THE LOCAL SPECTRAL RADIUS OF A NONNEGATIVE
ORBIT OF COMPACT LINEAR OPERATORS

MIHALY PITUK

ABSTRACT. We consider orbits of compact linear operators in a real Banach
space which are nonnegative with respect to the partial ordering induced
by a given cone. The main result shows that under a mild additional
assumption the local spectral radius of a nonnegative orbit is an eigenvalue
of the operator with a positive eigenvector.

1. INTRODUCTION AND THE MAIN RESULT

Let (X, || - ||) be a real Banach space. The symbol B(X) denotes the space
of bounded linear operators in X equipped with the operator norm. By the
spectrum of T € B(X), denoted by ¢(T'), we mean the spectrum of the com-
plex extension Tt : X¢ — Xc, where X¢ is the complexification of X, the
set of formal pairs x + iy with x, y € X equipped with the norm ||z + iy| =
maxo<i<ar ||(sint)z + (cost)y|, and Te(z +iy) = Tz + iTy. A similar remark
holds for the eigenvalues of T' € B(X). The set of eigenvalues, the so-called point
spectrum of T' € B(X), is denoted by o,(T). The spectral radius of T € B(X)
is defined by 7(T) = maxyeq(r) |A|. Note that according to Gelfand’s formula

H(T) = lim /77
for every T' € B(X). An operator T' € B(X) is called compact if the closure
of T'(B) is compact, where B denotes the unit ball in X. The space of compact
operators in X will be denoted by K(X). It is known that if T € K(X), then
every nonzero element of the spectrum o (7)) is an eigenvalue of T'. Hence

r(T) = max || whenever T' € K(X) and r(T') > 0. (1.1)
AEop(T)

A set K C X is called a cone if conditions (i), (ii), and (iii) below hold.

(i) K is a nonempty, convex and closed subset of X,
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(ii) tK C K for all t > 0, where tK = {tz | x € K},

(iii) K N (—K) = {0}, where —K = {—z |z € K}.
Let K C X be a cone. Then K induces a partial ordering <y on X by z <y y if
and only if y—x € K. An element x € X is called K-nonnegative if 0 <y x. An
operator T' € B(X) is called K -nonnegative if <y x implies § <y Txz. Clearly,
xz € X is K-nonnegative if and only if z € K, and T € B(X) is K-nonnegative
if and only if T(K) C K. Recall that a cone K C X is total if cl(K — K) = X,
where cl(K — K) denotes the closure of the set K — K ={z—y|z,y e K }.

Krein and Rutman [5] proved the following result about the spectral radius
of positive compact operators (see also [4] and [8] for secondary sources).

Theorem 1.1. Suppose that (X, || - ||) is a real Banach space and K C X is
a total cone. Assume also that T € K(X) is a K-nonnegative operator with
r(T) > 0. Then there exists v € K \ {0} such that Tv = r(T)v so that r(T) €
op(T).

Note that in the finite dimensional case X = R™ and K = R} Theorem 1.1
implies the Perron-Frobenius theorem stating that the spectral radius of a non-
negative n X n matrix A is always an eigenvalue of A with a nonnegative eigen-
vector (see, e.g., [1]).

In this paper we will prove an analogue of Theorem 1.1 for the local spectral
radius corresponding to a nonnegative orbit of T € K(X). By an orbit of

T € B(X), we mean a sequence {T"x}52 , where € X is a given vector. The
local spectral radius of T € B(X) at © € X is denoted by 7(T;z) and is defined

by
7(T;x) = limsup /|| T™x|. (1.2)
n—oo

Note that 7#(T;z) describes the exponential growth of the orbit {T™xz}22 . Its
logarithm is the Lyapunov exponent. Define also

r(T;z) = lirginf YT . (1.3)

Evidently, r(T;z) < #(T;z). It is known that if 7" is merely bounded, then
the last inequality may be strict (see [6] for details and further related results).
However, if T is compact, then r(T;x) = 7#(T; x) for all x € X and the following
analogue of Conclusion (1.1) holds.

Theorem 1.2. Suppose that (X, || - ||) is a real Banach space and T € K(X).
Then for every x € X the limit

r(Tiz) = lm {/[T7a] (1.4)

exists. Furthermore, if r(T;x) > 0 for some x € X, then r(T;x) is the modulus
of one of the eigenvalues of T, that is,

r(T;x) = |A| for some A € o,,(T).
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Theorem 1.2 follows from Corollary B.3 from Appendix B of [2] and from the
Riesz-Schauder theory of compact linear operators.
Our main result is the following theorem.

Theorem 1.3. Suppose that (X, |- ||) is a real Banach space, K C X is a cone
and T € K(X). Assume also that for some x € X conditions

Tz e K foralln=0,1,2,... (1.5)
and
r(T;z) >0 (1.6)
hold. Then there exists v € K \ {0} such that Tv = r(T;x)v so that r(T;x) €
op(T).

Note that in contrast with Theorem 1.1, in Theorem 1.3 we do not require the
K-nonnegativity of operator 7. We assume merely that the orbit {T"x}5°, is
K-nonnegative (see (1.5)). For the finite dimensional analogue of Theorem 1.3
for Poincaré difference equations, see [7].

2. PROOF

Before we present the proof of Theorem 1.3, we recall some facts from the
spectral theory of bounded linear operators (see Chapter VII of [3]) and we
establish some lemmas.

Suppose that (X, || - ||) is a complex Banach space and T € B(X). Let o be
a closed isolated subset of the spectrum o(T). The spectral projection (Riesz
idempotent) of T corresponding to o is denoted by P, and is defined by

1

_ _ -1
=5 F(z T) " dz, (2.1)

el

where I' is any positively oriented Jordan system such that
o CinsT and o(T)\ o CoutT,

where insI" and out I" denote the inside of I" and the outside of I, respectively (see
Chapter VII, Section 6.9 of [3]). The bounded linear operator P, has properties

P:=P,, (2.2)

and

P,T=TP,. (2.3)
The set P,(X) is called the generalized eigenspace of T corresponding to o.
It follows from (2.3) that T" maps P,(X) into itself and if T, = T'|p, (x), the
restriction of T onto P,(X), then the spectrum of T, : P,(X) — P,(X) is o,
that is,

o(T,) =o. (2.4)
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Assume in addition that T € K(X), i.e. T is compact. Then every A € o(T)\{0}
is an eigenvalue of T" and for every e > 0 the set {\ € o(T) | |A| > €} C 0,(T) is
finite. It is known that each A € o(T) \ {0} is a pole of the resolvent (z — 7)~!
and the generalized eigenspace Ppyy(X) is finite dimensional (see Corollary 7.8
of [3]). Now suppose that o C o(T")\{0} is a finite set. By the Residue Theorem,

we have
Py =Y Puy
A€o
and therefore the generalized eigenspace P,(X) is also finite dimensional. Fur-
thermore, since 0 ¢ o, in this case operator T, : P,(X) — P,(X) is invertible.
As noted on p. 799 of [8], if T € B(X) and

o(T)=01UoaU---Uoy, (2.5)
where 01, 09, ...,0k, are pairwise disjoint closed isolated subsets of o(7"), then
X can be decomposed into the direct sum

X=FP,(X)oP,(X)® - &P, (X). (2.6)

If (X,||-|) is a real Banach space and T' € B(X), then the spectral projec-
tion P, can be defined as in (2.1) for the complex extension T¢. If we consider
only sets o C o(T') which are symmetric with respect to the real axis, then the
restriction of P, onto X is a projection operator on X and the set P,(X) is
called the generalized real eigenspace of T corresponding to o. Finally, if each
0j, 1 < j <k, in (2.5) is symmetric with respect to the real axis, then the
splitting result (2.6) remains valid for real Banach spaces.

Now we establish a lemma will play an important role in the proof of Theo-
rem 1.3.

Lemma 2.1. Let (X,]-||) be a real Banach space and T € K(X). Suppose that
for some x € X conditions (1.5) and (1.6) hold. Define

o_={Neo(T) ||\ <r(T;z)}, (2.7)
oo ={A€a(T)||A=r(T;2)},

and

or ={Aea(T)||Al>r(T;x)} (2.9)
so that

o(T)=0_UogUoy (2.10)

and
X =P, (X)®Ps)(X)® P, (X). (2.11)

Let
Ko=KnNPFP,,(X). (2.12)

Then there exists xg € Ko with ||xg|| = 1 such that
T'zo € Ko foralln=0,1,2,.... (2.13)
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The proof of Lemma 2.1 will be based on the following simple result.

Lemma 2.2. Let (X, -||) be a Banach space and T € B(X). Then for every
r € X, we have

F(T;x) < Al 2.14

m(Te) < max | (2.14)

If dim X < oo and T € B(X) is invertible, then for every x € X \ {0}, we have
Tiz) > in |[A] > 0. 2.15

(i) 2 min | (2.15)

Proof. Conclusion (2.14) follows immediately from the obvious inequality
[T"z|| < 1Tz,  z€X, n2>0,
and Gelfand’s spectral radius formula.
Suppose that dim X < oo and T' € B(X) is invertible. Then o(T) = 0,(T),
0 ¢ o(T), and the spectrum of T~!, the inverse of T, is given by
o T H={x"|rxeaD)}
Hence

1
r(T™Y) = max [\ '= ———.
xeo(T) minyeq () |A|

This, combined with Gelfand’s spectral radius formula, yields
1
lim {/|T-"|| = ———,
g, VAT minyeq(r) Al

where T-" = (T~1)" for n > 0. Choose € > 0. The previous limit relation

implies
1 n
T~ < ( +e)
minye, () |A|

for all large n. This, together with the inequality
el = 1T T x| < [T7"[IT"z], 2z€X, n=0,

implies
1 1
770l > el = ( +e)
(| minye, (1) |Al

for all z € X and n sufficiently large. The last inequality implies that if z €
X\ {6}, then

—1
1
’I“(T; .T) Z —— +¢€ .
mm)\eg(T) |>\|

(The existence of the limit 7(T;x) (see (1.4)) follows from Theorem 1.2 since
every linear operator in a finite dimensional Banach space is compact.) Letting
€ — 0 in the last inequality, we obtain (2.15). O
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Remark 1. The result of Lemma 2.2 is not really new. Conclusion (2.15) is in
fact a corollary of Theorem 1.2 of [7]. We have included the above proof only
for the readers’ convenience.

Now we give a proof of Lemma 2.1.

Proof of Lemma 2.1. Define
Ty
Yn = s n = 0. (2.16)
[T
By virtue of (1.6), the sequence {y,}5 is well-defined. Clearly, |ly,|| = 1 for
all n > 0 and hence

[Pootmll < [1Poollllynll = 1 Popll, 7 >0.

This shows that {P,,yn }52, is a bounded sequence in the generalized eigenspace
P,,(X). Since T is compact and r(T;x) > 0, the set o9 C o(T) \ {0} is finite.
As noted before, this implies that dim P, (X) < oco. Therefore the bounded
sequence {P,,yn}52, has a convergent subsequence. Consequently, there exist
xo € P,y (X) and a sequence nj — 0o as k — oo such that

lim P, yn, = Zo- (2.17)
k—o0
We claim that
lim y,, = zo. (2.18)
k—o0

In view of (2.17) and the relation
Ynp = Lo_Yn,, + Paoynk + Pa+ynk7 k>0,

in order to prove (2.18), it is enough to show that

lim P, y, =10 (2.19)
n— o0
and
n11_)rr01O P, oy, =0. (2.20)

By virtue of (2.3) and (2.16), we have for n > 0,
TnP07$ T;ZPJ,-T
[Trall [T
where T;_ = T'|p, (x). This, together with (1.2) and (1.4), implies

imsup {/||Ps_yn| = limsu ) )

From Conclusion (2.14) of Lemma 2.2 and conditions (2.4) and (2.7), we obtain

7(Ty_; Py_x) < m(z%x Al = max |)\| <r(T;x).
xe

Pafyn =
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The last inequality implies that the limsup in (2.21) is less than one. Therefore
P,_y, — 0 exponentially as n — 0 and hence (2.19) holds.
Now we prove (2.20). First we show that P, x = 6. Suppose by way of
contradiction that P, x # 6. We have for n > 0,
TnPUer T;L+PU+ZE

P, y, = - , 2.22
Y = g = [ (2.22)

where T, = T| P, (X): The compactness of T' and the definition of o imply

that 0(T5,) = o4 C o(T) \ {0} is a finite set. Consequently, the generalized
eigenspace P, (X) is finite dimensional and T,, : P, (X) — P, (X) is in-

o+
vertible and compact. From (2.22), by the application of Theorem 1.2, we find
that

i /By gl = lim 172 ool (T, s Poya)
im  Unll = lim =

(2.23)

Since P,, x # 6, Conclusion (2.15) of Lemma 2.2 and (2.9) imply that

T(T0+§Pa+x) > Aeg%i%}ur) Al = grelgj_ Al >r(T;2).

Hence the limit in (2.23) is greater than one. This implies that || Py, yn| — oo
exponentially as n — oo contradicting the fact that

1Po ynll < |1 Poy [llynll = [1Poyll,  n=>0.
Thus, Py, 2z =  which implies that
P TP, x P >0
o rYn = T — Yy n = u.
0 = T

Hence (2.20) holds. As noted before, this completes the proof of (2.18).
By virtue of (2.16) and (2.18), we have

lzoll = lim [y, [| = 1.
— 00

As shown before, zy € P,,(X). Further, 7" and hence each T™, n > 0, maps

P,,(X) into itself. Consequently, T"(x¢) € P,,(X) for every n > 0. Thus, in
order to prove (2.13), it remains to show that

T'zg € K for every nonnegative integer n. (2.24)

Let n be a fixed nonnegative integer. By virtue of (2.16), (2.18), the continuity
of T and hence of T", we have
T ney
n _ mn : _ : mn _ :
T"(w0) = T (Jim yne) = Jlizo, T, = it e
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From assumption (1.5) and the cone property (ii), it follows that
T ey
[Tal ©

From this, taking into account that K is a closed set, we see that T"(zg) as a

limit of the above sequence from K also belongs to K. Since n > 0 was arbitrary,
this proves (2.24). O

K for every k > 0.

Now we are in a position to give a proof of Theorem 1.3.

Proof of Theorem 1.3. Adopt the notation of Lemma 2.1. Define
C={zeKy||z]| <land T"x € Ky for alln=0,1,... }

with K as in (2.12). By the application of Lemma 2.1, we conclude that there
exists g € C such that ||zo|| = 1. It is easily verified that C' is a convex closed
subset of P,,(X). As noted in the proof of Lemma 2.1, the subspace Py, (X)
is finite dimensional and if 1o, = Tp, (x), then To, @ Poy(X) — Ppy(X) is
invertible.
Define an operator F': C' — P, (X) by
Flay = A= lelro+ el T
1L = llzlDzo + [[«]| Top x|

The cone property (iii), the fact that xg # 6 and the invertibility of operator
Ty : Pyo(X) = Py (X) imply that F is well-defined. Clearly, F is continuous
on C. Further, the definition of C' and the cone properties (i) and (ii) imply
that F(C) C C. By Brouwer’s fixed point principle, there exists v € C' such
that F(v) = v. Since |jv|| = [|[F(v)|| = 1, it follows that T,,v = pv, where
p = ||Ts,(v)]|. Thus, p is a nonnegative eigenvalue of T, : P, (X) — P, (X).
Since the spectrum of Ty, coincides with oo, we have p = |p| = r(T;x). Thus,
r(T;x) is an eigenvalue of T with eigenvector v € K. O

Remark 2. Under the hypotheses of Theorem 1.3, the set K defined by (2.12)
is a cone in the finite-dimensional space P,,(X). Consequently, Theorem 1.3 can
also be deduced from Conclusion (2.13) of Lemma 2.1 and Theorem 1.3 of [7].
Note that the above short proof is independent of Theorem 1.3 of [7]. It uses
only Brouwer’s fixed point theorem.
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