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Abstract

We prove that every simply connected orthogonal polygon of n vertices can be partitioned into
⌊
3n+4
16

⌋
(simply connected) orthogonal polygons of at most 8 vertices. It yields a new and shorter proof of the

theorem of A. Aggarwal that
⌊
3n+4
16

⌋
mobile guards are sufficient to control the interior of an n-vertex

orthogonal polygon. Moreover, we strengthen this result by requiring combinatorial guards (visibility is

only needed at the endpoints of patrols) and prohibiting intersecting patrols. This yields positive answers

to two questions of O’Rourke [7, Section 3.4]. Our result is also a further example of the “metatheorem”

that (orthogonal) art gallery theorems are based on partition theorems.

Keywords: art gallery, polyomino partition, mobile guard

1. Introduction

First let us define the basic object studied in this paper.

Definition 1. A simply connected orthogonal polygon or simple polyomino P is the closed region of the

plane bounded by a closed (not self-intersecting) polygon, whose angles are all π/2 (convex) or 3π/2 (reflex).

We denote the number of P ’s vertices by n(P ).

This definition implies that n(P ) is even. We want to emphasize the combinatorial structure of P rather

than its geometry, so in this paper we refer to such objects as simple polyominoes, or polyominoes for short.

When we talk about not necessarily simply connected polyominoes, we explicitly state it.

Kahn, Klawe and Kleitman [6] in 1980 proved that bn/4c guards are sometimes necessary and always

sufficient to cover the interior of a simple polyomino of n vertices. Later the first author of this paper

provided a simple and short proof of
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Theorem 2 ([3], [7, Thm. 2.5]). Every simple polyomino of n vertices can be partitioned into bn/4c poly-

ominoes of at most 6 vertices.

Theorem 2 is a deeper result than that of Kahn, Klawe and Kleitman, and gave the first hint of the existence

of a “metatheorem”: (orthogonal) art gallery theorems have underlying partition theorems. The general

case was proved by Hoffmann [5].

Theorem 3 ([5]). Every (not necessarily simply connected!) orthogonal polygon with n vertices can be

covered by bn/4c guards.

Hoffmann’s method (partitioning into smaller pieces that can be covered by one guard) is another example

of the metatheorem.

In this paper, we present further evidence that the metatheorem holds, namely we prove the following

partition theorem:

Theorem 4. Any simple polyomino of n vertices can be partitioned into at most
⌊
3n+4
16

⌋
simple polyominoes

of at most 8 vertices.

A mobile guard is one who can patrol a line segment, and it covers a point x of the gallery if there is a point

y on its patrol such that the line segment [x, y] is contained in the gallery. The mobile guard art gallery

theorem for simple polyominoes follows immediately from Theorem 4, as a polyomino of at most 8 vertices

can be covered by a mobile guard:

Theorem 5 ([1], proof also in [7, Thm. 3.3]).
⌊
3n+4
16

⌋
mobile guards are sufficient for covering an n vertex

simple polyomino.

Theorem 4 is a stronger result than Theorem 5 and it is interesting on its own. It fits into the series of

results in [3], [5], [7, Thm. 2.5], [4] showing that rectilinear art gallery theorems are based on theorems on

partitions of polyominoes into smaller (“one guardable”) polyominoes.

Moreover, Theorem 4 directly implies the following corollary which strengthens the previous theorem and

answers two questions raised by O’Rourke [7, Section 3.4].

Corollary 6.
⌊
3n+4
16

⌋
mobile guards are sufficient for covering an n vertex simple polyomino such that the

patrols of two guards do not pass through one another and visibility is only required at the endpoints of the

patrols.

The proof of Theorem 4 is similar to the proofs of Theorem 2 in that it finds a suitable cut and then uses

induction on the parts created by the cut. However, here a cut along a line segment connecting two reflex

vertices is not automatically good. In case we have no such cuts, we also rely heavily on a tree structure of
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the polyomino (Section 3). However, while O’Rourke’s proof only uses straight cuts, in our case this is not

sufficient: Figure 1 shows a polyomino of 14 vertices which cannot be cut into 2 polyominoes of at most 8

vertices using cuts along straight lines. Therefore we must consider L-shaped cuts too.

Figure 1: An L-shaped cut creating a partition into 8-vertex polyominoes

Interested readers can find a thorough introduction to the subject of art gallery problems in [7].

2. Definitions and preliminaries

Let P, P1, P2 be simple polyominoes of n, n1, n2 vertices, respectively. If P = P1 ∪P2, int(P1)∩ int(P2) = ∅,

0 < n1, n2 and n1 + n2 ≤ n + 2 are satisfied, we say that P1, P2 form an admissible partition of P , which

we denote by P = P1

?
∪P2. Also, we call L = P1 ∩ P2 a cut in this case. We may describe this relationship

concisely by L(P1, P2). If, say, we have a number of cuts L1, L2, etc., then we usually write Li(P
i
1, P

i
2).

Generally, if a subpolyomino is denoted by P y
x , then y refers to a cut and x ∈ {1, 2} is the label of the piece

in the partition created by said cut. Furthermore, if⌊
3n1 + 4

16

⌋
+

⌊
3n2 + 4

16

⌋
≤
⌊

3n+ 4

16

⌋
. (1)

is also satisfied, we say that P1, P2 form an induction-good partition of P , and we call L a good cut.

Lemma 7. An admissible partition P = P1

?
∪P2 is also and induction-good partition if

(a) n1 + n2 = n+ 2 and n1 ≡ 2, 8, or 14 (mod 16),

or

(b) n1 + n2 = n and n1 ≡ 0, 2, 6, 8, 12, or 14 (mod 16),

or

(c) n 6≡ 14 mod 16 and either

n1 + n2 = n and n1 ≡ 10 (mod 16) or n1 + n2 = n+ 2 and n1 ≡ 12 (mod 16).

Proof. Using the fact that the floor function satisfies the triangle inequality, the proof reduces to an easy

case-by-case analysis, which we leave to the reader.

Any cut L in this paper falls into one of the following 3 categories (see Figure 2):

(a) 1-cuts: L is a line segment, and exactly one of its endpoints is a (reflex) vertex of P .

3



(b) 2-cuts: L is a line segment, and both of its endpoints are (reflex) vertices of P .

(c) L-cuts: L consists of two connected line segments, and both endpoints of L are (reflex) vertices of P .

Note that for 1-cuts and L-cuts the size of the parts satisfy n1 + n2 = n + 2, while for 2-cuts we have

n1 + n2 = n.

�

(a) 1-cut

�

(b1) 2-cut

�

(b2) 2-cut

�

(c) L-cut

Figure 2: Examples for all types of cuts. Light gray areas are subsets of int(P ).

In the proof of Theorem 4 we are searching for an induction-good partition of P . As a good cut defines an

induction-good partition, it is sufficient to find a good cut. We could hope that a good cut of a subpolyomino

of P is extendable to a good cut of P , but unfortunately a good cut of a subpolyomino may only be an

admissible cut with respect to P (if it is a cut of P at all). Lemma 7, however, allows us to look for

cut-systems containing a good cut. Fortunately, it is sufficient to consider non-crossing, nested cut-systems

of at most 3 cuts, defined as follows.

Definition 8 (Good cut-system). The cuts L1(P 1
1 , P

1
2 ), L2(P 2

1 , P
2
2 ) and L3(P 3

1 , P
3
2 ) (possibly L2 = L3)

constitute a good cut-system if P 1
1 ⊂ P 2

1 ⊆ P 3
1 , and the set

{
n(P i

1) | i ∈ {1, 2, 3}
}
∪
{
n(P i

1) + 2 | i ∈ {1, 2, 3} and Li is a 2-cut
}

contains three consecutive even elements modulo 16 (ie., the union of their residue classes contains a subset

of the form {a, a + 2, a + 4} + 16Z). If this is the case we also define their kernel as ker{L1, L2, L3} =

(P 1
1 − L1) ∪ (P 3

2 − L3), which will be used in Lemma 16.

Lemma 7(a) and 7(b) immediately yield that any good cut-system contains a good cut.

Remark 9. It is easy to see that if a set of cuts satisfies this definition, then they obviously satisfy it in

the reverse order too (the order of the generated parts are also switched). Actually, these are exactly the two
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orders in which they do so. Thus the kernel is well-defined, and when speaking about a good cut-system it is

often enough to specify the set of participating cuts.

3. Tree structure

Any reflex vertex of a polyomino defines a (1- or 2-) cut along a horizontal line segment whose interior is

contained in int(P ) and whose endpoints are the reflex vertex and another point on the boundary of the

polyomino. Next we define a graph structure derived from P , which is a standard tool in the literature, for

example it is called the R-graph of P in [4].

Definition 10 (Horizontal cut tree). The horizontal cut tree T is obtained as follows. First, partition P

into a set of rectangles by cutting along all of the horizontal cuts of P . Let V (T ), the vertex set of T be the

set of resulting (internally disjoint) rectangles. Two rectangles of T are connected by an edge in E(T ) iff

their boundaries intersect.

The graph T is indeed a tree as its connectedness is trivial and since any cut creates two internally disjoint

polyominoes, T is also cycle-free. We can think of T as a sort of dual of the planar graph determined by

P and its horizontal cuts. The nodes of T represent rectangles of P and edges of T represent horizontal 1-

and 2-cuts of P . For this reason we may refer to nodes of T as rectangles. This nomenclature also helps

in distinguishing between vertices of P (points) and nodes of T . Moreover, for an edge e ∈ E(T ), we may

denote the cut represented by e by simply e, as the context should make it clear whether we are working in

the graph T or the polyomino P itself.

Note that the vertical sides of rectangles are also edges of the polyomino. We will also briefly use vertical

cut trees, which can be defined analogously.

Definition 11. Let T be the horizontal cut tree of P . Define t : E(T ) → N as follows: given any edge

{R1, R2} ∈ E(T ), let

t({R1, R2}) = n(R1 ∪R2)− 8.

Observe that

t(e) =

 0, if e represents a 2-cut;

−2, if e represents a 1-cut.

The following claim is used throughout the paper to count the number of vertices of subpolyominoes.

Claim 12. Let T be the horizontal cut tree of P . Then

n(P ) = 4|V (T )|+
∑

e∈E(T )

t(e).
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Proof. The proof is straightforward.

Remark 13. The equality still holds even if some of the rectangles of T are cut into several rows (and the

corresponding edges, for which the function t takes −4, are added to T ).

3.1. Extending cuts and cut-systems

The following two technical lemmas considerably simplify our analysis in Section 4, where many cases

distinguished by the relative positions of reflex vertices of P on the boundary of a rectangle need to be

handled. For a rectangle R let us denote its top left, top right, bottom left, and bottom right vertices with

vTL(R), vTR(R), vBL(R), and vBR(R), respectively.

R

Q

vTL(R) vTR(R)

(a) Q ⊆ RTL, and eTL(R) is a 1-cut

R

Q

vTL(R)
vTR(R)

(b) Q ⊆ RTL, eTL(R) is a 1-cut, and

RTR = ∅

R

Q

vTL(R)
vTR(R)

(c) Q ⊆ RTL, and eTL(R) is a 2-cut

R

Q

vTL(R) vTR(R)

(d) RTL = RTR = ∅, R is either a

corridor or a pocket (see Section 4)

R

Q

vTL(R)
vTR(R)

(e) RTL = ∅, but Q ⊆ RTR

Figure 3: R ∪Q in all essentially different relative positions of R,Q ∈ V (T ), where {R,Q} ∈ E(T ) and vTL(R) ∈ Q

Definition 14. Let R,Q ∈ V (T ) be arbitrary. We say that Q is adjacent to R at vTL(R), if vTL(R) ∈ Q

and vTL(R) is not a vertex of the polyomino R∪Q, or vTR(R) /∈ Q. Such situations are depicted on Figures

3a, 3b, and 3c. However, in the case of Figure 3d and 3e we have vTR(R) ∈ Q 6⊆ RTL (= ∅).

If Q is adjacent to R at vTL(R), let eTL(R) = {R,Q}; by cutting P along the dual of eTL(R), ie., R ∩ Q,

we get two polyominoes, and we denote the part containing Q by RTL. If there is no such Q, let eTL(R) = ∅

and RTL = ∅. These relations can be defined analogously for top right (RTR, eTR(R)), bottom left (RBL,

eBL(R)), and bottom right (RBR, eBR(R)).

Lemma 15. Let R be an arbitrary rectangle such that RBL 6= ∅. Let U be the remaining portion of the

polyomino, ie., P = RBL

?
∪U is a polyomino-partition. Take an admissible polyomino-partition U = U1

?
∪U2

such that vBL(R) ∈ U1. We can extend this to an admissible polyomino-partition of P where the two parts

are U1 ∪RBL and U2.

6



Proof. Let Q1 = R ∩ U1 and let Q2 ∈ V (T ) be the rectangle which is a subset of RBL and adjacent to R.

Observe that U1 and RBL only intersect on R’s bottom side, therefore their intersection is a line segment

L and so U1 ∪ RBL is a polyomino. Trivially, P = (U1 ∪ RBL)
?
∪U2 is partition into polyominoes, so only

admissibility remains to be checked.

Let the horizontal cut tree of U1 and RBL be TU1
and TRBL

, respectively. The horizontal cut tree of U1∪RBL

is TU1
∪ TRBL

+ {Q1, Q2}, except if t({Q1, Q2}) = −4. Either way, by referring to Remark 13 we can use

Claim 12 to write that

n(U1 ∪RBL) + n(U2)− n(P ) = n(U1) + n(RBL) + t({Q1, Q2}) + n(U2)− n(P ) =

=
(
n(U1) + n(U2)− n(U)

)
+
(
n(U) + n(RBL)− n(P )

)
+ t({Q1, Q2}) = (2)

= (n(U1) + n(U2)− n(U))− t({R,Q2}) + t({Q1, Q2}).

Now it is enough to prove that t({Q1, Q2}) ≤ t({R,Q2}). If t({R,Q2}) = 0 this is trivial. The remaining

case is when t({R,Q2}) = −2. This means that vBL(R) is not a vertex of R∪Q2, therefore it is not a vertex

of Q1 ∪Q2 either, implying that n(Q1 ∪Q2) < 8.

Lemma 16. Let R ∈ V (T ) be such that RBL 6= ∅. Let U be the other half of the polyomino, ie., P =

RBL

?
∪U . If U has a good cut-system L such that vBL(R) ∈ kerL then P also has a good cut-system.

Proof. Let us enumerate the elements of L as Li where i ∈ I. Take Li(U
i
1, U

i
2) such that vBL(R) ∈ U i

1.

Using Lemma 15 extend Li to a cut L′i(P
i
1, P

i
2) of P such that U i

2 = P i
2.

Equation (2) and the statement following it implies that n(P i
1) + n(P i

2) = n(P ) + 2 =⇒ n(U i
1) + n(U i

2) =

n(U) + 2. In other words, if Li is a 2-cut then so is L′i. Therefore{
n(U i

2) | i ∈ I
}
∪
{
n(U i

2) + 2 | i ∈ I and Li is a 2-cut
}
⊆

⊆
{
n(P i

2) | i ∈ I
}
∪
{
n(P i

2) + 2 | i ∈ I and L′i is a 2-cut
}

and by referring to Remark 9 we get that {L′i | i ∈ I} is a good cut-system of P .

4. Proof of Theorem 4

We will prove Theorem 4 by induction on the number of vertices. For n ≤ 8 the theorem is trivial.

For n > 8, let P be the polyomino which we want to partition into smaller polyominoes. It is enough to

prove that P has a good cut. The rest of this proof is an extensive case study. Let T be the horizontal cut

tree of P . We need two more definitions.

• A pocket in T is a degree-1 rectangle R, whose only incident edge in T is a 2-cut of P and this cut

covers the entire top or bottom side of R.
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• A corridor in T is a rectangle R of degree ≥ 2 in T , which has an incident edge in T which is a 2-cut

of P and this cut covers the entire top or bottom side of R.

We distinguish 4 cases.

Case 1. T is a path, Figure 4(a);

Case 2. T has a corridor, Figure 4(b);

Case 3. T does not have a corridor, but it has a pocket, Figure 4(c);

Case 4. None of the previous cases apply, Figure 4(d).

(a) T is a path.

corridor

(b) T has a corridor.

pocket

pocket pocket

pocket

(c) T does not have a corridor, but it

has a pocket.
(d) T does not have a corridor or a pocket, and it is not a path.

Figure 4: The 4 cases of the proof.
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Case 1. T is a path

Claim 17. If an edge incident to a degree-2 vertex R of T is a 2-cut of P then the incident edges of R form

a good cut-system.

Proof. Let the two incident edges of R be e1 and e2. Let their generated partitions be e1(P 1
1 , P

1
2 ) and

e2(P 2
1 , P

2
2 ), such that R ⊆ P 1

2 ∩ P 2
1 . Then P 2

1 = P 1
1 ∪R, so

n(P 2
1 ) = n(P 1

1 ) + n(R) + t(e1) = n(P 1
1 ) + 4.

Definition 8 is satisfied by {e1, e2}, as {n(P 1
1 ), n(P 2

1 )} ∪ {n(P 1
1 ) + 2} is a set of three consecutive even

elements.

Claim 18. If there are two rectangles R1 and R2 which are adjacent degree-2 vertices of T then the union

of the set of incident edges of R1 and R2 form a good cut-system.

Proof. Let the two components of T −R1 −R2 be T1 and T2, so that e1, e2, f ∈ E(T ) joins T1 and R1, R1

and R2, R2 and T2, respectively. Obviously, ∪V (T1) ⊂ (∪V (T1)) ∪ R1 ⊂ (∪V (T1)) ∪ R1 ∪ R2. If one of

{e1, e2, f} is a 2-cut, we are done by the previous claim. Otherwise

n((∪V (T1)) ∪R1) = n(∪V (T1)) + n(R1) + t(e1) = n(∪V (T1)) + 2,

n((∪V (T1)) ∪R1 ∪R2) = n(∪V (T1)) + n(R1) + n(R2) + t(e1) + t(f) = n(∪V (T1)) + 4,

and so {n(∪V (T1)), n((∪V (T1)) ∪ R1), n((∪V (T1)) ∪ R1 ∪ R2)} are three consecutive even elements. This

concludes the proof that {e1, e2, f} is a good cut-system of P .

Suppose T is a path. If T is a path of length ≤ 3 such that all of its edges are 1-cuts, then n(P ) ≤ 8. Also,

if T is path of length 2 and its only edge represents a 2-cut, then n(P ) = 8. Otherwise either Claim 17 or

Claim 18 can be applied to provide a good cut-system of P .

Case 2. T has a corridor

Let e = {R′, R} ∈ E(T ) be a horizontal 2-cut such that R′ is a wider rectangle than R and deg(R) ≥ 2. Let

the generated partition be e(P e
1 , P

e
2 ) such that R′ ⊆ P e

1 . We can handle all possible cases as follows.

(a) If n(P e
1 ) 6≡ 4, 10 mod 16 or n(P e

2 ) 6≡ 4, 10 mod 16, then e is a good cut by Lemma 7(b).

(b) If deg(R) = 2, we find a good cut using Claim 17.

(c) If RBL = ∅, then L(PL
1 , P

L
2 ) such that R′ ⊆ PL

1 in Figure 5 is a good cut, since n(PL
1 ) = n(P e

1 )+4−0 ≡

8, 14 mod 16.
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�

R′

L
R

Figure 5: L is a good cut

(d) If RBL 6= ∅ and deg(R) ≥ 3, then let us consider the following five cuts of P (Figure 6): L1(RBL, R ∪

P e
1 ), L2(RBL ∪ Q1, Q2 ∪ Q3 ∪ P e

1 ), L3(RBL ∪ Q1 ∪ Q2, Q3 ∪ P e
1 ), L4(Q3, RBL ∪ Q1 ∪ Q2 ∪ P e

1 ), and

L5(Q3 ∪Q2, RBL ∪Q1 ∪ P e
1 ).

R′

RBL

Q1 Q2 Q3

Figure 6: deg(R) ≥ 3 and RBL 6= ∅

The first piece of these partitions have the following number of vertices (respectively).

(1) n(RBL)

(2) n(RBL ∪Q1) = n(RBL) + n(Q1) + (t(eBL(R))− 2) = n(RBL) + t(eBL(R)) + 2

(3) n(RBL ∪Q1 ∪Q2) = n(RBL) + n(Q1 ∪Q2) + t(eBL(R)) = n(RBL) + t(eBL(R)) + 4

(4) n(Q3)

(5) n(Q3 ∪Q2) = n(Q3) + n(Q2)− 2 = n(Q3) + 2

• If t(eBL(R)) = 0, then {L1, L2, L3} is a good cut-system, so one of them is a good cut.

• If t(eBL(R)) = −2, and none of the 5 cuts above are good cuts, then using Lemma 7(b) on L2 and

L3 gives n(RBL) ≡ 4, 10 mod 16. The same argument can be used on L4 and L5 to conclude that

n(Q3) ≡ 4, 10 mod 16. However, previously we derived that

n(P e
2 ) ≡ 4, 10 mod 16

n(RBL ∪Q1 ∪Q2 ∪Q3) = n(RBL ∪Q1 ∪Q2) + n(Q3)− 2 = n(RBL) + n(Q3) ≡ 4, 10 mod 16

This is only possible if n(RBL) ≡ n(Q3) ≡ 10 mod 16. Let eBL(R) = {R,S}.

– If deg(S) = 2, then let E(T ) 3 e′ 6= eBL(R) be the other edge of S. Let the partition generated

by it be e′(P e′

1 , P
e′

2 ) such that R′ ⊆ P e′

1 . We have

n(RBL) = n(P e′

2 ) + n(S) + t(e′)

n(P e′

2 ) = n(RBL)− 4− t(e′) ≡ 6− t(e′) mod 16

10



Either e′ is a 1-cut, in which case n(P e′

2 ) ≡ 8 mod 16, or e′ is a 2-cut, giving n(P e′

2 ) ≡ 6 mod 16.

In any case, Lemma 7 says that e′ is a good cut.

– If deg(S) = 3, then we can partition P as in Figure 7. Since n(Q5 ∪Q6) = 4 + n(Q6)− 2, by

Lemma 7(a) the only case when neither L6(Q5∪Q6, Q4∪R∪P e
1 ) nor L7(Q6, Q4∪Q5∪R∪P e

1 )

is a good cut of P is when n(Q6) ≡ 4, 10 mod 16. Also,

10 ≡ n(Q4 ∪Q5 ∪Q6) = n(Q4) + n(Q5) + n(Q6)− 2− 2 ≡ n(Q4) + n(Q6) mod 16.

∗ If n(Q6) ≡ 10 mod 16, then n(Q4) ≡ 0 mod 16, hence

n(Q4 ∪Q5 ∪Q11 ∪Q12) = n(Q4 ∪Q5) + 4− 4 = n(Q4) + n(Q5)− 2 ≡ 2 mod 16,

showing that L8(Q4 ∪Q5 ∪Q11 ∪Q12, Q6 ∪Q13 ∪Q2 ∪Q3 ∪ P e
1 ) is a good cut.

∗ If n(Q6) ≡ 4 mod 16,

n(Q6 ∪Q13 ∪Q2 ∪Q3) = n(Q6) + n(Q13 ∪Q2) + n(Q3)− 2− 2 ≡

≡ n(Q6) + 10 ≡ 14 mod 16,

therefore L9(Q6 ∪Q13 ∪Q2 ∪Q3, Q4 ∪Q5 ∪Q11 ∪Q12 ∪ P e
1 ) is a good cut.

R′

Q11 Q12 Q13 Q2 Q3

Q4 Q5 Q6

�
L

9

R′

Figure 7: deg(Q) ≥ 3 and QBL 6= ∅

In all of the above subcases we found a good cut.

Case 3. There are no corridors in T , but there is a pocket

Let S be a (horizontal) pocket. Also, let R be the neighbor of S in T . If deg(R) = 2, then Claim 17 provides

a good cut-system of P . However, if deg(R) ≥ 3, we have two cases.

Case 3.1. If R is adjacent to at least two pockets

Let U be the union of R and its adjacent pockets, and let TU be its vertical cut tree. It contains at least 4

reflex vertices, therefore V (TU ) ≥ 3.

• If V (TU ) = 3, then |E(TU )| = 2. Thus t(e) = 0 for any e ∈ E(TU ), and Claim 17 gives a good

cut-system L of U such that all 4 vertices of R are contained in kerL.

11



• If V (TU ) ≥ 4, then Claim 18 gives a good cut-system L of U such that all 4 vertices of R are contained

in kerL.

Since there are no corridors in P , we have

P =
((

(U ∪RBL) ∪RTL

)
∪RBR

)
∪RTR.

By applying Lemma 16 repeatedly, the good cut-system L can be extended to a good cut-system of P .

Case 3.2. If S is the only pocket adjacent to R

We may assume without loss of generality that S intersect the top side of R. Again, define U as the union

of R and its adjacent pockets.

• If RTL 6= ∅, let V = U
?
∪RTL. The cut-system {L1, L2, L3} in Figure 8 is a good cut-system of V , and

all 4 vertices of R are contained in ker{L1, L2, L3}. By applying Lemma 16 repeatedly, we get a good

cut-system of P .

R

RTL S

�
L

1

�
L

2

�
L

3

vTR(R)

Figure 8: {L1, L2, L3} is a good cut-system of V = R ∪RTL ∪ S

• If RTR 6= ∅, the case can be solved analogously to the previous case.

• Otherwise RBL 6= ∅ and RBR 6= ∅. Let L1(U1
1 , U

1
2 ) and L2(U2

1 , U
2
2 ) be the vertical cuts (from right

to left) defined by the two reflex vertices of U , such that vBR(R) ∈ U1
1 ⊂ U2

1 . Let V = RBL

?
∪U . As

before, L1 and L2 can be extended to cuts of V , say L′1(U1
1 , V

1
2 ), L′2(U2

1 , V
2
2 ). We claim that together

with eBL(R)(U, V 3
2 ), they form a good cut-system L of V . This is obvious, as {n(U1

1 ), n(U2
1 ), n(U)} =

{4, 6, 8}. Since vBR(R) ∈ kerL, P also has a good cut-system by Lemma 16.

Case 4. T is not a path and it does not contain either corridors or pockets

By the assumptions of this case, any two adjacent rectangles are adjacent at one of their ver-

tices, so the maximum degree in T is 3 or 4. We distinguish between several sub-cases.

12



Case 4.1. There exists a rectangle of degree ≥ 3 such that its top or bottom side is entirely contained by

one of its neighboring rectangle;

Case 4.2. Every rectangle of degree ≥ 3 is such that its top and bottom side are not entirely contained by

any of their neighboring rectangle;

Case 4.2.1. There exist at least two rectangles of degree ≥ 3;

Case 4.2.2. There is exactly one rectangle of degree ≥ 3.

Case 4.1. There exists a rectangle of degree ≥ 3 such that its top or bottom side is entirely

contained by one of its neighboring rectangle

Let R be a rectangle and R′ its neighbor, such that the top or bottom side of R is ⊂ ∂R′. Moreover, choose

R such that if we partition P by cutting e = {R,R′}, the part containing R is minimal (in the set theoretic

sense).

Without loss of generality, the top side of R is contained entirely by a neighboring rectangle R′ and RTL = ∅.

RTR

RBL RBR

R1 R2 R3

Figure 9

This is pictured in Figure 9, where R = R1 ∪R2 ∪R3. We can cut off RBL, RBL ∪R1, and RBL ∪R1 ∪R2,

whose number of vertices are respectively

(1) n(RBL)

(2) n(RBL ∪R1) = n(RBL) + n(R1) + (t(eBL(R)))− 2) = n(RBL) + t(eBL(R)) + 2

(3) n(RBL ∪R1 ∪R2) = n(RBL) + n(R1 ∪R2) + t(eBL(R))) = n(RBL) + t(eBL(R)) + 4

If t(eBL(R)) = 0, then one of the 3 cuts is a good cut by Lemma 7(a).

Otherwise t(eBL(R)) = −2, thus either one of the 3 cuts is a good cut or n(RBL) ≡ 4, 10 mod 16. Let S be

the rectangle for which eBL(R) = {R,S}. Since eBL(R) is a 1-cut containing the top side of S, we cannot

have deg(S) = 3, as it contradicts the choice of R. We distinguish between two cases.

Case 4.1.1. deg(S) = 1

Let U = R′ ∪R ∪RBL ∪RBR, which is depicted on Figure 10a. It is easy to see that L1(Q1, U
1
2 ), L2(Q1 ∪

Q2, U
2
2 ), and L3(Q1 ∪Q2 ∪Q3, U

3
2 ) in Figure 10b is a good cut-system of U .

13



S RBR

R

R′

(a)

RBR

Q2 Q3 Q4

Q1

�
L

1

�
L

2

�
L

3

(b)

Figure 10

As all 4 vertices of S are contained in ker{L1, L2, L3}, we can extend this good cut-system to P by reattaching

STL, SBL, STR (if non-empty) via Lemma 16. Therefore P has a good cut.

Case 4.1.2. deg(S) = 2

Let f be the edge of S which is different from eBL(R) = eTL(S). Let the partition generated by it be

f(P f
1 , P

f
2 ), where S ⊆ P f

2 . We have n(P f
1 ) = n(RBL)− n(S)− t(f).

• If t(f) = −2, then n(P f
1 ) ≡ 2, 8 mod 16, so f is a good cut by Lemma 7(a).

• If t(f) = 0, then n(P f
1 ) ≡ 0, 6 mod 16, so f is a good cut by Lemma 7(b).

Case 4.2. Every rectangle of degree ≥ 3 is such that its top and bottom side are not entirely

contained by any of their neighboring rectangle

Let R be a rectangle of degree ≥ 3 and e = {R,S} be one of its edges. Let the partition generated by e be

e(P e
1 , P

e
2 ), where R ⊂ P e

1 and S ⊆ P e
2 . If e is a 1-cut then by the assumptions of this case deg(S) ≤ 2.

• If deg(S) = 1 and t(e) = −2, then n(P e
2 ) + t(e) = 2.

• If deg(S) = 1 and t(e) = 0, then n(P e
2 ) + t(e) = 4.

• If deg(S) = 2 and one of the edges of S is a 0-cut, then P has a good cut by Claim 17.

• If deg(S) = 2 and both edges of S, e and (say) f are 1-cuts: Let the partition generated by f be

P = P f
1

?
∪P f

2 , such that S ∈ P f
1 . Then n(P e

2 ) = n(P f
2 ) +n(S) + t(f) = n(P f

2 ) + 2. Either one of e and

f is a good cut, or by Lemma 7(a) we have n(P f
2 ) ≡ 4, 10 mod 16. In other words, n(P e

2 )+t(e) ≡ 4, 10

mod 16. Similarly, n(P f
1 ) = n(P e

1 ) + 4− 2 = n(P e
1 ) + 2, so n(P e

1 ) ≡ 4, 10 mod 16.

• If deg(S) ≥ 3, then t(e) = 0. Either e is a good cut, or by Lemma 7(b) we have n(P e
2 ) + t(e) ≡ 4, 10

mod 16. Lemma 7(b) also implies n(P e
1 ) ≡ 4, 10 mod 16.
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From now on, we assume that none of the edges of the neighbors of a degree ≥ 3 rectangle represent a good

cut, so in particular we have

n(P e
2 ) + t(e) ≡ 2, 4, or 10 mod 16.

In addition to the simple analysis we have just conducted, we deduce an easy claim to be used in the

following subcases.

Claim 19. Let R ∈ V (T ) be of degree ≥ 3 and suppose both RBR 6= ∅ and RTR 6= ∅. Then P has two

admissible cuts L1 and L2 such that they form a good cut-system or

(i) one of the parts generated by L1 has size
(
n(RBR) + t(eBR(R))

)
+
(
n(RTR) + t(eTR(R))

)
+ 2,

and

(ii) one of the parts generated by L2 has size
(
n(RBR) + t(eBR(R))

)
+
(
n(RTR) + t(eTR(R))

)
+ 4.

Proof. Let U = R ∪ RBL ∪ RBR. Let L1(U1
1 , U

1
2 ) and L2(U2

1 , U
2
2 ) be the vertical cuts of U defined by the

two reflex vertices of U that are on the boundary of R, such that vBR(R) ∈ U1
1 ⊂ U2

1 . By Lemma 15, L1

and L2 can be extended to cuts of V = R ∪ RBL ∪ RBR ∪ RTR, say L′1(V 1
1 , U

1
2 ), L′2(V 2

1 , U
2
2 ). If one of L′1

or L′2 is a 2-cut, then similarly to Claim 17 one can verify they form a good cut-system of V which we can

extend to P . Otherwise

n(V 1
1 ) = n(R ∩ U1

1 ) + n(RBR) + n(RTR) + (t(eBR(R))− 2) + t(eTR(R)) =

=
(
n(RBR) + t(eBR(R))

)
+
(
n(RTR) + t(eTR(R))

)
+ 2,

n(V 2
1 ) = n(R ∩ U2

1 ) + n(RBR) + n(RTR) + t(eBR(R)) + t(eTR(R)) =

=
(
n(RBR) + t(eBR(R))

)
+
(
n(RTR) + t(eTR(R))

)
+ 4.

Lastly, we extend L′1 and L′2 to P by reattaching RTL using Lemma 15. This step does not affect the parts

V 1
1 and V 2

1 , so we are done.

Case 4.2.1. There exist at least two rectangles of degree ≥ 3

In the subgraph T ′ of T which is the union of all paths of T which connect two degree ≥ 3 rectangles, let

R be a leaf and e = {R,S} its edge in the subgraph. As defined in the beginning of Case 4.2, the set of

incident edges of R (in T ) is {ei | 1 ≤ i ≤ deg(R)}, and without loss of generality we may suppose that

e = edeg(R). The analysis also implies that for all 1 ≤ i ≤ deg(R)− 1 we have n(P ei
2 ) + t(ei) = 2, 4.

By the assumptions of this case deg(S) ≥ 2, therefore n(P e
1 ) ≡ 4 or 10 mod 16. If deg(S) ≥ 3 let Q = S.

Otherwise deg(S) = 2 and let Q be the second neighbor of R in T ′. The degree of Q cannot be 1 by its

choice. If deg(Q) = 2, then we find a good cut using Claim 18. In any case, we may suppose from now on

that deg(Q) ≥ 3.
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Let {fi | 1 ≤ i ≤ deg(Q)} be the set of incident edges of Q such that they generate the partitions P =

P fi
1

?
∪P fi

2 where R ⊂ P fi
1 and Q ⊂ P f1

2 . We have

n(P e
1 ) = n(R) +

deg(R)−1∑
i=1

(
n(P ei

2 ) + t(ei)
)
∈ 4 + {2, 4}+ {2, 4}+ {0, 2, 4} = {8, 10, 12, 14, 16},

so the only possibility is n(P e
1 ) = 10.

• If deg(S) ≥ 3, e is a 2-cut (by the assumption of Case 4.2), so by Lemma 7(c) either e is a good cut

or n(P ) ≡ 14 mod 16. Since Q = S and e = f1, we have

n(P f1
1 ) + t(f1) = n(P e

1 ) + t(e) = 10

n(P f1
2 ) = n(P )− n(P f1

1 )− t(f1) ≡ 14− 10 ≡ 4 mod 16.

• If deg(S) = 2, either e is a 1-cut or we find a good cut using Claim 17. Also, f1 = {S,Q} is a 1-cut

too (otherwise apply Claim 17), so

n(P f1
1 ) + t(f1) = n(P e

1 ) + n(S) + t(e) + t(f1) = 10.

By Lemma 7(c), either f1 is a good cut (as n(P f1
1 ) = 12) or n(P ) ≡ 14 mod 16. Thus

n(P f1
2 ) = n(P )− n(P f1

1 )− t(f1) ≡ 14− 12 + 2 ≡ 4 mod 16

We have

n(P ) = n(Q) +
(
n(P f1

1 ) + t(f1)
)

+

deg(Q)∑
i=2

(
n(P fi

2 ) + t(fi)
)
∈

∈ 14 + {2, 4, 10}+ {2, 4, 10}+ {0, 2, 4, 10} mod 16.

The only way we can get 14 mod 16 on the right hand side is when deg(Q) = 4 and out of

n(QBL), n(QBR), n(QTL), n(QTR) mod 16

one is 2, another is 4, and two are 10 mod 16.

The last step in this case is to apply Claim 19 to Q. If it does not give a good cut-system then it gives an

admissible cut where one of the parts has size congruent to 2 + 10 + 2 = 14 or 2 + 4 + 2 = 8 modulo 16,

therefore we find a good cut anyway.

Case 4.2.2. There is exactly one rectangle of degree ≥ 3

Let R be the rectangle of degree ≥ 3 in T , and let {ei | 1 ≤ i ≤ deg(R)} the edges of R, which generate the

partitions P = P ei
1

?
∪P ei

2 where R ⊂ P ei
1 . Then P ei

2 is path for all i. If either Claim 17 or Claim 18 can be
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applied, P has a good cut. The remaining possibilities can be categorized into 3 types:

Type 1: t(ei) = −2, n(P ei
2 ) = 4, and n(P ei

2 ) + t(ei) = 2;

Type 2: t(ei) = −2, n(P ei
2 ) = 4 + 4− 2 = 6, and n(P ei

2 ) + t(ei) = 4;

Type 3: t(ei) = 0, n(P ei
2 ) = 4, and n(P ei

2 ) + t(ei) = 4.

Without loss of generality RBR 6= ∅ and RTR 6= ∅. We will now use Claim 19. If it gives a good cut-system,

we are done. Otherwise

• If exactly one of eBR(R) and eTR(R) is of type 1, apply Claim 19(i): it gives an admissible cut which

cuts off a subpolyomino of size 2 + 4 + 2 = 8, so P has a good cut.

• If both eBR(R) and eTR(R) are of type 1, apply Claim 19(ii): it gives an admissible cut which cuts

off a subpolyomino of size 2 + 2 + 4 = 8, so P has a good cut.

• If none of eBR(R) and eTR(R) are of type 1 and n(P ) 6≡ 14 (mod 16), apply Claim 19(i): it gives an

admissible cut which cuts off a subpolyomino of size 4+4+4 = 12, which is a good cut by Lemma 7(c).

Now we only need to deal with the case where n(P ) = 14 and neither eBR(R) nor eTR(R) is of type 1.

If R still has two edges of type 1, again Claim 19(i) gives a good cut of P . If R has at most one edge of

type 1, we have

14 = n(P ) = n(R) +

deg(R)∑
i=1

(
n(P ei

2 ) + t(ei)
)
∈ 4 + {2, 4}+ {4}+ {4}+ {0, 4} = {14, 16, 18, 20},

and the only way we can get 14 on the right hand is when deg(R) = 3 and both eBR(R) and eTR(R) are

of type 2 or 3 while the third incident edge of R is of type 1. We may assume without loss of generality

that the cut represented by eTR(R) is longer than the cut represented by eBR(R).

• If P is vertically convex, its vertical cut tree is a path, so it has a good cut as deduced in Case 1.

• If P is not vertically convex, but eTR(R) is a type 2 edge of R, such that the only horizontal cut of

RTR is shorter than the cut represented by eTR(R), then P ′ = P −RBR is vertically convex, and has

(10− 4)/2 = 3 reflex vertices. By Claim 17 or Claim 18, P ′ has a good cut-system such that its kernel

contains vBR(R), since its x coordinate is maximal in P ′. Lemma 16 states that P also has a good

cut-system.

• Otherwise we find that the top right part of P looks like to one of the cases in Figure 11. It is easy to

see that in all three pictures L is an admissible cut which generates two subpolyominoes of 8 vertices.
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Figure 11

The proof of Theorem 4 is complete. To complement the formal proof, we now demonstrate the algorithm

on Figure 12.

1

1

2

2

3

4

5

6

7

Figure 12: The output of the algorithm on a polyomino n = 52 vertices.

First, we resolve a corridor via the L-cut 1 , which creates two pieces of 20 and 34(≡ 2 mod 16) vertices.

As a result of this cut, a new corridor emerges in the 20-vertex piece, so we cut the polyomino at 2 , cutting

off a piece of 8 vertices. The other piece of 14 vertices containing two pockets is further divided by 3 into

a piece of 6 and 8 vertices. Another pocket is dealt with by cut 4 , which divides the polyomino into an 8-
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and a 28-vertex piece. To the larger piece, Case 4.2 applies, and we find cut 5 , which produces a 16- and a

14-vertex piece. The 16-vertex piece is cut into two 8-vertex pieces by 6 . Lastly, Figure 11c of Case 4.2.2

applies to the 14-vertex piece, so cut 7 divides it into two 8-vertex pieces.

We got lucky with cuts 2 and 6 in the sense that they both satisfy the inequality in (1) strictly. Hence,

only 8 pieces are needed to partition the polyomino on Figure 12 into polyominoes of ≤ 8-vertex pieces,

instead of the upper bound of (3 · 52 + 4)/16 = 10.

5. Conclusion

We have not dealt with algorithmic aspects yet in this paper, but the proof given in the previous section

can easily be turned into an O(n2) algorithm which partitions P into at most
⌊
3n+4
16

⌋
simple polyominoes.

The running time can be improved to O(n) by using linear-time triangulation [2] to construct the horizontal

cut tree of P (such that the edge list of a vertex is ordered by the x coordinates of the corresponding cuts)

and a list of pockets, corridors, and rectangles of Case 4.1, all of which can be maintained in O(1) for the

partitions after finding and performing a cut in O(1).

Theorem 4 fills a gap between two already established (sharp) results: in [3] it is proved that polyominoes

can be partitioned into at most bn4 c polyominoes of at most 6 vertices, and in [4] it is proved that any

polyomino in general position (a polyomino without 2-cuts) can be partitioned into bn6 c polyominoes of

at most 10 vertices. However, we do not know of a sharp theorem about partitioning polyominoes into

polyominoes of at most 12 vertices.

Furthermore, for k ≥ 4, not much is known about partitioning (not necessarily simply connected) orthogonal

polygons into polyominoes of at most 2k vertices. According to the “metatheorem,” the first step in this

direction would be proving that an orthogonal polygon of n vertices with h holes can be partitioned into

b 3n+4h+4
16 c polyominoes of at most 8 vertices. This would generalize the corresponding art gallery result in

[4, Thm. 5.].
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