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Abstract

We consider Lagrange interpolation on the set of finitely many
intervals. This problem is closely related to the least deviating poly-
nomial from zero on such sets. We will obtain lower and upper es-
timates for the corresponding Lebesgue constant. The case of two
intervals of equal lengths is simpler, and an explicit construction for
two non-symmetric intervals will be given only in a special case.
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1 Lower estimate

Let

−1 = a0 < b0 < a1 < b1 < · · · < as < bs = 1

be a finite partition of the interval [−1, 1], and let

Es :=
s
⋃

i=0

[ai, bi] (1)

be the corresponding set of pairwise disjoint intervals. Consider the Lagrange
interpolation on the nodes

(−1 ≤)xn < xn−1 < · · · < x1(≤ 1), xk = xk,n ∈ Es, k = 1, 2, . . . , n ,
(2)

and let ωn(x) :=

n
∏

k=1

(x − xk). The Lebesgue function of interpolation is

defined as

λn(x, ωn, Es) :=
n

∑

k=1

|ℓk(x)| ,

where

ℓk(x) :=
ωn(x)

ω′
n(xk)(x− xk)

.

Our purpose is to estimate the Lebesgue constant

λn(ωn, Es) := ‖λn(x, ωn, Es)‖Es
,

where ‖ · ‖(·) is the supremum norm of the function over the set indicated.
The classic result of Faber [4] says that for any set of nodes (2) we have

λn(ωn, E0) ≥ c logn

with some absolute constant c > 0. Our first result states that this holds in
the more general situation (1) as well.

Theorem 1. For any system of nodes (2) we have

λn(ωn, Es) ≥ c(Es) logn

with a constant c(Es) > 0 depending on the partition (1).
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Proof. The statement sounds like an obvious consequence of the quoted result
of Faber, but in fact we need a strengthening of that result. Consider our
interpolation process on the whole interval [−1, 1], and apply the deep result
of Erdős and Vértesi [3] which says that for any system of nodes on E0 and
any ε > 0, there exists a set H ⊂ [−1; 1] of measure |H| < ε such that

λn(x, ωn, E0) ≥ c(ε) logn for x ∈ E0 \H .

Choosing ε <

s
∑

i=0

(bi − ai) we get the statement of the theorem.

2 Upper estimate in the general case

First we present a result which shows that the lower estimate expressed in
Theorem 1 can be achieved by a suitably chosen set of nodes. To prove it
we need a result of the first named author [7] about Lebesgue constants for
special interpolation processes by rational functions on several intervals.

Theorem 2. (Lukashov [7]) Let {ak,n}
∞,∞
k=1,n=s ⊂ {|z| < r}, r < 1, be a

regular matrix of inverse values of poles with respect to Es, i.e.

n
∑

k=1

ω(a−1
k,n, [aj, bj ],C\Es) ∈ N, j = 0, 1, . . . , s,

where ω(z, α,Ω) denotes the harmonic measure of the set α ⊂ ∂Ω with respect
to the domain Ω with pole at z, 1/0 = ∞. Then the roots of the Chebyshev-
Markov rational function

ω̃n(x) :=
ωn(x)

∏n
k=1(1− ak,nx)

(3)

deviating least from zero on Es (see [6, Theorem 3]) are of the form (2) and

λ̃n(ω̃n, Es) :=

∥

∥

∥

∥

∥

n
∑

k=1

∣

∣

∣

∣

ω̃n(x)

ω̃′
n(xk)(x− xk)

∣

∣

∣

∣

∥

∥

∥

∥

∥

Es

≤ c(Es) logn .

Theorem 3. For any finite partition (1) of the interval [−1, 1], there exists
a set of nodes (2) such that

λn(ωn, Es) ≤ c(Es) logn

with a constant c(Es) > 0 depending on the partition (1).
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Proof. This is an easy consequence of former theorem. In the proof of [6,
Theorem 5] (which is not included in [6], but is quite analogous to the proof
of [6, Theorem 4], compare also [8]) it was noted that to any given complex
numbers ak,n with |ak,n| < r (k = 1, . . . , n) which are symmetric with respect
to the real line we can always find ãk,n with |ãm,n| < r (m = n−s+1, . . . , n)
such that all suppositions of Theorem 2 are satisfied and |am,n − ãm,n| (m =
n−s+1, . . . , n) are arbitrarily small. Thus, choosing ak,n = 0 (k = 1, . . . , n)
and finding the corresponding ãm,n with |ãm,n| < r (m = n − s + 1, . . . , n)
we obtain

c(Es) log n ≥

n
∑

k=1

∣

∣

∣

∣

ω̃n(x)

ω̃′
n(xk)(x− xk)

∣

∣

∣

∣

=

n
∑

k=1

∣

∣

∣

∣

ωn(x)

ω′
n(xk)(x− xk)

∣

∣

∣

∣

·

∣

∣

∣

∣

∏n
m=n−s+1(1− ãm,nxk)

∏n
m=n−s+1(1− ãm,nx)

∣

∣

∣

∣

≥
(1− r)s

2s

n
∑

k=1

∣

∣

∣

∣

ωn(x)

ω′
n(xk)(x− xk)

∣

∣

∣

∣

, x ∈ Es .

Note that Theorem 3 gives a construction of the set of nodes with optimal
order of the Lebesgue constant which is not explicit. Namely to find ãm,n

one has to solve (for s > 2) a system of non-linear equations, where ãm,n are
included in hyperelliptic integrals. Then ωn(x) are expressed as hyperelliptic
integrals and their zeros xk,n are obtained as solutions of algebraic equations
of nth degree. The construction of Theorem 3 can be explained in more
explicit form in the special case E2 = [−1, a] ∪ [b, 1].

First of all we have (see, for example, [7, 11])

ω(∞, δ,C\E2) =
1

π

∫

δ

|x− c|dx
√

|H(x)|
,

where δ ⊂ E2, H(x) = (x2 − 1)(x− a)(x− b),

c =

∫ b

a

xdx
√

H(x)

/

∫ b

a

dx
√

H(x)
,

and
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ω(α, δ,C\E2) =
1

π

∫

δ

|x− c(α)|
√

|H(α)|dx
√

|H(x)||x− α| · |α− c(α)|
,

where α ∈ R\E2,

c(α) =

∫ b

a

xdx
√

H(x)|x− α|

/

∫ b

a

dx
√

H(x)|x− α|
.

Hence we can choose ãn,n = αn as a unique solution for α ∈ (1,+∞) of the
equation

n− 1

π

∫ 1

b

(x− c)dx
√

−H(x)
+

1

π

∫ 1

b

(x− c(α))
√

H(α)dx
√

−H(x)(α− x)(α− c(α))

= 1 +

[

n

π

∫ 1

b

(x− c)dx
√

−H(x)

]

,

and the set of nodes xk is defined by the equations

(n− 1)

∫

[−1,xk]∩E2

|x− c|dx
√

−H(x)
+

∫

[−1,xk]∩E2

|x− c(αn)|
√

H(αn)dx
√

−H(x)(αn − x)(αn − c(αn))

= kπ −
π

2
, k = 1, . . . , n.

To compute these elliptic integrals is possible with using elliptic functions
(compare [5, Theorem 2]).

3 Upper estimate for two symmetric inter-

vals

Theorem 3 is very general, but it does not provide a concrete set of nodes
for the optimal order of Lebesgue constant. In what follows we try to handle
the special case of two intervals, i.e. let

E(a) := [−1,−a] ∪ [a, 1], 0 < a < 1 .

With a slightly different notation for the nodes (2) we have

5



Theorem 4. Consider the system of nodes on E(a)

x±k := ±

√

1− a2

2
yk +

1 + a2

2
, where yk = cos

2k − 1

2n
π, k = 1, . . . , n ,

(4)

and denote ω2n(x) :=
∏

1≤|k|≤n

(x− xk). Then we have

λ2n(ω2n, E(a)) ≤
1

a
Λn +

1− a2

8a2
,

where Λn ∼
2

π
log n is the nth Lebesgue constant in [−1, 1] for the Chebyshev

nodes.

Proof. Evidently

ω2n(x) := Tn

(

2x2 − 1− a2

1− a2

)

(where Tn(x) = cosn arccosx is the nth Chebyshev polynomial). In estimat-
ing the Lebesgue function, we may assume that a ≤ x ≤ 1, by symmetry.
Introducing the notation

y :=
2x2 − 1− a2

1− a2
(5)

we can easily see that

|x− xk| ≥







1− a2

4
· |y − yk|, if k = 1, 2, . . . , n

2a, if k = −1,−2, . . . ,−n
(a ≤ x ≤ 1) .

Also,

|ω′
2n(xk)| ≥

4a

1− a2
· |T ′

n(yk)|, k = ±1,±2, . . . ,±n .
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Thus we obtain

λ2n(x, ω2n, E(a)) =

n
∑

k=−n

∣

∣

∣

∣

ω2n(x)

ω′
2n(xk)(x− xk)

∣

∣

∣

∣

≤
1− a2

8a2

n
∑

k=1

1

|T ′
n(yk)|

+
1

a

n
∑

k=1

∣

∣

∣

∣

Tn(y)

T ′
n(yk)(y − yk)

∣

∣

∣

∣

≤
1− a2

8a2n

n
∑

k=1

sin
2k − 1

2n
π +

1

a
Λn

≤
1− a2

8a2
+ Λn .

Remark 1. Since ω(∞, [−1,−a],C\E(a)) = 1/2, a weaker estimate

λ2n(ω2n, E(a)) ≤ C(a) logn

follows from Theorem 2.

The case of odd number of nodes on E(a) can be settled by using the
following simple

Lemma 1. Assume that for a system of nodes (2) we have −1 < xn < · · · <
x1 < 1, xk ∈ Es, k = 1, . . . , n, and let

Ωn+1(x) := (1 + x)ωn(x) and Ωn+2(x) := (1− x2)ωn(x) .

If
|ωn(1)| = ‖ωn‖Es

or |ωn(±1)| = ‖ωn‖Es
.

then

λn+1(Ωn+1, Es) ≤ 3λn(ωn, Es)+1 or λn+2(Ωn+2, Es) ≤ 5λn(ωn, Es)+1 ,

respectively.
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Proof. We prove only the second statement; the first one is simpler. We have

λn+2(x,Ωn+2, Es) =
n

∑

k=1

1− x2

1− x2
k

·

∣

∣

∣

∣

ωn(x)

ω′
n(xk)(x− xk)

∣

∣

∣

∣

+

(

1 + x

|ωn(1)|
+

1− x

|ωn(−1)|

)

|ωn(x)|

2

≤
n

∑

k=1

∣

∣

∣

∣

ωn(x)

ω′
n(xk)(x− xk)

∣

∣

∣

∣

+ 2
n

∑

k=1

|ωn(x)|

(1− x2
k)|ω

′
n(xk)|

+ 1

≤λn(ωn, Es) + 2
∑

xk≥0

|ωn(1)|

(1− xk)|ω′
n(xk)|

+ 2
∑

xk<0

|ωn(−1)|

(1 + xk)|ω′
n(xk)|

+ 1

≤5λn(ωn, Es) + 1.

This lemma together with Theorem 4 yields the following

Corollary 1. For each n ≥ 1 there exists a system of nodes such that

λn(ωn, E(a)) ≤
3

a
Λn/2 +

1− a2

8a2
+ c

with some absolute constant c > 0,

4 Upper estimate for two nonsymmetric in-

tervals

Now we consider the case of two nonsymmetric intervals, i.e. when

E(a, b) := [−1, a] ∪ [b, 1], −1 < a < b < 1, a+ b 6= 0 .

First of all we note that for ω(∞, [−1, a],C\E(a, b)) = 1/2±1/6 we have,
taking into account [6, Theorem 3],[1], as in Remark 1,

λ3n(ω3n, E(a, b)) ≤ C(a, b) logn (6)
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for ω3n(x) = Tn(P3(x)), where P3(x) is the cubic polynomial such that E(a, b)
is the inverse image of P3(x) in [−1, 1]. For a given a,−1 < a < 1/2,
the existence of b, such that ω(∞, [−1, a],C\E(a, b)) = 2/3 follows from [9,
Theorem 3.1] (or from [10] similarly to [2, Lemma 1]). We want to present
here an explicit construction of P3(x) and to give a different proof of the
estimate (6). Note also that the construction and the proof do not use
potential theory.

Theorem 5. Let −1 < a <
1

2
and

b =
2(1− a)(1 + z) + z(a + z)

2− a+ z
(7)

where z is the unique solution of the equation

z3 + (3− 2a)z2 + (a2 − 2)z − a2 + 2a− 2 = 0 (8)

in the interval (−1, a). Then a < b < 1, and for the cubic polynomial

p(x) :=
(x− z)(x− a)(x− 1)

2(1 + z)(1 + a)
−

(x2 − 1)(x− a)

(1− z2)(z − a)

−
(x2 − 1)(x− z)

(1− a2)(z − a)
+

(x+ 1)(x− z)(x− a)

2(1− z)(1− a)
,

(9)

we have

p(−1) = p(a) = p(b) = −1, p(z) = p(1) = 1 and p′(z) = 0 . (10)

Moreover, for the set of nodes ω3n =

3n
∏

k=1

(x− xk),

(−1 <)x1 < · · · < xn < (z <)xn+1 < · · · < x2n (11)

< (a < b <)x2n+1 < · · · < x3n(< 1)

in E(a, b) defined by

p(xk) = p(xk+n) = p(xk+2n) = cos
2k − 1

2n
π, k = 1, 2, . . . , n (12)

we have
λn(ω3n, E(a, b)) ≤ c(a) log n , (13)

where c(a) > 0 is a constant depending on a.
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Of course, a similar statement holds when switching the roles of a and b..

Proof. The method of proof is the same as that of Theorem 4, but slightly
more complicated. First we check that the equation (8) has indeed a unique
solution in the interval (−1, a). Denoting the left hand side of (8) by q(z),
we obtain

q(−1) = 2(1− a2) > 0 and q(a) = −2(1 − a2) < 0 .

This shows that q(z) has a single root in each interval (−∞,−1), (−1, a) and
(a,∞).

Next, we show that b defined in (7) is indeed in the interval (a, 1). The
inequalities

a <
2(1− a)(1 + z) + z(a + z)

2− a+ z
< 1

are equivalent to

z2 + 2(1− a)z + a2 − 4a+ 2 > 0 and (z − a)(1 + z) < 0 .

The first inequality holds for all real z (since a < 1/2), and the second holds
because of −1 < z < a.

To check the relations (10), only p(b) = −1 and p′(z) = 0 needs explana-
tion. The first can be seen by direct substitution of (7) into (9) and using the
relation (8). The second one is obtained by differentiation and using again
(8); we omit the details.

Collecting all the above information, we may say that the cubic poly-
nomial p(x) is monotone increasing in [−1, z] and in [b, 1], and monotone
decreasing in [z, a]. Thus the polynomial

ω3n(x) := Tn(p(x)) ,

of degree 3n has n roots (11) in each of the intervals [−1, z], [z, a], [b, 1].
Introducing the notations

y = p(x) and yk = yk+n = yk+2n = p(xk), k = 1, . . . , n ,

we estimate the Lebesgue function of Lagrange interpolation based on these
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nodes:

λn(x, ω3n, E(a, b)) =
3n
∑

k=1

∣

∣

∣

∣

Tn(y)

p′(xk)T ′
n(yk)(x− xk)

∣

∣

∣

∣

=
∑

|x−xk|≤|p′(xk)|

+
∑

|x−xk|>|p′(xk)|

:=S1 + S2 .

First we estimate S1. We have by Taylor expansion

|y − yk| =|p(x)− p(xk)|

≤|p′(xk)| · |x− xk|+
1

2
||p′′||[−1,1](x− xk)

2

≤c1(a)|p
′(xk)| · |x− xk| ,

whence

S1 ≤
3

c1(a)

n
∑

k=1

∣

∣

∣

∣

Tn(y)

T ′
n(yk)(y − yk)

∣

∣

∣

∣

≤ c2(a)Λn ,

since the last sum can be estimated by the Lebesgue constant associated with
the Chebyshev nodes.

For estimating S2, denote by I an interval with midpoint z such that
|p′′(x)| ≥ c3(a) > 0 for x ∈ I. (Such an interval exists, since the unique zero
of p′′(x) is in the interval (z, b).) Then

S2 ≤
3n
∑

k=1

1

p′(xk)2|T ′
n(yk)|

=
∑

xk /∈I

+
∑

xk∈I

:= S21 + S22 .

As for the first sum we have

S21 ≤
3

c3(a)2

n
∑

k=1

1

|T ′
n(yk)|

≤ c4(a) .

Finally, we estimate S22. We obtain

1− yk = p(z)− p(xk) ≤ c4(a)(z − xk)
2 .
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Thus

|p′(xk)| =|p′(xk)− p′(z)|

=
1

2
|p′′(ζ)| · |xk − z|

≥
c3(a)

2
√

c4(a)

√

1− yk, ζ ∈ (z, xk) ⊂ I .

Hence

S22 ≤ c5(a)

n
∑

k=1

1

|T ′
n(yk)|(1− yk)

≤ c6(a)Λn .

So we have proved the statement for degrees of the form 3n. For nodes
of the form 3n+ 1 or 3n+ 2 we add to the above system of nodes the point
1, or the points ±1, respectively, and apply Lemma 1.

To complete the proof of the theorem, we have to show that b 6= −a. An
easy calculation yields

1 + p(−a) = 2a ·
z2 + 2z + 2− a2

(1 + z)(a− z)
<

4a

a− z
< 0 ,

i.e. p(−a) < −1 = p(b). This shows that b > −a.

Remark 2. Note that for interpolation by rational functions on E(a, b) one
can modify the proof of Theorem 4 to obtain similar assertion for interpola-
tion on nonsymmetric intervals by rational functions taking

y =
2x2 − (b+ a)x− 1 + ab

(b+ a)x− 1− ab

instead of (5).
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