‖‖yn‖ = ‖Pσ0‖, n ≥ 0.

This shows that {Pσ0yn}∞n=0 is a bounded sequence in the generalized eigenspace
Pσ0(X). Since T is compact and r(T ;x) > 0, the set σ0 ⊂ σ(T ) \ {0} is finite.
As noted before, this implies that dimPσ0

(X) < ∞. Therefore the bounded
sequence {Pσ0

yn}∞n=0 has a convergent subsequence. Consequently, there exist
x0 ∈ Pσ0

(X) and a sequence nk →∞ as k →∞ such that

lim
k→∞

Pσ0
ynk = x0. (2.17)

We claim that
lim
k→∞

ynk = x0. (2.18)

In view of (2.17) and the relation

ynk = Pσ−ynk + Pσ0
ynk + Pσ+

ynk , k ≥ 0,

in order to prove (2.18), it is enough to show that

lim
n→∞

Pσ−yn = θ (2.19)

and
lim
n→∞

Pσ+
yn = θ. (2.20)

By virtue of (2.3) and (2.16), we have for n ≥ 0,

Pσ−yn =
TnPσ−x

‖Tnx‖
=
Tnσ−

Pσ−x

‖Tnx‖
,

where Tσ− = T |Pσ− (X). This, together with (1.2) and (1.4), implies

lim sup
n→∞

n

√
‖Pσ−yn‖ = lim sup

n→∞

n

√
‖Tnσ−

Pσ−x‖
n
√
‖Tnx‖

=
r̄(Tσ− ;Pσ−x)

r(T ;x)
. (2.21)

From Conclusion (2.14) of Lemma 2.2 and conditions (2.4) and (2.7), we obtain

r̄(Tσ− ;Pσ−x) ≤ max
λ∈σ(Tσ− )

|λ| = max
λ∈σ−

|λ| < r(T ;x).
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The last inequality implies that the limsup in (2.21) is less than one. Therefore
Pσ−yn → θ exponentially as n→ 0 and hence (2.19) holds.

Now we prove (2.20). First we show that Pσ+
x = θ. Suppose by way of

contradiction that Pσ+
x 6= θ. We have for n ≥ 0,

Pσ+
yn =

TnPσ+x

‖Tnx‖
=
Tnσ+

Pσ+
x

‖Tnx‖
, (2.22)

where Tσ+ = T |Pσ+ (X). The compactness of T and the definition of σ+ imply

that σ(Tσ+
) = σ+ ⊂ σ(T ) \ {0} is a finite set. Consequently, the generalized

eigenspace Pσ+(X) is finite dimensional and Tσ+ : Pσ+(X) → Pσ+(X) is in-
vertible and compact. From (2.22), by the application of Theorem 1.2, we find
that

lim
n→∞

n

√
‖Pσ+

yn‖ = lim
n→∞

n

√
‖Tnσ+

Pσ+x‖
n
√
‖Tnx‖

=
r(Tσ+ ;Pσ+x)

r(T ;x)
. (2.23)

Since Pσ+
x 6= θ, Conclusion (2.15) of Lemma 2.2 and (2.9) imply that

r(Tσ+
;Pσ+

x) ≥ min
λ∈σ(Tσ+ )

|λ| = min
λ∈σ+

|λ| > r(T ;x).

Hence the limit in (2.23) is greater than one. This implies that ‖Pσ+
yn‖ → ∞

exponentially as n→∞ contradicting the fact that

‖Pσ+
yn‖ ≤ ‖Pσ+

‖‖yn‖ = ‖Pσ+
‖, n ≥ 0.

Thus, Pσ+
x = θ which implies that

Pσ+yn =
TnPσ+

x

‖Tnx‖
= θ, n ≥ 0.

Hence (2.20) holds. As noted before, this completes the proof of (2.18).
By virtue of (2.16) and (2.18), we have

‖x0‖ = lim
k→∞

‖ynk‖ = 1.

As shown before, x0 ∈ Pσ0(X). Further, T and hence each Tn, n ≥ 0, maps
Pσ0(X) into itself. Consequently, Tn(x0) ∈ Pσ0(X) for every n ≥ 0. Thus, in
order to prove (2.13), it remains to show that

Tnx0 ∈ K for every nonnegative integer n. (2.24)

Let n be a fixed nonnegative integer. By virtue of (2.16), (2.18), the continuity
of T and hence of Tn, we have

Tn(x0) = Tn
(

lim
k→∞

ynk
)

= lim
k→∞

Tnynk = lim
k→∞

Tn+nkx

‖Tnkx‖
.
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From assumption (1.5) and the cone property (ii), it follows that

Tn+nkx

‖Tnkx‖
∈ K for every k ≥ 0.

From this, taking into account that K is a closed set, we see that Tn(x0) as a
limit of the above sequence from K also belongs to K. Since n ≥ 0 was arbitrary,
this proves (2.24). �

Now we are in a position to give a proof of Theorem 1.3.

Proof of Theorem 1.3. Adopt the notation of Lemma 2.1. Define

C = {x ∈ K0 | ‖x‖ ≤ 1 and Tnx ∈ K0 for all n = 0, 1, . . . }

with K0 as in (2.12). By the application of Lemma 2.1, we conclude that there
exists x0 ∈ C such that ‖x0‖ = 1. It is easily verified that C is a convex closed
subset of Pσ0

(X). As noted in the proof of Lemma 2.1, the subspace Pσ0
(X)

is finite dimensional and if Tσ0
= T |Pσ0 (X), then Tσ0

: Pσ0
(X) → Pσ0

(X) is
invertible.

Define an operator F : C → Pσ0(X) by

F (x) =
(1− ‖x‖)x0 + ‖x‖Tσ0

x

‖(1− ‖x‖)x0 + ‖x‖Tσ0
x‖
, x ∈ C.

The cone property (iii), the fact that x0 6= θ and the invertibility of operator
Tσ0 : Pσ0(X) → Pσ0(X) imply that F is well-defined. Clearly, F is continuous
on C. Further, the definition of C and the cone properties (i) and (ii) imply
that F (C) ⊂ C. By Brouwer’s fixed point principle, there exists v ∈ C such
that F (v) = v. Since ‖v‖ = ‖F (v)‖ = 1, it follows that Tσ0

v = ρv, where
ρ = ‖Tσ0

(v)‖. Thus, ρ is a nonnegative eigenvalue of Tσ0
: Pσ0

(X) → Pσ0
(X).

Since the spectrum of Tσ0 coincides with σ0, we have ρ = |ρ| = r(T ;x). Thus,
r(T ;x) is an eigenvalue of T with eigenvector v ∈ K. �

Remark 2. Under the hypotheses of Theorem 1.3, the set K0 defined by (2.12)
is a cone in the finite-dimensional space Pσ0

(X). Consequently, Theorem 1.3 can
also be deduced from Conclusion (2.13) of Lemma 2.1 and Theorem 1.3 of [7].
Note that the above short proof is independent of Theorem 1.3 of [7]. It uses
only Brouwer’s fixed point theorem.
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