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ON THE DIMENSION OF POLYNOMIAL SEMIRINGS

DÁNIEL JOÓ AND KALINA MINCHEVA

Abstract. In our previous work, motivated by the study of tropical polyno-
mials, a definition for prime congruences was given for an arbitrary commu-
tative semiring. It was shown that for additively idempotent semirings this
class exhibits some analogous properties to prime ideals in ring theory. The
current paper focuses on the resulting notion of Krull dimension, which is
defined as the length of the longest chain of prime congruences. Our main re-
sult states that for any additively idempotent semiring A, the semiring of
polynomials A[x] and the semiring of Laurent polynomials A(x), we have
dimA[x] = dimA(x) = dimA+ 1.

1. Introduction

The current work studies the Krull dimension of additively idempotent semirings
defined in terms of congruences. One motivation to study additively idempotent
semirings is provided by tropical geometry. There, from an algebraic point of view,
one is interested in the properties of polynomial rings over the tropical max-plus
semifield T = Rmax. Two other additively idempotent semifields are central to
the development of characteristic 1 geometry [CC13]. These are the semifield of
integers Zmax ⊂ T and the two element additively idempotent semifield B.

In ring theory congruences, or equivalently homomorphisms, are determined by
the ideal that is their kernel (i.e. the equivalence class of the 0 element). From this
perspective semirings behave quite differently: in general the kernel of a congruence
contains very little information about which elements are identified. In fact one can
easily find examples of commutative semirings with a complicated lattice of congru-
ences all of which have trivial kernels. With this consideration in mind, in [JM14]
the notion of primeness is extended to the congruences of a general commutative
semiring, and the class of prime congruences is described in the polynomial (and
Laurent polynomial) semirings over the semifields B, T and Zmax. The key appli-
cation of this theory in [JM14] is to prove a tropical Nullstellensatz. However, it is
also observed that the prime congruences yield a notion of Krull dimension which
behaves intuitively in the sense that an n variable polynomial ring over T,Zmax or
B always has dimension n larger than that of its ground semifield. The aim of the
current paper is to generalize this result for the polynomial and Laurent polynomial
semirings over arbitrary additively idempotent commutative semirings, which we
will refer to as B-algebras.
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A different approach to establish a tropical notion of dimension using chains of
congruences was taken by L. Rowen and T. Perri in [PR15], which we will briefly
recall in Remark 2.10. A common theme in [PR15] and the present work is that
to obtain a good notion of dimension one has to bypass the difficulties that come
from polynomial semirings having too many congruences. In fact, as we will see
in Proposition 2.12, any additively idempotent polynomial semiring in at least 2
variables has infinite chains of congruences with cancellative quotients.

The main result of the current work is Theorem 3.16, which concerns the poly-
nomial semiring A[x] and the Laurent polynomial semiring A(x) over an arbitrary
additively idempotent commutative semiring A.

Theorem 1.1. Let A be a B-algebra with dimA <∞. Then we have that dimA(x) =
dimA[x] = dimA+ 1.

When comparing to the classical ring theoretic setting, it is somewhat surprising
that Theorem 3.16 holds without any restriction on A. In commutative ring theory,
for any Noetherian ring R dimR[x] = dimR+1 (see for example [Ei95]). However,
when the Noetherian restriction is dropped dimR[x] can be any integer between
dimR+ 1 and 2 dimR+ 1 (see [Se54]).

The proof of Theorem 3.16 relies on two key facts. The first one is Proposition
3.15. There we establish that the dimension of a domain (a B-algebra whose trivial
congruence is prime) always equals the dimension of its semifield of fractions. This
counter-intuitive fact can be explained by realizing that semifields are not the simple
objects amongst semirings, but come with the distinguished property that the kernel
of every congruence is trivial. One can then go on to show that the dimension of
domains can be always computed by considering primes with trivial kernel.

The second key observation is (i) of Proposition 3.6:

Proposition 1.2. If p1 ⊂ p2 ⊂ . . . is a chain of primes in A(x) or A[x] such
that the kernel of every pi is the same, then after restricting the chain to A, in
p1|A ⊆ p2|A . . . equality occurs at most once.

It is noteworthy that this statement alone implies Theorem 3.16 for the special
case of Laurent semirings over semifields.

Section 2 contains the preliminaries, including some of the results of [JM14].
Section 3 contains our main result and its proof.
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2. Preliminaries

In this section we recall some definitions and results from [JM14], which we refer
to in the following chapters.

In this paper by a semiring we mean a commutative semiring with multiplicative
unit, that is a nonempty set R with two binary operations (+, ·) such that R is a
commutative monoid with respect to both operations, multiplication distributes
over addition and multiplication by 0 annihilates R. A semifield is a semiring in
which all nonzero elements have multiplicative inverse.
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We recall the definition of the three semifields that play a central role in [JM14].
We denote by B the semifield with two elements {1, 0}, where 1 is the multiplicative
identity, 0 is the additive identity and 1+1 = 1. The tropical semifield T is defined
on the set {−∞}∪R, by setting the + operation to be the usual maximum and the
· operation to be the usual addition, with −∞ playing the role of the 0 element.
Finally the semifield Zmax is the subsemifield of integers in T.

A polynomial (resp. Laurent polynomial) semirings in n variablesxxx = (x1, . . . , xn)
over a semiring R are defined in the usual way and denoted by R[xxx] (resp. R(xxx)).

Definition 2.1. A congruence C of the semiring R is an equivalence relation on R
compatible with the semiring structure.

The unique smallest congruence is the diagonal of R×R which is denoted by ∆,
also called the trivial congruence. R× R itself is the improper congruence the rest
of the congruences are called proper. Quotients by congruences can be considered
in the usual sense, the quotient semiring of R by the congruence C is denoted by
R/C.

The kernel of a congruence is just the equivalence class of the 0 element. We say
that the kernel of a congruence is trivial if it equals {0}.

By the kernel of a morphism ϕ we mean the preimage of the trivial congruence
ϕ−1(∆), it will be denoted by Ker(ϕ). If R1 is a subsemiring of R2 then the
restriction of a congruence C of R2 to R1 is C|R1

= C ∩ (R1 ×R1).

A congruence is called irreducible if it can not be obtained as the intersection of
two strictly larger congruences.

A semiring is called cancellative if whenever ab = ac for some a, b, c ∈ R then
either a = 0 or b = c. A congruence C for which R/C is cancellative will be called
quotient cancellative or QC.

Elements of R × R will be called pairs, and the smallest congruence containing
the pair α ∈ R×R will be denoted by 〈α〉R or 〈α〉 when there is no ambiguity. The
twisted product of the pairs α = (α1, α2) and β = (β1, β2) is (α1β1 + α2β2, α1β2 +
α2β1). Whenever for some pairs α and β we write αβ we always mean this twisted
product, and similarly, αn always denotes the twisted n-th power of the pair α.

We call B-algebra a commutative semiring with idempotent addition. Through-
out this section A denotes an arbitrary B-algebra. The idempotent addition defines
an ordering: a ≥ b ⇐⇒ a + b = a. We call a B-algebra totally ordered if the
idempotent addition defines a total ordering on its elements, i.e. for every a, b ∈ A
one has a+ b = a or a+ b = b.

Proposition 2.2. (Proposition 2.2, [JM14]) Let C be a congruence of a B-algebra
A,

(i) For α ∈ C and an arbitrary pair β we have αβ ∈ C.
(ii) If (a, b) ∈ C and a ≤ c ≤ b then (a, c) ∈ C and (b, c) ∈ C. In particular if

(a, 0) ∈ I then for every a ≥ c we have (c, 0) ∈ C.

Proposition 2.2 has the following important consequence:

Proposition 2.3. If F is an additively idempotent semifield then every proper con-
gruence in the semiring of Laurent polynomials F (x1, . . . , xn) has a trivial kernel.

Proof. If f ∈ F (x1, . . . , xn) is in the kernel of a proper congruence I then by (ii) of
Proposition 2.2 we also have that every monomial that appears in f is in the kernel
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of I. On the other hand every monomial in a Laurent semiring over a semifield
has multiplicative inverse. Hence if a monomial is in the kernel of a congruence
I then so is the multiplicative identity of F (x1, . . . , xn), which implies that I is
improper. �

Definition 2.4. We call a congruence P of a semiring R prime if it is proper and
for every α, β ∈ R×R such that αβ ∈ P either α ∈ P or β ∈ P . We call a semiring
a domain if its trivial congruence is prime.

Remark 2.5. The heuristics for choosing this definition is that for a commutative
ring R a congruence C ⊂ R×R is prime in the above sense if and only if its kernel
is a prime ideal in the usual sense. It is also easy to deduce from the definition
that every prime congruence is QC (or equivalently every domain is cancellative)
and irreducible. The converse is also true - but not obvious: in Theorem 2.12 of
[JM14] it was shown that a congruence of a B-algebra is prime if and only if it
is QC and irreducible. The key difference from ring theory (where the class of
QC and prime congruences coincide) is that a QC congruence does not need to be
irreducible and - as we will see at the end of this section - there are typically much
more QC congruences than primes.

We recall the following characterization of B-algebras that are domains:

Proposition 2.6. (Proposition 2.9, [JM14]) A B-algebra A is a domain if and only
if it is cancellative and totally ordered.

We define dimension similarly to the Krull-dimension in ring theory:

Definition 2.7. The dimension of a B-algebra A is the length of the longest chain
of prime congruences in A × A (where by length we mean the number of strict
inclusions). The dimension of A will be denoted by dimA.

While in ring theory every field has Krull-dimension 0, it is not the case for
semifields, for example the reader can easily check that dimZmax = dimT = 1.

Proposition 2.8. (Proposition 2.5, [JM14])

(i) Every B-algebra maps surjectively onto B.
(ii) The only B-algebra that is a domain and has dimension 0 is B.

We point out that in Proposition 2.5 of [JM14] only the part (i) of the statement
was made explicit but (ii) follows immediately. In Theorems 4.9, 4.10 and 4.14 of
[JM14] a description of the primes of the polynomial and Laurent polynomial rings
over B, Zmax and T which was then used to calculate the dimensions in each of this
cases.

Proposition 2.9.

(i) dimB[x1, . . . , xn] = dimB(x1, . . . , xn) = n.
(ii) dimZmax[x1, . . . , xn] = dimZmax(x1, . . . , xn) = n+ 1.
(iii) dimT[x1, . . . , xn] = dimT(x1, . . . , xn) = n+ 1.

Remark 2.10. In [PR15] the authors consider a sublattice of all congruences of
a rational function semifield, generated by the so-called hyperplane kernels. They
define the dimension as the maximum of the length of chains of irreducibles in
this particular sublattice. It is then verified, amongst several other results, that
the dimension of a rational function field over an archimedean semifield equals the
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number of variables. This result is somewhat analogous to the main theorem of the
current paper, however neither of the two results imply special cases of the other,
since our notion of dimension differs from that of [PR15]. We also note that the
results of [PR15] are set in the more general context of ”supertropical algebra”,
but this setting contains the usual semirings as a degenerate special case. To avoid
possible confusion we point out that our terminology differs from that of [PR15],
where the authors call every cancellative semiring a domain. Also in [PR15] kernels
refer to the equivalence class of 1 in a congruence (of a semifield) and not to the
equivalence class of 0 as in the current paper.

We mentioned in Remark 2.5 that QC congruences do not need to be irreducible.
Indeed one can find several examples of such congruences by considering the fol-
lowing proposition:

Proposition 2.11. Let Pi denote the elements of a (possibly infinite) set of prime
congruences with trivial kernels in an B-algebra A. Then

⋂
Pi is a QC congruence.

Proof. Assume (xa, xb) ∈
⋂
Pi for some x, a, b ∈ A and x 6= 0. Then (xa, xb) =

(x, 0)(a, b) ∈ Pi for every i. By the assumptions (x, 0) /∈ Pi for any i, hence the
prime property implies that (a, b) ∈

⋂
Pi. �

Finally we show that the two variable polynomial (or Laurent polynomial) semir-
ing over any B-algebra contains an infinite ascending chain of QC congruences,
hence the class of QC congruences - without further restrictions - does not yield an
interesting notion of Krull-dimension.

Proposition 2.12. For a B-algebra A the semirings A[x, y] and A(x, y) contain
infinite ascending chains of QC congruences.

Proof. By Proposition 2.8, B is a quotient of A, hence it is enough to prove the
statement for the case A = B. We recall from Section 4 of [JM14] that to a non-zero
real vector v ∈ R2 one can assign a (minimal) prime Pv in B[x, y] or B(x, y) which
is generated by the set of pairs

{(xn1yn2 + xm1ym2 , xn1yn2) | v1n1 + v2n2 ≥ v1m1 + v2m2}.

In other words one takes a (possibly not complete) monomial order by scalar multi-
plying exponent vectors with a fixed v, and the congruence Pv identifies each poly-
nomial with its leading term. Set Cn =

⋂
k≥n P(k,1). We claim that C1 ⊂ C2 ⊂ . . .

is an infinite ascending chain of congruences with cancellative quotients. Indeed
they are QC by Proposition 2.11 and are contained in each other by definition.
Moreover the containments are strict since (x+ yj , x) ∈ Pk if and only if k ≥ j. �

Throughout this paper every semiring will be additively idempotent. We will
denote by A(xxx) = A(x1, . . . , xn) and A[xxx] = A[x1, . . . , xn], and we will use the
shorter notation when this does not lead to ambiguity. By a prime we will always
mean a prime congruence. A maximal chain of primes will be a (non-refinable)
chain of maximal length.

3. Dimension of the polynomial and Laurent polynomial semirings

We begin by showing that the dimension of the polynomial or Laurent polynomial
semirings over a finite dimensional B-algebra is strictly bigger than the dimension
of the underlying B-algebra.
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Proposition 3.1. Let A be a B-algebra of finite Krull dimension, then dimA(x) ≥
dimA+ 1 and dimA[x] ≥ dimA+ 1.

Proof. First assume A is a domain. By Proposition 2.6 it is totally ordered with
respect to the order coming from addition. Consider the following total ordering
on the set of monomials of A(x). Let a1y

n1 and a2y
n2 be two monomials, then

a1y
n1 > a2y

n2 if n1 > n2 or if n1 = n2 and a1 > a2. Since A is a domain we can
always compare the coefficients. This ordering is compatible with the multiplication
on A(x).

Consider the congruence generated by (b + c, c), when c ≥ b, where b, c are
monomials of A(x). Denote by D the quotient of A(x) by this congruence and let

φ : A(x) → D,

be the quotient map. Note that D is a domain by Proposition 2.6 because it is
totally ordered by construction and is cancellative. The kernel of φ is a prime
congruence, hence dimA(x) ≥ dimD. Now consider an evaluation morphism

ψ : D → A, y 7→ 1.

Note that D/ kerψ = A, hence kerψ is a non-trivial prime congruence of D and
thus dimD > dimA. Hence dimA(x) ≥ dimA+ 1.

If A is not a domain, then consider a prime p which is part of a maximal chain for
A. Note that A/p is a domain since p is prime and dimA/p = dimA. Since (A/p)(x)
is a quotient of A(x) we have dimA(x) ≥ dim(A/p)(x), thus dimA(x) ≥ dimA+1
follows from the first part of the proof. The proof for the case of the polynomial
semiring A[x] is essentially the same.

�

One can immediately obtain the following:

Proposition 3.2. If A is a B-algebra and dimA[x] = 2 (or dimA(x) = 2) then
dimA = 1.

Proof. By Proposition 3.1 dimA(x) > dimA (resp. dimA[x] > dimA). Thus
dimA = 0 or 1. If dimA = 0 then by Proposition 2.8 A/P = B for any prime
P of A. Hence any strictly increasing chain of primes in A(x) maps to a strictly
increasing chain of primes in B(x), and by Proposition 2.9 we have dimA(x) =
dimB(x) = 1. �

Next, we show that chains of prime congruences of A(x) in which all primes have
the same kernel can stabilize at most once when restricted to A. We will need the
following two simple lemmas:

Lemma 3.3. Let A be a cancellative B-algebra and a, b, c, d ∈ A such that a > b
and c > d, then ac > bd.

Proof. Clearly ac ≥ ad ≥ bd. If ac = bd, then we have ac = ad, and then by
cancellativity c = d or a = 0 both contradicting our assumptions. �

Lemma 3.4. Let A be a B-algebra and P be a prime congruence in A × A. If
(xn, yn) ∈ P for n > 0 then (x, y) ∈ P .

Proof. Consider A/P , which is a domain since P is prime. Then we have that
xn = yn in A/P . We want to show that x = y. Assume for contradiction that
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x 6= y. Recall that domains are totally ordered so without loss of generality assume
that x > y. Then after applying Lemma 3.3 n times we arrive at a contradiction. �

We are ready to prove:

Lemma 3.5. Let A be a B-algebra and P1 ( P2 ⊆ P3 ( P4 prime congruences of
A(x) (resp. A[x]), satisfying ker(P1) = ker(P2) = ker(P3) = ker(P4). Then at least
one of P1|A ( P2|A or P3|A ( P4|A holds.

Proof. Assume for a contradiction that P1|A = P2|A and P3|A = P4|A. Since
P1 ( P2 and P3 ( P4 there exist two pairs,

(f1, g1) ∈ P2 \ P1, for some f1, g1 ∈ A(x) (resp. A[x])
(f2, g2) ∈ P4 \ P3, for some f2, g2 ∈ A(x) (resp. A[x])

The quotient by a prime is totally ordered by Proposition 2.6, which by the def-
inition of the ordering means that every sum is identified with at least one of its
summands. Hence we may assume that f1, f2, g1 and g2 are monomials and write
the following instead:

(ayk1 , byk2) ∈ P2 \ P1, for some a1, b1 ∈ A
(cym1 , dym2) ∈ P4 \ P3, for some a2, b2 ∈ A,

By the assumption that the kernels of P1,2,3,4 are the same, none of the elements of
the above pairs may be in ker(P1) = · · · = ker(P4), implying that a, b, c, d /∈ ker(P1).
It also follows that if y ∈ ker(P1) then k1 = k2 = m1 = m2 = 0 and the statement
follows from (a, b) ∈ P2 \P1 and (c, d) ∈ P4 \P3. For the remainder of the proof we
assume that y /∈ ker(P1). Without loss of generality we can assume that k1 ≥ k2
and m1 ≥ m2, and set k = k1 − k2 and m = m1 − m2. Since the quotient by
a prime is cancellative and y is not in the kernel of any of P1,2,3,4 it follows that
(ayk, b) ∈ P2 \P1 and (cym, d) ∈ P4 \P3. Also by the assumption P1|A = P2|A and
P3|A = P4|A, we have that k,m > 0.

Thus we have,

(amykm, bm) ∈ P2 ⊂ P4

(ckykm, dk) ∈ P4

Multiplying the first equation with ck the second with am we obtain:

(bmck, dkam) ∈ P4

as P3|A = P4|A we also have

(bmck, dkam) ∈ P3

Multiplying by ykm

(bmckykm, dkamykm) ∈ P3

But we also know that

(amykm, bm) ∈ P2 ⊆ P3

So from the above two we obtain that

(1) (bmckykm, dkbm) ∈ P3

Now since b /∈ ker(P3) we also have that bm ∈ ker(P3), since P3 is prime implying
that its quotient is cancellative. Thus we obtain:

(ckykm, dk) ∈ P3
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But then, since k > 0, by Lemma 3.4 we have

(cym, d) ∈ P3

a contradiction.
�

Proposition 3.6. (i) If p1 ⊂ p2 ⊂ . . . is a chain of primes in A(x) or A[x]
such that the kernel of every pi is the same, then after restricting the chain
to A, in p1|A ⊆ p2|A . . . equality occurs at most once.

(ii) For an additively idempotent semifield F we have dimF (x1, . . . , xn) =
dimF + n.

Proof. For (i), assume for contradiction that equality occurs at least twice, say
pi|A = pi+1|A and pj |A = pj+1|A with i + 1 ≤ j. Then by setting P1 = pi,
P2 = pi+1, P3 = pj and P4 = pj+1 we arrive at contradiction with Lemma 3.5. (ii)
follows by induction from (i) and Proposition 2.3 which asserts that in F (x1, . . . , xn)
the kernel of every congruence is trivial. �

We recall that a cancellative semiring R embeds into its semifield of fractions
Frac(R). The elements of Frac(R) are the equivalence classes in R × (R \ {0}) of
the relation (r1, s1) ∼ (r2, s2) ⇔ r1s2 = r2s1, with operations (r1, s1) + (r2, s2) =
(r1s2 + r2s1, s1s2), (r1, s1)(r2, s2) = (r1r2, s1s2). As usual for (r, s) ∈ Frac(R) we
will write r

s
. We refer to [Go99] for the details of this construction.

We would like to point out that part (i) of Proposition 3.8 is essentially the same
as Lemma 2.4.4 of [PR15] and both of parts (i) and (ii) are likely well-known. We
provide a short proof for the convenience of the reader. Also, note that Proposition
3.8 is not specific to the additively idempotent case.

Lemma 3.7. Let F be a semifield. Let C ⊆ F ×F be symmetric and reflexive and
closed under addition and multiplication, that is for (a1, b1), (a2, b2) ∈ C we have
that (a1 + a2, b1 + b2) ∈ C and (a1a2, b1b2) ∈ C. Then C is a congruence.

Proof. We only need to show that C is transitive. Assume that (a, b), (b, c) ∈ C. If
b = 0, then (a+0, 0+c) = (a, c) ∈ C. If b 6= 0 then (b−1, b−1) ∈ C and (ab, bc) ∈ C,
and after multiplying it follows that (a, c) ∈ C. �

Proposition 3.8. Let R be a cancellative semiring. For a congruence C of R
denote by 〈C〉Frac(R) the congruence generated by C in Frac(R).

(i) (a, b) ∈ 〈C〉Frac(R) if and only if there is an s ∈ R\{0} such that (sa, sb) ∈

C. In particular 〈C〉Frac(R) is proper if and only if ker(C) = {0}.

(ii) If C is a QC congruence of R with ker(C) = {0} then 〈C〉Frac(R)|R = C

and for any congruence C of Frac(R) we have 〈C|R〉Frac(R) = C.

(iii) If C is a QC congruence of R with ker(C) = {0}, then C is prime if and
only if 〈C〉Frac(R) is prime. If C is a congruence of Frac(R) then C is prime

if and only if C|R is prime.

Proof. For (i) set

C′ = {(a, b) ∈ Frac(R)× Frac(R)| ∃s ∈ R \ {0} : (sa, sb) ∈ C}.

Since every s ∈ R \ {0} has a multiplicative inverse in Frac(R) it is clear that
C ⊆ C′ ⊆ 〈C〉Frac(R). Hence one only needs to see that C′ is a congruence.
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If s1, s2 ∈ R \ {0} is such that (s1a1, s1b1) ∈ C and (s2a2, s2b2) ∈ C for some
(a1, b1), (a2, b2) ∈ Frac(R)× Frac(R) then we have

(s1s2(a1 + a2), s1s2(b1 + b2)) ∈ C

and
(s1s2(a1a2), s1s2(b1b2)) ∈ C

showing that C′ is closed under addition and multiplication (note that s1s2 6= 0
since R is cancellative). Since C′ is clearly symmetric and reflexive it follows from
Lemma 3.7 that C′ is indeed a congruence. It follows that 〈C〉Frac(R) is proper

if and only if there exists no s ∈ R \ {0} such that (s, 0) ∈ C or equivalently if
ker(C) = {0}.

For (ii) first note that it is immediate from the definition of C′ that if C is
a QC congruence of R with ker(C) = {0} then C′ ∩ R × R = C, implying that
〈C〉Frac(R)|R = C. On the other hand if C is a congruence of Frac(R) then it is clear

that 〈C|R〉Frac(R) ⊆ C. For the other direction if ( r1
s1
, r2
s2
) ∈ C then (r1s2, r2s1) ∈ C|R

implying that ( r1
s1
, r2
s2
) ∈ 〈C|R〉Frac(R).

For the first statement of (iii) recall that the restriction of a prime to a sub-
semiring is always a prime, hence if 〈C〉Frac(R) is a prime congruence, where C

is a congruence of R with ker(C) = {0}, then C = 〈C〉Frac(R)|R is also a prime.

For the other direction assume that C is a prime of R with ker(C) = {0} and we

have a twisted product ( r1
s1
, r2
s2
)(

r′
1

s′
1

,
r′
2

s′
2

) ∈ 〈C〉Frac(R). Then by (i) it follows that

(r1s2, r2s1)(r
′
1s

′
2, r

′
2s

′
1) ∈ C. Since C is a prime congruence we obtain that one

of the factors in the twisted product, say (r1s2, r2s1), has to be in C and thus
( r1
s1
, r2
s2
) ∈ 〈C〉Frac(R) showing that 〈C〉Frac(R) is prime. The second statement in

(iii) follows from the first statement and (ii). �

We also recall the following well-known statement:

Proposition 3.9. In a semifield every proper congruence is determined by the
equivalence class of 1.

Proof. Indeed if C is a proper congruence of a semifield then ker(C) = {0} and
(a, b) ∈ C if and only if a = b = 0 or (a/b, 1) ∈ C. �

Next we collect some elementary observations about additively idempotent semi-
fields that are domains which we will need to prove our main result. We point out
that an additively idempotent semifield needs not to be a domain in general. If A
is a cancellative B-algebra that is not totally ordered (see [JM14] for several such
examples) then by Proposition 2.6 Frac(A) is an additively idempotent semifield
that is not a domain. In the proof of Proposition 3.11 we will often use the following
trivial but important fact:

Lemma 3.10. Let A be a B-algebra. If x, y ∈ A both have multiplicative inverses
then x ≥ y if and only if 1/y ≥ 1/x.

Proof. x ≥ y means x+y = x, multiplying both sides by 1
xy

we get 1/y+1/x = 1/y

showing that 1/y ≥ 1/x. �

Proposition 3.11. Let F be an additively idempotent semifield that is a domain.

(i) Every proper congruence of F is prime.
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(ii) The congruences of F form a chain. Moreover if dimF is finite, then every
congruence is principal, i.e. generated by (1, x) for some x ∈ F \ {0}.

(iii) For x, y ∈ F \ {0}, we have that (1, y) ∈ 〈(1, x)〉 if and only if there exist
an n ∈ Z such that x−n ≤ y ≤ xn.

Proof. First note that a proper congruence of any semifield is always cancellative,
since if (ca, cb) ∈ C for c 6= 0 then multiplying by c−1 we get (a, b) ∈ C. Now
(i) follows from Proposition 2.6 and the fact that the quotient of a totally ordered
B-algebra is also totally ordered.

For (ii) assume that there are two congruences C1 and C2 such that C1 6⊆ C2 and
C2 6⊆ C1. Then by Proposition 3.9 we have x, y ∈ F \ {0} such that (1, x) ∈ C1 \C2

and (1, y) ∈ C2 \ C1. By possibly replacing x or y with their multiplicative inverse
we may assume that x, y ≥ 1. Moreover F is totally ordered, thus without loss
of generality we can set x ≥ y. Now it follows from (ii) of Proposition 2.2 that
(1, y) ∈ C1, a contradiction. When dimF is finite this implies that there is a unique
chain of primes ∆ = P0 ⊂ P1 · · · ⊂ PdimF in F. Choosing any (a, b) ∈ Pk \Pk−1 we
see that 〈(a/b, 1)〉 = Pk proving the second statement in (ii).

For (iii) let H ⊂ F × F be the set that consists of the pair (0, 0) and the pairs
(a, b) ∈ (F \ {0})× F \ {0} for which exists an n ∈ Z such that x−n ≤ b/a ≤ xn.
We need to show that H = 〈(1, x)〉 to prove the claim. Clearly we have (1, x) ∈ H
and by Proposition 2.6 we also have that H ⊆ 〈(1, x)〉 so we only need to show that
H is a congruence. Let (a1, b1), (a2, b2) ∈ H and let n1, n2 be integers such that
x−n1 ≤ b1/a1 ≤ xn1 and x−n2 ≤ b2/a2 ≤ xn2 . We can replace the one of n1,2 with
the smaller absolute value by the other and assume that n1 = n2 = n. Now we
have that

x−n =
x−nb1 + x−nb2

b1 + b2
≤
a1 + a2
b1 + b2

≤
xnb1 + xnb2
b1 + b2

= xn,

showing that (a1 + a2, b1 + b2) ∈ H . To show that H is closed under products,
consider the inequalities:

x−2n =
(x−nb1)(x

−nb2)

b1b2
≤
a1a2
b1b2

≤
(xnb1)(x

nb2)

b1b2
= x2n,

implying that (a1a2, b1b2) ∈ H . Finally H is symmetric since x−n ≤ b/a ≤ xn if
and only if x−n ≤ a/b ≤ xn, hence by Lemma 3.7 H is a congruence. �

Corollary 3.12. If an B-algebra A is a domain, then the prime congruences of A
with trivial kernels form a chain.

Proof. This follows immediately from Proposition 3.8 and (ii) of Proposition 3.11.
�

Remark 3.13. It can be read off from the proof that (iii) of Proposition 3.11 holds
for any additively idempotent semifield. We would also like to point out that the
statement of (iii) is likely well known.

Let F be an additively idempotent semifield that is a domain. For x, y ∈ F \ {0}
we will write x ⋄F y whenever 〈(1, x)〉F = 〈(1, y)〉F . It follows from (i) and (ii) of
Proposition 3.11 that when F is finite dimensional the number of ⋄F equivalence
classes is dimF + 1.
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Lemma 3.14. Let A be a B-algebra that is a domain, and x, y, z ∈ A \ {0} with
(1, x) ∈ 〈(1, y

z
)〉Frac(A). Then for any prime congruence P with x ∈ ker(P ) we also

have that at least one of y ∈ ker(P ) or z ∈ ker(P ) hold.

Proof. By (iii) of Proposition 3.11 we have that there exist an n ∈ Z such that
zn

yn
≤ x ≤ yn

zn
. If n ≥ 0 then after multiplying by yn we obtain zn ≤ xyn. Since

xyn ∈ ker(P ) by Proposition 2.2 we have that zn ∈ ker(P ). Since P is prime
it follows that z ∈ ker(P ). If n < 0 then after multiplying by z−n we obtain
that y−n ≤ xz−n. Since xz−n ∈ A we have xz−n ∈ ker(P ) and it follows that
y−n ∈ ker(P ) and thus y ∈ ker(P ). �

Proposition 3.15. Let A be a B-algebra that is a domain, with dimA <∞. Then
dimA = dimFrac(A), in particular the primes of A with a trivial kernel form a
chain of maximal length.

Proof. First it follows immediately from Proposition 3.8 that dimA ≥ dimFrac(A)
since the unique chain of primes in Frac(A) restricts to a chain of primes in dimA
of the same length. We will prove by induction on dimFrac(A). If dimFrac(A) = 0
then by Proposition 2.8 Frac(A) ≃ B, and since A embeds into Frac(A) we also
have that A ≃ B.

Next we assume that dimFrac(A) = d > 0 and that the claim holds for all
d′ < d. Let ∆ = P0 ⊂ P1 ⊂ · · · ⊂ PdimA be a chain of maximal length in A
and set A′ = A/P1. Clearly dimA′ = dimA − 1. If ker(P1) = {0} then applying
Proposition 3.8 we see that P1 extends to a prime 〈P1〉Frac(A) of Frac(A) and

dimFrac(A)/〈P1〉Frac(A) = d−1. It follows that dimFrac(A′) = d−1 and applying

the induction hypothesis we obtain dimA′ = d− 1, and thus dimA = d.

We are left to deal with the case when 0 6= x ∈ ker(P1). First note that the

elements of Frac(A′) can be written as [a]
[b] with a, b ∈ A and b /∈ ker(P1), where

[a], [b] denote the images of a, b in A′. (Note however that there is no natural map
from Frac(A) to Frac(A′) in this case.) Now it follows from (iii) of Proposition

3.11 that for [a]
[b] ,

[c]
[d] ∈ Frac(A′), if we have that a

b
⋄Frac(A)

c
d
then [a]

[b] ⋄Frac(A′)
[c]
[d] .

Finally it follows from Lemma 3.14 that whenever x ⋄Frac(A)
a
b
at least one of a or

b map to 0 in A′, hence ⋄Frac(A′) has strictly less equivalence classes than ⋄Frac(A).

We obtained that dimFrac(A′) ≤ d− 1, and hence by the induction hypothesis we
have that dimA′ = dimFrac(A′) and it follows that dimA = dimA′ + 1 = d. �

We are ready to state our main result:

Theorem 3.16. Let A be a B-algebra with dimA < ∞. Then we have that
dimA(x) = dimA[x] = dimA+ 1.

Proof. Let P0 ⊂ P1 · · · ⊂ PdimA(x) be a chain of primes of maximal length in
A(x). By Proposition 3.15 we may assume that the congruences Pi/P0 have trivial
kernel in A(x)/P0 or equivalently that ker(P0) = ker(Pi) for all 0 ≤ i ≤ dimA(x).
Now it follows from (i) of Proposition 3.6 that after restricting the chain to A, in
P0|A ⊆ P1|A ⊆ . . . equality occurs at most once proving that dimA+1 ≥ dimA(x).
Finally by Proposition 3.1 we also have that dimA + 1 ≤ dimA(x), proving that
dimA(x) = dimA + 1. The equality dimA[x] = dimA + 1 can be verified by the
same argument. �
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