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Abstract

We consider Lagrange interpolation on the set of finitely many
intervals. This problem is closely related to the least deviating poly-
nomial from zero on such sets. We will obtain lower and upper es-
timates for the corresponding Lebesgue constant. The case of two
intervals of equal lengths is simpler, and an explicit construction for
two non-symmetric intervals will be given only in a special case.
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1 Lower estimate

Let

—l=ar<bpy<a <b <---<as<b;=1
be a finite partition of the interval [—1, 1], and let

s

ES = U[al,bl] (1)

=0

be the corresponding set of pairwise disjoint intervals. Consider the Lagrange
interpolation on the nodes

(_]-S)xn<xn—l<"'<xl(§]-)> Ik:xk,nEESa ]{5:1,2,...,71,

(2)

and let w,(z) = H(:c — x1). The Lebesgue function of interpolation is
k=1

defined as .
)\n(x7wn7ES> = Z‘gk(fﬁ)‘ ?
k=1

where
wn(x)

wy () (0 — 1)

Our purpose is to estimate the Lebesgue constant

Ek(ZL’) =

)\n(wna Es) = ||)‘n(Ia Wn, ES)|

Es

where || - ||y is the supremum norm of the function over the set indicated.
The classic result of Faber [4] says that for any set of nodes (2) we have

An(wn, Eo) > clogn

with some absolute constant ¢ > 0. Our first result states that this holds in
the more general situation (1) as well.

Theorem 1. For any system of nodes (2) we have
An(Wn, Es) > ¢(Es) logn

with a constant c(Es) > 0 depending on the partition ().
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Proof. The statement sounds like an obvious consequence of the quoted result
of Faber, but in fact we need a strengthening of that result. Consider our
interpolation process on the whole interval [—1, 1], and apply the deep result
of Erdés and Vértesi [3] which says that for any system of nodes on Ey and
any € > 0, there exists a set H C [—1; 1] of measure |H| < € such that

An (@, wn, Eg) > c(e)logn for x€ Ey\ H.

Choosing € < Z(b’ — a;) we get the statement of the theorem. O
i=0

2 Upper estimate in the general case

First we present a result which shows that the lower estimate expressed in
Theorem 1 can be achieved by a suitably chosen set of nodes. To prove it
we need a result of the first named author [7] about Lebesgue constants for
special interpolation processes by rational functions on several intervals.

Theorem 2. (Lukashov [7]) Let {apn}27,—y C {lz| <71}, v <1, bea
reqular matriz of inverse values of poles with respect to Ej, i.e.

> wlaghajb],C\E,) €N, j=0,1,....s,

k=1
where w(z, o, Q) denotes the harmonic measure of the set aw C 02 with respect
to the domain 0 with pole at z, 1/0 = co. Then the roots of the Chebyshev-
Markov rational function

~ o wn ()
o) = el 3)

deviating least from zero on Ey (see [0l Theorem 3]) are of the form [2l) and

n

D

k=1

n (s B) 1= “n(2)

wp () (x — o)

< ¢(FEs)logn.
Es

Theorem 3. For any finite partition ([Il) of the interval [—1, 1], there exists
a set of nodes (2l) such that

An(wWn, Es) < ¢(Es)logn
with a constant c(Es) > 0 depending on the partition ().
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Proof. This is an easy consequence of former theorem. In the proof of [6]
Theorem 5| (which is not included in [6], but is quite analogous to the proof
of [6, Theorem 4], compare also [8]) it was noted that to any given complex

numbers ay, , with |ag,| <7 (k= 1,...,n) which are symmetric with respect
to the real line we can always find ay, with |am,| <7 (m=n—s+1,...,n)
such that all suppositions of Theorem 2 are satisfied and |, — Gmn (m =
—s+1,...,n) are arbitrarily small. Thus, choosing aj, =0 (k=1,...,n)
and ﬁndmg the corresponding @y, , with \amm\ <r(m=n—-—s+1,...,n)
we obtain
c(E,)logn > z": ©n(@)
) Bt @é(ﬂfk)(if — k)
— - w" ‘Hm n— s+1 o dm,”xk)
k=1 w%(l’k) = [L’k m n— 8+l(1 - dmml’)
1-r) ¢ wn ()
> ) r e bs.
- ; wy (@) (z — )

Note that Theorem 3 gives a construction of the set of nodes with optimal
order of the Lebesgue constant which is not explicit. Namely to find @,y
one has to solve (for s > 2) a system of non-linear equations, where a,, , are
included in hyperelliptic integrals. Then w,(x) are expressed as hyperelliptic
integrals and their zeros xy , are obtained as solutions of algebraic equations
of nth degree. The construction of Theorem 3 can be explained in more
explicit form in the special case Fy = [—1,a] U [b, 1].

First of all we have (see, for example, [7,, [11])

|z—c|dx
[H ()]

where § C E,, H(z) = (2* — 1)(z — a)( :)s—b)

/\/7// dr

w(00,8,C\Es) =

and



1 |z — c(a)|\/|H(a)|dx
a5C E2
“ V)= s VIH @)z —af - \04—0( )|

where a € R\ E,

:/a Jﬁi;z—a\//a Jﬁﬁx—ar

Hence we can choose a,, = a, as a unique solution for a € (1, 4+00) of the
equation

n—l/l(m—c)dm_l_l ' (2 —c(a)y/H(a)dx
@ vV—H(@x) 7Jy V—H(z)(a—x a—c(a))

/%]

and the set of nodes x;, is defined by the equations

=1+

(n—1) |a:—c|dx+ x—cozn\\/ (cvn)dx
/—H(z vV —H(x)(a, — x)(a, — c(ay))

[1IkﬂE2 [lknEZ
T
=kr——, k=1,...,n
7T 27 ) )

To compute these elliptic integrals is possible with using elliptic functions
(compare [5, Theorem 2]).

3 Upper estimate for two symmetric inter-
vals

Theorem 3 is very general, but it does not provide a concrete set of nodes
for the optimal order of Lebesgue constant. In what follows we try to handle
the special case of two intervals, i.e. let

E(a) :=[-1,—a] U]a,1], 0<a<l.

With a slightly different notation for the nodes (2)) we have
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Theorem 4. Consider the system of nodes on E(a)

1—a? 1+ a? 2k — 1
xik:::t\/ ayk+ +a, where yp = cos m, k=1,...,n,
2 2 2n

and denote way, () = H (x — zg). Then we have

1<[k|<n

1 1 —a?
Ny + ———,
a + 8a?

)\2n(w2n7 E(a)) S

2 , th ,

where A, ~ —logn is the n'" Lebesque constant in [—1, 1] for the Chebyshev
s

nodes.

Proof. Evidently

222 — 1 —a?
1—a?

won(z) =T, <

(where T),(z) = cosnarccos z is the nth Chebyshev polynomial). In estimat-
ing the Lebesgue function, we may assume that a < x < 1, by symmetry.
Introducing the notation

()

we can easily see that

1-d if k= 1,2
‘x—$k|2 4 |y_yk‘7 1 =L 4..5N (anSl)
2a, ifk=-1,-2...,—n
Also,
4
Wb (18)] > — T (), k= 41,42 4n.
2n 1— a2 n



Thus we obtain

u Won ()

Wiy, (Tx) (T — )

Aop (X, wop, E(a)) =

k=—n
FR I SIS SN & o N ()
= o8a? S Ti(ye)| a2 | Ty (y — i)
1—a® <& 2k — 1 1
< i ~A,
>~ 8a2n ;sm on 7r—|—a
1 — a2
< =2z + A, .

Remark 1. Since w(oo,[—1, —a],C\E(a)) = 1/2, a weaker estimate
Aop(wop, E(a)) < C(a)logn
follows from Theorem 2.

The case of odd number of nodes on F(a) can be settled by using the
following simple

Lemma 1. Assume that for a system of nodes [2)) we have —1 < z, < --- <
rnn<l, xz,€FE, k=1,...,n, and let

Quir(z) == (1 + 2)w,(x) and Qio(x) == (1 — 2H)wy,(2) .

If
jwn (D] = llwn

B, or lwn(FD)] = [lonlls, .

then
)\n—i-l(Qn-i-la Es) S 3)\n(wna Es)‘l'l or )\n+2(Qn+2> Es) S 5)\n(wn> E8)+1 )

respectively.



Proof. We prove only the second statement; the first one is simpler. We have

n

Ania(, D2, Be) =) w! (xj;((:cx)— )

1+z 1—z \ |wn(2)]
- <|wn< DI |wn<—1>|> 2

n

1 — 22

2.

wn(x |ewn (x
< + 2 +1
o W (zg) (@ — ) ; 1—xk |w/ ()|
lwn(1)
n(wn, Ba) +2 Z
= (1 —xy) |w (k)|
|wn
+2 +1
Z 1 ‘l‘fk k)|

x<0

<5\ (wn, Es) + 1.

This lemma together with Theorem [l yields the following

Corollary 1. For each n > 1 there exists a system of nodes such that

—a?

Sa?

3 1
)\n(wna E(a)) < EAn/2 + +c

with some absolute constant ¢ > 0,

4 Upper estimate for two nonsymmetric in-
tervals

Now we consider the case of two nonsymmetric intervals, i.e. when
E(a,b) :=[-1,a] U [b, 1], —l<a<b<l, a+b#0.

First of all we note that for w(oco, [—1, a], C\E(a, b)) = 1/2+1/6 we have,
taking into account [0, Theorem 3],[1], as in Remark 1,

Agn(wWsn, E(a,b)) < C(a,b)logn (6)



for ws, (x) = T,,(P3(x)), where P3(x) is the cubic polynomial such that F(a,b)
is the inverse image of Ps(x) in [—1,1]. For a given a,—1 < a < 1/2,
the existence of b, such that w(oco, [—1,a], C\E(a, b)) = 2/3 follows from [9,
Theorem 3.1] (or from [10] similarly to [2, Lemma 1]). We want to present
here an explicit construction of Ps3(x) and to give a different proof of the
estimate (@)). Note also that the construction and the proof do not use
potential theory.

Theorem 5. Let —1 < a < % and

2l —a)(1+2)+z(a+2)
2—a+z

b:

where z s the unique solution of the equation

2+ (3-2a)*+(a®*—2)z—a*+2a—2=0 (8)

in the interval (—1,a). Then a < b < 1, and for the cubic polynomial
() ::(:5 —z)@-a(z-1) (@ -1)(=—a)
2(1+2)(1+a) (1—=2%)(z—a)

22 —1)(z — 2) N (x4 1)(z—2)(x —a)
1—a?)(z—a) 20 —2)(1—a)

(
(
we have

p(-1) =pla)=p() = -1,  p(z)=pl)=1 and p(z)=0. (10)

3n

Moreover, for the set of nodes ws,, = H(a: — ),
k=1
(1<) < <xp < (2<)xpar <+ < Ty (11)

<(a<b<)rgpr < -+ <z3p(<1)
in E(a,b) defined by
2k —1
2n

(k) = P(Tpin) = P(Tpion) = cOS T, k=1,2,....n (12

we have
An(W3n, E(a, b)) < c(a)logn, (13)

where c(a) > 0 is a constant depending on a.
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Of course, a similar statement holds when switching the roles of a and b..

Proof. The method of proof is the same as that of Theorem M but slightly
more complicated. First we check that the equation () has indeed a unique
solution in the interval (—1,a). Denoting the left hand side of (&) by ¢(z),
we obtain

q(—=1)=2(1-a*) >0 and qla) = -2(1 —a?) <0.

This shows that ¢(z) has a single root in each interval (—oo, —1), (=1, a) and
(a, 00).
Next, we show that b defined in (7)) is indeed in the interval (a,1). The
inequalities
21 —a)(1+2)+ z(a + 2)

a< <1
2—a+z

are equivalent to
Z+21—-a)z+a*—4a+2>0  and (z—a)(1+2)<0.

The first inequality holds for all real z (since a < 1/2), and the second holds
because of —1 < z < a.

To check the relations (I0), only p(b) = —1 and p'(z) = 0 needs explana-
tion. The first can be seen by direct substitution of () into (9) and using the
relation (). The second one is obtained by differentiation and using again
[®); we omit the details.

Collecting all the above information, we may say that the cubic poly-
nomial p(z) is monotone increasing in [—1, 2] and in [b, 1], and monotone
decreasing in [z, a]. Thus the polynomial

wan() = To(p()),

of degree 3n has n roots (IIl) in each of the intervals [—1, 2], [z, a], [b, 1].
Introducing the notations

y = p(x) and Yk = Yktn = Ykson = D(zx), k=1,...,n,

we estimate the Lebesgue function of Lagrange interpolation based on these
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nodes:

3n

B T (y)
(s B@) =2 | S

Y ooy
le—zk| <[P (zr)|  |z—2k|>[p' (z8)]

2251 + 52 .

First we estimate S;. We have by Taylor expansion

ly — yr| =|p(z) — p(a)]
1
<Ip'(zx)| - [z — x| + §||P//||[—1,1} (z — zp)?
<ci(a)|p'(xr)| - |v — zg]

whence
T,(y)

T (yr) (Y — yx)

since the last sum can be estimated by the Lebesgue constant associated with
the Chebyshev nodes.

For estimating S5, denote by I an interval with midpoint 2z such that
|p"(x)] > c3(a) > 0 for x € I. (Such an interval exists, since the unique zero
of p”(x) is in the interval (z,b).) Then

Slﬁgzn:

< c(a)A,,
ci(a) p 2(a)

3n

1
%S0 ]~ 2t 2 St e

=1 P xpe¢l  apel

As for the first sum we have

3 1
Sy < < c4(a).
2 S P 2 ] = @

Finally, we estimate Ss. We obtain

1—yx =p(2) — plax) < esla)(z — a3)
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Thus
P (zx)| =[P (2x) — P'(2)]

=5l (Q)l o — =

>M\/1—yk, CE€(zap) CI.

2 C4(CL>

Hence

u 1
< < A, .
S 2 060 D ey gy S ol

So we have proved the statement for degrees of the form 3n. For nodes
of the form 3n + 1 or 3n 4+ 2 we add to the above system of nodes the point
1, or the points +1, respectively, and apply Lemma [Il

To complete the proof of the theorem, we have to show that b # —a. An
easy calculation yields

2242242 —a? _ 4a
(1+2)(a—2) a—z

1+ p(—a)=2a- <0,

i.e. p(—a) < —1 = p(b). This shows that b > —a. O

Remark 2. Note that for interpolation by rational functions on E(a,b) one
can modify the proof of Theorem 4 to obtain similar assertion for interpola-
tion on nonsymmetric intervals by rational functions taking

22— (b+a)r—14ab
 (b+a)x—1—ab

instead of (3).
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