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Abstract

Motivated by a conjecture of Liang [Y.-C. Liang. Anti-magic labeling of graphs. PhD thesis, National
Sun Yat-sen University, 2013.], we introduce a restricted path packing problem in bipartite graphs that we
call a V-free 2-matching. We verify the conjecture through a weakening of the hypergraph matching problem.
We close the paper by showing that it is NP-complete to decide whether one of the color classes of a bipartite
graph can be covered by a V-free 2-matching.

1 Introduction
Throughout the paper, graphs are assumed to be simple. Given an undirected graph G = (V,E) and a subset
F ⊆ E of edges, F (v) denotes the set of edges in F incident to a node v ∈ V , and dF (v) := |F (v)| is the degree
of v in F . We say that F covers a subset of nodes X ⊆ V if dF (v) ≥ 1 for every v ∈ X. Let b : V → Z+ be
an upper bound function. A subset N ⊆ E of edges is called a b-matching if dN (v) is at most b(v) for every
node v ∈ V . For some integer t ≥ 2, by a t-matching we mean a b-matching where b(v) = t for every v ∈ V .
If t = 1, then a t-matching is simply called a matching.

A hypergraph is a pair H = (V, E) where V is a finite set of nodes and E is a collection of subsets of V .
The members of E are called hyperedges, and for a hyperedge e ∈ E let |e| denote its cardinality (as a subset
of V ). In hypergraphs –unlike in graphs– we will allow hyperedges of cardinality 1 in this paper. A matching
in a hypergraph is a collection of pairwise disjoint hyperedges, and the matching is said to be perfect if the
union of the hyperedges in the matching contains every node. The hypergraph matching problem is to
decide whether a given hypergraph has a perfect matching. Given a hypergraph H = (V, E), we can represent it
as a bipartite graph GH = (UV , UE ;E), where nodes of UV correspond to nodes in V , nodes in UE correspond
to hyperedges in E , and there is an edge in G between a node uv ∈ UV (corresponding to v ∈ V ) and a node
ue ∈ UE (corresponding to e ∈ E) if and only if v ∈ e (GH is also called the Levi graph of H).

Let G = (S, T ;E) be a bipartite graph. A path P = ({u, v, w}, {uv, vw}) of length 2 with u,w ∈ S is called
an S-link, and a T -link can be defined analogously. In [13], Liang proposed the following conjecture and showed
that, if it is true, the conjecture implies that 4-regular graphs are antimagic (where a simple graph G = (V,E) is
said to be antimagic if there exists a bijection f : E → {1, 2, . . . , |E|} such that

∑
e∈E(v1)

f(e) 6= ∑
e∈E(v2)

f(e)

for every pair v1, v2 ∈ V ).

Conjecture 1. Assume that G = (S, T ;E) is a bipartite graph such that each node in S has degree at most 4
and each node in T has degree at most 3. Then G has a matching M and a family F of node-disjoint S-links
such that every node v ∈ T of degree 3 is covered by an edge in M ∪ (∪P∈FP ).

Observe that it suffices to verify the conjecture for the special case when each node in T has degree exactly
3, as we can simply delete nodes of degree less than 3. Although it was recently proved that regular graphs
are antimagic [1], we prove the conjecture in Section 3 as it is interesting in its own. The proof is based on a
weakening of the hypergraph matching problem.

While working on the proof of the conjecture, an interesting restricted path factor problem came to our
attention. For simplicity, we will call a T -link a V-path (the name comes from the shape of these paths when
T is placed ‘above’ S, see Figure 1 for an illustration). It is easy to see that a 2-matching consists of pairwise
node-disjoint paths and cycles. We call a 2-matching V-free if it does not contain a V-path as a connected
component.

Consider the problem of finding a matchingM and a family F of node-disjoint S-links such thatM∪(∪P∈FP )
covers T . We can assume that M does not contain any edge of

⋃F , as such edges can be simply deleted from
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Figure 1: An illustration for Liang’s conjecture. Nodes in T have degree at most 3, and those in S have degree
at most 4. The matching is highlighted with blue, the family of S-links is highlighted with red.

M . Furthermore, we may assume that each node v ∈ T has degree at most 2 inM ∪(∪P∈FP ). Indeed, if a node
v ∈ T has degree 3 in M ∪ (∪P∈FP ) then it is covered by both M and (∪P∈FP ), so the edge in M incident to
v can be deleted (see Figure 1). It is not difficult to see that M ∪ (∪P∈FP ) is a V-free 2-matching covering T
in this case.

Conversely, given an arbitrary V-free 2-matching N that covers T , edges can be left out from N in such a
way that the resulting V-free 2-matching N ′ still covers T and consists of paths of length 1 and 4, the latter
having both end-nodes in T . Then N ′ can be partitioned into a matching and a family of node-disjoint S-links.

By the above, the problem of finding a matching M and a family F of node-disjoint S-links whose union
covers T is equivalent to finding a V-free 2-matching N that covers T . The proof of Conjecture 1 shows that
these problems can be solved when nodes in S have degree at most 4, and those in T have degree at most 3.
However, in Section 4 we show that the problem of finding a V-free 2-matching in a bipartite graph G = (S, T ;E)
covering T is NP-complete in general.

Let us now recall some well known results from matching theory that will be used below.

Theorem 2. In a bipartite graph there exists a matching that covers every node of maximum degree.

Theorem 3 (Dulmage and Mendelsohn [3]). Given a bipartite graph G = (S, T ;E) and subsets X ⊆ S, Y ⊆ T ,
if there exist two matchings MX and MY in G such that MX covers X and MY covers Y then there exists a
matching M in G that covers X ∪ Y .

Theorem 4 (Gallai-Edmonds Decomposition Theorem for graphs, see eg. [15]). Given a graph G = (V,E), let
D be the set of nodes which are not covered by at least one maximum matching of G, A be the set of neighbours
of D and C := V − (D ∪ A). Then (a) the components of G[D] are factor-critical, (b) G[C] has a perfect
matching, and (c) G has a matching covering A.

The paper is organized as follows. Section 2 gives a brief overview of earlier results on restricted path packing
problems. In Section 3, we introduce a variant of the hypergraph matching problem and prove a general theorem
which in turn implies the conjecture. The paper is closed with a complexity result on V-free 2-matchings in a
bipartite graph G = (S, T,E) covering T , see Section 4.

2 Previous work
For a set F of connected graphs, a spanning subgraph M of a graph G is called an F-factor of G if every
component of M is isomorphic to one of the members of F . The path and cycle having n nodes are denoted
by Pn and Cn, respectively. The length of Pn is n− 1, the number of its edges.

The problem of packing F-factors is widely studied. Kaneko presented a Tutte-type characterization of
graphs admitting a {Pn|n ≥ 3}-factor [8]. Kano, Katona and Király [9] gave a simpler proof of Kaneko’s
theorem and also a min-max formula for the maximum number of nodes that can be covered by a 2-matching
not containing a single edge as a connected component. Such a 2-matching is often called 1-restricted. These
results were further generalized by Hartvigsen, Hell and Szabó [6] by introducing the so-called k-piece packing
problem, where a k-piece is a connected graph with highest degree exactly k. In contrast with earlier approaches,
their result is algorithmic, and so it provides a polynomial time algorithm for finding a 1-restricted 2-matching
covering a maximum number of nodes. Later Janata, Loebl and Szabó [7] described a Gallai-Edmonds type
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structure theorem for k-piece packings and proved that the node sets coverable by k-piece packings have a
matroidal structure.

In [5], Hartvigsen considered the edge-max version of the 1-restricted 2-matching problem, that is, when
a 1-restricted 2-matching containing a maximum number of edges is needed. He gave a min-max theorem
characterizing the maximum number of edges in such a subgraph, and he also presented a polynomial algorithm
for finding one. The notion of 1-restricted 2-matchings was generalized by Li [12] by introducing j-restricted
k-matchings that are k-matchings with each connected component having at least j+ 1 edges. She considered
the node-weighted version of the problem of finding a j-restricted k-matching in which the total weight of the
nodes covered by the edges is maximal and presented a polynomial algorithm for the problem as well as a
min-max theorem in the case of j < k. She also proved that the problem of maximizing the number of nodes
covered by the edges in a j-restricted k-matching is NP-hard when j ≥ k ≥ 2.

A graph is called cubic if each node has degree 3. Cycle-factors and path-factors of cubic graphs are
well-studied. The fundamental theorem of Petersen states that each 2-connected cubic graph has a {Cn|n ≥ 3}-
factor [14]. From Kaneko’s theorem it follows that every connected cubic graph has a {Pn|n ≥ 3}-factor.
Kawarabayashi, Matsuda, Oda and Ota proved that every 2-connected cubic graph has a {Cn|n ≥ 4}-factor,
and if the graph has order at least six then it also has a {Pn|n ≥ 6}-factor [11]. For bipartite graphs, these
results were improved by Kano, Lee and Suzuki by showing that every connected cubic bipartite graph has a
{Cn|n ≥ 6}-factor, and if the graph has order at least eight then it also has a {Pn|n ≥ 8}-factor [10].

Although the V-free 2-matching problem shows lots of similarities to these problems, it does not seem to fit
in the framework of earlier approaches.

3 Extended matchings
While working on Conjecture 1, we arrived at a relaxation of the hypergraph matching problem that we call the
extended matching problem. An extended matching of a hypergraph H = (V, E) is a disjoint collection
of hyperedges and pairs of nodes where a pair (u, v) may be used only if there exists a hyperedge e ∈ E with
u, v ∈ e. An extended matching is perfect if it covers the node-set of H. Note that one can decide in polynomial
time if a hypergraph has a perfect extended matching by the results of [2] (see also Theorem 4.2.16 in [16]).
Indeed, given a hypergraph H = (V, E), consider its bipartite representation GH = (UV , UE ;E). Then a perfect
extended matching in H corresponds to a subgraph in GH in which nodes of UV have degree one, and a node
ue ∈ UE corresponding to e ∈ E has degree |e|, or any even number not greater than |e|.

However, we have found a simple proof of the following result, a special case of the extended matching
problem, which implies Conjecture 1, as we show below.

Theorem 5. In a 3-uniform hypergraph H = (V, E) there exists an extended matching that covers the nodes of
maximum degree in H.

Theorem 5 is the special case of a more general result (Corollary 9) that we introduce below. Before doing
so, we show that Theorem 5 implies Conjecture 1.

Proof of Conjecture 1. Recall that it suffices to verify the conjecture for graphs G = (S, T ;E) with dE(v) = 3
for every v ∈ T . Such a G is the incidence graph (or Levi graph) of a 3-uniform hypergraph H = (S, E) in which
each node has degree at most 4.

Let S′ ⊆ S denote the set of nodes having degree 4 in H. By Theorem 5, H has an extended matching
covering S′. That is, S′ can be covered by pairwise node-disjoint S-links and S-claws of G, where an S-claw is
a star with 3 edges having its center node in T . We denote the edge-set of these S-links and claws by N .

Let T ′ be the set of nodes in T not covered by N . As dE−N (v) ≤ 3 for each v ∈ S, T ′ can be covered by a
matching M disjoint from N , by Theorem 2. By leaving out an edge from each S-claw of N , we get a matching
M and a family of S-links whose union together covers T .

Let us now introduce and prove a generalization of Theorem 5. We call a hypergraph H = (V, E) oddly
uniform if every hyperedge has odd cardinality. The quasi-degree of a node v ∈ V is defined as d−(v) :=∑

[|e| − 1 : v ∈ e ∈ E ], and the hypergraph is ∆-quasi-regular (or quasi-regular for short) if d−(v) = ∆ for
each v ∈ V where ∆ ∈ Z+. Note that a uniform regular hypergraph is quasi-regular.

Theorem 6. Every oddly uniform quasi-regular hypergraph has a perfect extended matching.

Proof. Assume that H = (V, E) is an oddly uniform ∆-quasi-regular hypergraph, and let G = (V,E) denote the
graph obtained by replacing each hyperedge e ∈ E with a complete graph on node-set e ⊆ V . That is, there are
as many parallel edges between u and v in E as the number of hyperedges containing both u and v. Note that
the quasi-regularity of H is equivalent to the regularity of G.

If G admits a perfect matching M , then M is a perfect extended matching of H and we are done.
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Assume that G does not have a perfect matching. Take the Gallai-Edmonds decomposition of G into sets D,
A and C (see Theorem 4). Let D1 be the union of those connected components of G[D] that span a hyperedge
e ∈ E in H, and D2 := D −D1.

Claim 7. Every component K of G[D1] has a perfect extended matching in H.

Proof. AsK is factor-critical, it has a perfect matching after deleting the nodes of any of its odd cycles (including
the case when the cycle consists of a single node). Let e ∈ E be a hyperedge spanned by K. By the above,
G[K − e] has a perfect matching, which together with e form a perfect extended matching of K, proving the
claim.

Claim 8. For every component K of G[D2] we have dG(K) ≥ ∆.

Proof. Let u ∈ K be an arbitrary node. K does not span a hyperedge in H, hence for every hyperedge e
containing u we have e ∩ K 6= ∅, e ∩ A 6= ∅ and e ⊆ K ∪ A. By the definition of G, there are at least∑

[|e ∩K| · |e ∩ A| : u ∈ e ∈ E ] ≥ ∑
[|e| − 1 : u ∈ e ∈ E ] = ∆ edges between K and A, thus concluding the

proof of the claim.

Let G′ = (D′, A;F ) denote the bipartite graph obtained from G by deleting the nodes of C and the edges
induced by A, and by contracting each component of G[D] to a single node (the set of new nodes is denoted
by D′). Nodes of D′ are partitioned into sets D′1 and D′2 accordingly. As dG′(v) ≤ ∆ for each v ∈ A, Claim 8
and Theorem 2 imply that G′ has a matching covering D′2. By Theorem 4 (c), G′ has a matching covering A,
hence the result of Dulmage and Mendelsohn (Theorem 3) implies that G′ has a matching M ′ covering A and
D′2 simultaneously. Considering M ′ as a matching in G and using Theorem 4 (a) and (b), M ′ can be extended
to a matching M of G that covers every node that is in C ∪ A or in a component of G[D] that is incident to
an edge in M ′. By Claim 7, there is an extended matching covering the nodes of the remaining components of
G[D], since they fall in D1. The union of M and this extended matching forms a perfect extended matching of
H. This completes the proof of the theorem.

As a consequence, we get the following result.

Corollary 9. Every oddly uniform hypergraph has an extended matching that covers the set of nodes having
maximum quasi-degree.

Proof. Let H = (S, E) be an oddly uniform hypergraph and let ∆ denote the maximum quasi-degree in H. The
deficiency of a node v ∈ S is γ(v) := ∆− d−(v). A node v ∈ S is called deficient if γ(v) > 0. As H is oddly
uniform, γ(v) is even for every node v.

It suffices to show that H can be extended to a ∆-quasi-uniform hypergraph H ′ = (V ′, E ′) by adding further
nodes and hyperedges. Indeed, by Theorem 6, H ′ admits a perfect extended matching whose restriction to the
original hypergraph gives an extended matching covering each node having quasi-degree ∆.

If there is no deficient node in H, then we are done. Otherwise consider the hypergraph obtained by taking
the disjoint union of three copies of H, denoted by H1, H2 and H3, respectively. For each deficient node v ∈ S,
add γ(v) copies of the hyperedge {v1, v2, v3} to the hypergraph, where vi denotes the copy of v in Hi. The
hypergraph H ′ thus obtained is clearly ∆-quasi-regular.

4 Complexity result
In what follows we show that deciding the existence of a V-free 2-matching covering T is NP-complete in general.
We will use reduction from the following problem (see [4, (SP2)]).

Theorem 10 (3-dimensional matching). Let H = (X,Y, Z; E) be a tripartite 3-regular 3-uniform hypergraph,
meaning that each node v ∈ X ∪ Y ∪ Z is contained in exactly 3 hyperedges, and each hyperedge e ∈ E contains
exactly one node from all of X,Y and Z. It is NP-complete to decide whether H has a perfect matching, that
is, a 1-regular sub-hypergraph.

Our proof is inspired by the construction of Li for proving the NP-hardness of maximizing the number of
nodes covered by the edges in a 2-restricted 2-matching [12].

Theorem 11. Given a bipartite graph G = (S, T ;E) with maximum degree 4, it is NP-complete to decide
whether G has a V-free 2-matching covering T .
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tf2 tf3sf2sf1

tz2

Figure 2: Gadgets corresponding to hyperedges e = {x, y, z1} and f = {x, y, z2}

Proof. We prove the theorem by reduction from the 3-dimensional matching problem. Take a 3-uniform 3-regular
tripartite hypergraph H = (X,Y, Z; E). For a hyperedge e ∈ E , we use the following notions: xe := e ∩ X,
ye := e ∩ Y and ze := e ∩ Z.

We construct an undirected bipartite graph as follows. For each node x ∈ X and y ∈ Y , add a pair of nodes
sx, tx and sy, ty to G, respectively, with sx, sy ∈ S and tx, ty ∈ T . For each node z ∈ Z, add a single node tz to
T . Furthermore, for each x ∈ X and y ∈ Y add the edges sxtx and syty to E.

We assign a path Pe with node set V (Pe) = {te1, se1, te2, se2, te3} and edge set E(Pe) = {te1se1, se1te2, te2se2, se2te3, te3}
of length four to each hyperedge e ∈ E and add edges sxe

te1, sye
te1 and tzes

e
1 to E (see Figure 2). It is easy

to check that the graph thus arising is bipartite and has maximum degree 4 (here we use that every node
v ∈ X ∪ Y ∪ Z is contained in exactly 3 hyperedges of H).

We claim that H admits a perfect matching if and only if G has a V-free 2-matching covering T , which proves
the theorem. Assume first that H has a perfect matching and let M ⊆ E be the set of matching hyperedges.
Then

M :=
⋃

e∈M
{sxe

txe
, sye

tye
, sxe

te1, sye
te1, tzes

e
1, E(Pe)− te1se1} ∪

⋃
e 6∈M

E(Pe)

is a V-free 2-matching covering T (see Figure 3).

tx

te1

te2 te3se2se1

ty

sx sy

tz

e = {x, y, z} ∈ M

tx

te1

te2 te3se2se1

ty

sx sy

tz

e = {x, y, z} /∈ M

Figure 3: Edges included in M depending on whether e ∈M or not

For the other direction, take a V-free 2-matching M of G covering T . Observe that sxtx, syty ∈M for each
x ∈ X and y ∈ Y as M covers T . Moreover, M is V-free hence te1se1 6∈ M implies sexte1, yexte1 ∈ M . We may
assume that E(Pe) − te1se1 ⊆ M for each e ∈ E . Indeed, M has to cover te2 and te3, hence the V-freeness of M
implies se1te2, se2te3 ∈M . Consequently, te2se2 ∈M can be assumed.

We claim that dM (tz) = 1 for each z ∈ Z. Indeed, if tzese1 ∈ M for some e ∈ E then sxet
e
1, syet

e
1 ∈ M . In

other words, if tzese1 ∈M then e ‘reserves’ nodes sxe , sye and tze for M being a V-free 2-matching. On the other
hand, for each x ∈ X there is at most one e ∈ E such that sxe

te1 ∈ M , and the same holds for each y ∈ Y . As
the hypergraph is 3-uniform and 3-regular, we have |X| = |Y | = |Z|. Hence the number of edges of form tzes

e
2

in M can not exceed the cardinality of these sets. Let

M := {e ∈ E : tzes
e
2 ∈M}.

By the above,M is a 1-regular subhypergraph, thus concluding the proof.
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