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Abstract. Extremal set theory is dealing with families, F of subsets of an n-
element set. The usual problem is to determine or estimate the maximum possible
size of F , supposing that F satisfies certain constraints. To limit the scope of this
survey most of the constraints considered are of the following type: any r subsets in
F have at least t elements in common, all the sizes of pairwise intersections belong
to a fixed set, L of natural numbers, there are no s pairwise disjoint subsets.
Although many of these problems have a long history, their complete solutions
remain elusive and pose a challenge to the interested reader.

Most of the paper is devoted to sets, however certain extensions to other struc-
tures, in particular to vector spaces, integer sequences and permutations are men-
tioned as well. The last part of the paper gives a short glimpse of one of the very
recent developments, the use of semidefinite programming to provide good upper
bounds.
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1. Introduction

For a positive integer n let [n] denote the set of the first n positive integers,

[n] = {1, 2, . . . , n}. Also let 2[n] and
(
[n]
k

)
denote the power set and the collection

of all k-element subsets of [n], respectively. A subset F ⊂ 2[n] is called a family,

and elements of F are often called members. If F ⊂
(
[n]
k

)
, we call it k-uniform.
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Extremal set theory is a fast developing area within combinatorics which deals with
determining or estimating the size |F| of a family satisfying certain restrictions.

The first result in extremal set theory was Sperner’s Theorem, establishing the
maximum size of an antichain, i.e., a family without a pair of members one containing
the other.

Theorem 1.1 (Sperner [137]). Suppose that A ⊂ 2[n] satisfies A ̸⊂ A′ for all A,A′ ∈
A. Then it follows |A| ≤

(
n

⌊n/2⌋

)
. Moreover, the only families achieving equality are(

[n]
⌊n/2⌋

)
and

(
[n]

⌈n/2⌉

)
. (Note that for n even they coincide.)

Sperner’s Theorem dates back to 1928 but it remained an isolated result for
decades. It was mostly due to the pioneering work of Paul Erdős that systematic
research of similar problems started in the 1960’s. Erdős’ application of Sperner’s
theorem to Littlewood–Offord problem was also a very early result in Extremal Set
Theory. By now extensions and analogues of Sperner’s Theorem are very numer-
ous and have been the subject of several survey articles and monographs, cf. e.g.,
[37]. For this reason we limit the scope of the present survey to another subfield
intersection theorems. The first instance is the following.

Theorem 1.2 (Erdős–Ko–Rado [44]). Let n > k > t > 0 be integers and let F ⊂
(
[n]
k

)
satisfy |F ∩ F ′| ≥ t for all F, F ′ ∈ F . Then (i) and (ii) hold.

(i) If t = 1 and n ≥ 2k then

|F| ≤
(
n− 1

k − 1

)
. (1)

(ii) If t ≥ 2 and n > n0(k, t) then

|F| ≤
(
n− t

k − t

)
.

Let us mention that Erdős, Ko, and Rado proved this result around 1938, when
all three of them were in England. However, interest in combinatorics was very
limited at that time. That is the reason that they postponed the publication of this
fundamental result for more than 20 years. There are many proofs known for (i) and
we are going to present one in the next section but let us show a simple proof of (ii)
here.

Proof of (ii) in Theorem 1.2. For any set T ∈
(
[n]
t

)
the family {F ∈

(
n
k

)
: T ⊂ F}

has size
(
n−t
k−t

)
and satisfies the assumptions. Suppose now that no t-element set is

contained in all members of F .
We claim that one can find a set B, with |B| < 3k such that

|F ∩B| ≥ t + 1 for all F ∈ F . (2)

To prove the claim we distinguish two cases. The first case is that |F ∩ F ′| ≥ t + 1
for all F, F ′ ∈ F . In this case B = F will do for any F ∈ F . The second case is
that there exist F1, F2 ∈ F with |F1∩F2| = t. Now choose an arbitrary F3 ∈ F with
F1 ∩ F2 ̸⊂ F3. Choose B = F1 ∪ F2 ∪ F3. Then |F ∩ Fi| ≥ t for i = 1, 2, 3 forces
|F ∩B| ≥ t + 1, concluding the proof of the claim.
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To finish the proof of (ii) just note that for every F ∈
(
[n]
k

)
and satisfying (2) one

can find B0 ∈
(

B
t+1

)
and F0 ∈

(
[n]

k−t−1

)
in one or several ways such that F = B0 ∪ F0.

Consequently, |F| ≤
( |B|
t+1

)(
n

k−t+1

)
<
(

3k
t+1

)(
n

k−t−1

)
. For n > n0(k, t) the RHS is much

less than
(
n−t
k−t

)
. We mention that this type of argument is often referred to as a

‘degrees of freedom argument.’ □

To prove (i), Erdős, Ko, and Rado introduced an operation on families of sets,
called shifting, which we are going to define in the next section. To avoid technical-
ities here we content ourselves with the following.

Definition 1.1. A family F ⊂ 2[n] is called shifted if for all F ∈ F , j ∈ F and i < j,
if i ̸∈ F then (F \ {j}) ∪ {i} is also in F .

Let us introduce some convenient notation to give a reformulation of shiftedness.
For F ⊂ 2[n], i, j ∈ [n] define

F(i) = {F \ {i} : i ∈ F ∈ F}, F(j̄) = {F : j ̸∈ F ∈ F}, F(i, j̄) = (F(i))(j̄).

Now we can easily see that F is shifted if and only if F(i, j̄) ⊃ F(j, ī) for all
1 ≤ i < j ≤ n. Note also the obvious equality: |F| = |F(i)| + |F (̄i)|.

Proof of (i) in Theorem 1.2 for shifted families. Let us now prove (i) for shifted fam-
ilies by applying induction on n. In the case n = 2k one has

(
2k−1
k−1

)
= 1

2

(
2k
k

)
and one

can partition all k-element subsets of [2k] into
(
2k−1
k−1

)
=
(
2k−1
k

)
pairs (F,G) where

in each pair G = [2k] \ F . The condition F ∩ F ′ ̸= ∅ implies that for each pair
(F,G) at most one of the two is in F . Consequently, |F| ≤ 1

2

(
2k
k

)
=
(
2k−1
k−1

)
, proving

(1). Now suppose that n > 2k and consider the two families F(n) ⊂
(
[n−1]
k−1

)
and

F(n̄) ⊂
(
[n−1]

k

)
. By the induction hypothesis the latter satisfies F(n̄) ≤

(
n−2
k−1

)
. The

point is that if F is shifted then G∩G′ ̸= ∅ for all G,G′ ∈ F(n) as well. Indeed, sup-
posing G∩G′ = ∅ we have |[n− 1] \ (G∪G′)| = (n− 1)− 2(k− 1)| = n− 2k+ 1 > 0.
Take an element i from [n − 1] \ (G ∪ G′). By shiftedness F ′ := G′ ∪ {i} ∈ F .
However, F := G ∪ {n} ∈ F by definition and F ∩ F ′ = ∅, a contradiction. There-
fore we can apply the induction hypothesis to F(n) as well to infer |F(n)| ≤

(
n−2
k−2

)
.

Consequently, |F| = |F(n̄)| + |F(n)| ≤
(
n−2
k−1

)
+
(
n−2
k−2

)
=
(
n−1
k−1

)
, proving (1). □

Let us give a proper name for the properties required in the Erdős–Ko–Rado
Theorem.

Definition 1.2. Let r ≥ 2 and t ≥ 1 be integers. A family F ⊂ 2[n] is called r-wise
t-intersecting if for all F1, . . . , Fr ∈ F one has |F1 ∩ · · · ∩ Fr| ≥ t. For r = 2 we omit
the word ‘2-wise,’ and for t = 1 we just say ‘intersecting’ instead of ‘1-intersecting.’

What about t-intersecting families that are not necessarily k-uniform. In [44] it
is shown that |F| ≤ 2n−1 for all intersecting F ⊂ 2[n], and the upper bound follows
from the simple observation that F ∈ F implies [n] \ F ̸∈ F . Moreover, they prove
that every intersecting family F ⊂ 2[n] can be extended to a family G of size 2n−1

with F ⊂ G ⊂ 2[n].
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The case of t-intersecting families with t ≥ 2 is more difficult. Answering a problem
from the EKR paper [44] Katona proved the following.

Theorem 1.3 (Katona [99]). Suppose that F ⊂ 2[n] is t-intersecting, n ≥ t ≥ 1.
Then either (i) or (ii) holds.

(i) n + t = 2a and

|F| ≤
∑
k≥a

(
n

k

)
. (3)

(ii) n + t = 2a + 1 and

|F| ≤
(
n− 1

a

)
+
∑

k≥a+1

(
n

k

)
. (4)

Moreover, if t ≥ 2 then in the case of equality F = {F ⊂ [n] : |F | ≥ a} holds for (i),
and F =

(
Y
a

)
∪ {F ⊂ [n] : |F | ≥ a + 1} holds for (ii) with some Y ∈

(
X

n−1

)
.

As we are going to show in the next section, upon proving the Katona Theorem one
can assume that F is shifted. Using this assumption Wang [150] found an amazingly
short proof.

Proof of (i) and (ii) in Theorem 1.3 for shifted families. The proof is based on the
following.

Claim 1.1. If F ⊂ 2[n] is shifted and t-intersecting (t ≥ 2), then F(1) is (t − 1)-
intersecting and F(1̄) is (t + 1)-intersecting.

Proof. Only the case of F(1̄) needs a proof. Let F, F ∈ F with F, F ′ ⊂ [2, n] =
{2, 3, . . . , n}. Let j ∈ F ∩ F ′. By shiftedness, F ′′ := (F ′ \ {j}) ∪ {1} is also in F .
Using the t-intersecting property |F ∩ F ′| = |F ∩ F ′′| + 1 ≥ t + 1 follows. □

Now one can prove (3) and (4) for all t by applying induction on n. Since for
t = 1 both formulae give 2n−1, we assume t ≥ 2. Let n + t = 2a. In view of the
claim we have |F(1)| ≤

∑
k≥a

(
n−1
k−1

)
and |F(1̄)| ≤

∑
k≥a

(
n−1
k

)
. Now (3) follows from

|F| = |F(1)| + |F(1̄)|. The case n + t = 2a + 1 is done in the exactly the same
way. □

Katona’s original proof used the very important notion of shadows.

Definition 1.3. For a family F ⊂ 2[n] and 0 ≤ i ≤ n we define the i-shadow ∆i(F)
of F by

∆i(F) = {G ∈
(
[n]
i

)
: G ⊂ F for some F ∈ F}.

For given positive integers m, k, i with k > i, determine min |∆i(F)| over all k-
uniform families F consisting of m members. This problem was solved by Kruskal
[111] and Katona [100]. This is a very important result which has applications
beyond combinatorics. We shall discuss it in the next section. Here we state a
slightly weaker version due to Lovász [118]. For a real number x > k − 1 we define(
x
k

)
= x(x− 1) · · · (x− k + 1)/k!. Note that this is a monotone increasing function.

Therefore for every positive m and fixed k there is a unique x > k− 1 with
(
x
k

)
= m.
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Theorem 1.4 (Lovász [118]). Let 1 ≤ i < k ≤ n and F ⊂
(
[n]
k

)
with |F| =

(
x
k

)
.

Then

|∆i(F)| ≥
(
x

i

)
. (5)

The following short proof of item (i) of the Erdős–Ko–Rado Theorem is due to
Daykin [25].

Proof of (i) in Theorem 1.2. Let n ≥ 2k > 0 and let F ⊂
(
[n]
k

)
be intersecting.

Consider the family of complements F c := {[n] \ F : F ∈ F} ⊂
(

[n]
n−k

)
. Since

F ∩ F ′ ̸= ∅ is equivalent to F ̸⊂ [n] \ F ′ it follows |F| + |∆k(F c)| ≤
(
n
k

)
. Should

|F| >
(
n−1
k−1

)
=
(
n−1
n−k

)
hold, by Theorem 1.4, one would deduce |∆k(F c)| >

(
n−1
k

)
implying |F| + |∆k(F)| >

(
n−1
k−1

)
+
(
n−1
k

)
=
(
n
k

)
, a contradiction. □

Let us mention that Katona [99] proved a different shadow theorem which also
implies (i) of Theorem 1.2.

Theorem 1.5 (Katona Intersection Shadow Theorem [99]). Let 1 ≤ t ≤ k ≤ n and
let F ⊂

(
X
k

)
be t-intersecting. Then, for k − t ≤ l < k, we have

|∆l(F)|/|F| ≥
(

2k − t

l

)
/

(
2k − t

k

)
. (6)

Note that k − t ≤ l < k ensures that the RHS is at least 1, i.e., |∆l(F)| ≥ |F|
in this range. In the next section we shall discuss some extensions and analogues of
Theorem 1.5.

Let us now present two conjectures dealing with r-wise t-intersecting families.

Definition 1.4 (Frankl Families). Let n ≥ t be positive integers.

(i) (non-uniform case) Define

F(n, r, t, i) := {F ⊂ [n] : |F ∩ [t + ri]| ≥ t + (r − 1)i},

where 0 ≤ i < n−t
r

.

(ii) (uniform case) Let k be an integer with t ≤ k ≤ r−1
r
n. Define

F (k)(n, r, t, i) := F(n, r, t, i) ∩
(
[n]
k

)
,

where 0 ≤ i ≤ ⌊ k−t
r−1

⌋.

Note that both type of families are r-wise t-intersecting.

Conjecture 1.1 (Frankl [47]). If F ⊂ 2[n] is r-wise t-intersecting, then

|F| ≤ max
i

|F(n, r, t, i)|.

Moreover, if F ⊂
(
[n]
k

)
and k ≤ r−1

r
n then

|F| ≤ max
i

|F (k)(n, r, t, i)|. (7)
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For the case r = 2 the above conjectures are known to be true, and here is a
brief history. For the non-uniform case Katona solved it (Theorem 1.3). For the
uniform case a simple computation shows that if n ≥ (t + 1)(k − t + 1) then
maxi |F (k)(n, 2, t, i)| = |F (k)(n, 2, t, 0)| =

(
n−t
k−t

)
. So Theorem 1.2 confirms (7) for

n > n0(k, t). Also the case n = 4m, k = 2m of the conjecture already appeared in
the EKR paper [44], and was popularized by Erdős for a number of years (e.g. [41]).
Frankl [50] proved (7) (for t ≥ 15) for the exact range of n, that is n ≥ (t+1)(k−t+1),
by using shifting and counting the lattice paths corresponding subsets in shifted fam-
ily. Then Wilson [152] gave a completely different proof for the same result (for all t)

by studying the spectra of a graph on
(
[n]
k

)
reflecting the t-intersecting property. The

case for small n was more difficult. Frankl and Füredi [67] proved it for the cases

n > (k − t + 1)c
√
t/ log t, where c is some absolute constant. Then it was Ahlswede

and Khachatrian who finally established (7) in general for r = 2. They gave two
proofs [1, 3], and both of them are purely combinatorial and based on shifting and
clever exchange operations. For their methods we recommend an excellent survey
by Bey and Engel [10].

We say that a t-intersecting family F ⊂ 2[n] is non-trivial if |
∩

F| < t, where∩
F :=

∩
F∈F F . So F is non-trivial intersecting family iff it is intersecting and∩

F = ∅.

Theorem 1.6 (Hilton–Milner [95]). Let k ≥ 3 and n ≥ 2k. If F ⊂
(
[n]
k

)
is a non-

trivial intersecting family, then |F| ≤
(
n−1
k−1

)
−
(
n−k−1
k−1

)
+ 1. Moreover, if n > 2k then

equality holds if and only if k ≥ 3 and

F ∼= {F ∈
(

[n]

k

)
: 1 ∈ F, F ∩ [2, k + 1] ̸= ∅} ∪ [2, k + 1],

or k = 3 and F ∼= {F ∈
(
[n]
3

)
: |F ∩ [3]| ≥ 2}.

For the corresponding result for non-trivial t-intersecting families, see [2, 51].

Finally we list some classic text on the subject.

• L. Babai, P. Frankl [8]: Linear Algebra Methods in Combinatorics, Prelimi-
nary Version 2. Dept. of Comp. Sci., The univ. of Chicago, 1992.

• B. Bollobás [12]: Combinatorics. Cambridge University Press.
• S. Jukna [97]: Extremal Combinatorics.
• C. Godsil, K. Meagher [88]: Erdős–Ko–Rado Theorems: Algebraic Approaches.

Cambridge University Press, Cambridge, 2015.

We will not cover a topic on stability or supersaturation in this survey, see e.g.,
[24, 34].

2. Shadows and shifting

Recall that for k > l ≥ 0 the l-shadow of a k-uniform family F is

∆l(F) = {G : |G| = l, G ⊂ F holds for some F ∈ F}.
Given positive integers m and k, the Kruskal–Katona Theorem determines the min-
imum of |∆l(F)| over all k-uniform families F with |F| = m. The answer is
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‘take the first m sets of size k in colex order,’

where we define A <colex B iff max{a ∈ A \ B} < max{b ∈ B \ A}. For fixed k and
each particular value of m one can use a simple algorithm to obtain the so-called
cascade form

m =

(
ak
k

)
+

(
ak−1

k − 1

)
+ · · · +

(
at
t

)
with

ak > ak−1 > · · · > at ≥ t > 0.

Then the minimum of |∆l(F)| is(
ak
l

)
+

(
ak−1

l − 1

)
+ · · · +

(
at

l − k + t

)
,

where we define
(
a
b

)
= 0 for a < b. That is, the theorem does not provide an easily

computable formula for the minimum size of the shadow. The actual function, to say
the least, is not very smooth. As a matter of a fact it was shown in [71] that after
some normalization the corresponding function (the left picture) converges uniformly
to the Takagi function (the right picture), a continuous but nowhere differentiable
function with self-similarity.

The Kruskal-Katona Function for k=7 l=6
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For many of the numerous application of the Kruskal–Katona Theorem we can by-
pass these tedious computations by using the version due to Lovász [118], Theo-
rem 1.4. The functions

(
x
k

)
and

(
x
l

)
are differentiable and strictly monotone. Due to

this second property it is sufficient to prove (5) for l = k−1 and apply it successively
for (k − 1, k − 2), . . . , (l + 1, l).

Let us present here a concise, clever proof of Theorem 1.4 due to Keevash [102]
which was inspired by the proof of Lovász [118]. For this we recall some graph theo-
retic notions. It is sometimes convenient to view a family F ⊂ 2[n] as a hypergraph.
This case, an element of [n] is called a vertex, and a member of the family is called
a hyperedge (or simply an edge). For F ⊂ 2[n] and a vertex i ∈ [n] let dF(i) denote

the degree of i, that is, the number of edges (in F) containing i. For F ⊂
(
[n]
k

)
we

say that G ∈
(

[n]
k+1

)
is a (k + 1)-clique (or simply clique) of F if

(
G
k

)
⊂ F , and let

Ck+1(F) ⊂
(

[n]
k+1

)
denote the set of cliques in F . By definition it follows that

F ⊂ Ck(∆k−1(F)). (8)

For example, if F = {{1, 2, 4}, {2, 3, 5}, {1, 3, 6}}, then C3(∆2(F)) = F ∪ {{1, 2, 3}}.
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Keevash observed the following, which implies Theorem 1.4 immediately.

Theorem 2.1 (Keevash [102]). Let n, k be integers with n > k ≥ 1, and let F ⊂
(
[n]
k

)
with |F| =

(
x
k

)
for some real x ≥ k. Then |Ck+1(F)| ≤

(
x

k+1

)
.

Proof of Theorem 1.4. It is sufficient to show the case i = k − 1 (then applying
this k − i times and use the monotonicity of

(
x
j

)
). Let |∆k−1(F)| =

(
y

k−1

)
. By (8)

and Theorem 2.1 we have
(
x
k

)
= |F| ≤ |Ck(∆k−1(F))| ≤

(
y
k

)
, and x ≤ y. Thus

|∆k−1(F)| =
(

y
k−1

)
≥
(

x
k−1

)
. □

For F ⊂
(
[n]
k

)
and i ∈ [n] let

Ck(F , i) := {G \ {i} : i ∈ G ∈ Ck+1(F)}.
Observe that F ∈ Ck(F , i) if and only if F ∈ F and F ∪ {i} ∈ Ck+1(F). So if
i ∈ F ′ ∈ F then F ′ ̸∈ Ck(F , i). Thus we have

|Ck(F , i)| ≤ |F| − dF(i), (9)

Ck(F , i) ⊂ Ck(F(i)), (10)

where F(i) := {F \ {i} : i ∈ F ∈ F}. (Using this notation we can write Ck(F , i) =
(Ck+1(F))(i).)

Proof of Theorem 2.1. We apply induction on k. The case k = 1 is clear, so let
k ≥ 2. We claim that

|Ck(F , i)| ≤
(x
k
− 1
)
dF(i) for all i ∈ [n]. (11)

Fix i ∈ [n]. First suppose that dF(i) ≥
(
x−1
k−1

)
. Then

|F| =

(
x

k

)
=

x

k

(
x− 1

k − 1

)
≤ x

k
dF(i),

and (11) follows from (9). Next suppose that dF(i) =
(
y−1
k−1

)
≤
(
x−1
k−1

)
for some y ≤ x.

Then, by induction hypothesis, we have |Ck(F(i))| ≤
(
y−1
k

)
. This together with (10)

gives us that

|Ck(F , i)| ≤
(
y − 1

k

)
=
(y
k
− 1
)(y − 1

k − 1

)
≤
(x
k
− 1
)(y − 1

k − 1

)
=
(x
k
− 1
)
dF(i),

proving (11). Finally we have

|Ck+1(F)| =
1

k + 1

∑
i∈[n]

|Ck(F , i)| ≤ 1

k + 1

∑
i∈[n]

(x
k
− 1
)
dF(i).

Noting that
∑

i∈[n] dF(i) = k
(
x
k

)
, we get |Ck+1(F)| ≤ 1

k+1

(
x
k
− 1
)
k
(
x
k

)
=
(

x
k+1

)
. □

One of the advantages of this ‘shifting-free’ proof is that it also works in vector
spaces. In fact Chowdhury and Patkós [23] obtained a vector space version of The-
orems 1.4 and 2.1 along this line. We mention that shifting is a very strong proof
technique to deal with families of subsets, but a vector space version of shifting has
not been found yet.
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As n tends to infinity the ration
(
x
l

)
/
(
x
k

)
tends to zero. However, if F is t-

intersecting then

|∆l(F)| ≥ |F| for k − t ≤ l < k (12)

holds. This was proved by Katona [99] in a stronger form, Theorem 1.5. Looking at

the t-intersecting family
(
[2k−t]

k

)
shows that the inequality (6) is best possible.

Let us use (12) to give a short proof of the Erdős–Ko–Rado Theorem without
computation. Recall the notation

F(1) = {F \ {1} : 1 ∈ F ∈ F},
F(1̄) = {F ∈ F : 1 ̸∈ F},

and the identity |F| = |F(1)| + |F(1̄)|. Let F ⊂
(
[n]
k

)
be an intersecting family,

n ≥ 2k. We need to prove

|F| ≤
(
n− 1

k − 1

)
. (13)

Proof. This proof is taken from [68]. Without computation means that we are not
even proving (13) as a formula but in the conceptually simpler form:

number of members of |F| ≤ number of sets in

(
[2, n]

k − 1

)
. (14)

First take away from both sides the members corresponding to F(1). On the LHS
remain F ∈ F with 1 ̸∈ F , i.e., F(1̄). Set G = {[2, n] \ F : F ∈ F(1̄)}.

Claim 2.1. (i) G ⊂
(

[2,n]
n−1−k

)
is (n− 2k)-intersecting, and |∆k−1(G)| ≥ |F(1̄)|.

(ii) ∆k−1(G) ∩ F(1) = ∅.

Before proving the claim let us note that by the claim the number of the sets
remaining on the RHS is at least as much as those on the LHS, therefore concluding
the proof of the RHS of (14). Now we prove the claim.

(i) Let F, F ′ ∈ F(1̄), and let G = [2, n] \F and G′ = [2, n] \F ′. Since |F ∩F ′| ≥ 1
it follows that |G ∪G′| ≤ n− 2 and

|G ∩G′| = |G| + |G′| − |G ∪G′| ≥ 2(n− 1 − k) − (n− 2) = n− 2k.

Applying (6) to G yields (i).
(ii) It is a restatement of F ∩ F ′ ̸= ∅ for 1 ̸∈ F ∈ F and 1 ∈ F ′ ∈ F . This

completes the proof of (13). □
Katona proved (6) using the shifting technique. Let 1 ≤ i < j ≤ n. We define the

shifting operator sij on [n] and also on 2[n] as follows. For F ⊂ [n] let

sij(F ) :=

{
(F \ {j}) ∪ {i} if F ∩ {i, j} = {j} and (F \ {j}) ∪ {i} ̸∈ F ,

F otherwise.

Then, for F ⊂ 2[n], let

sij(F) := {sij(F ) : F ∈ F}.
A family F is called shifted if sij(F) = F for all 1 ≤ i < j ≤ n.
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This is a formal definition, but now we redefine sij(F) in an intuitive way. Every
family in 2[n] is uniquely determined by the four families

F(i, j),F(i, j̄),F (̄i, j),F (̄i, j̄),

where, e.g., F(i, j̄) = {F \ {i, j} : F ∩{i, j} = {i}}. Now sij(F) is the unique family
G satisfying

G(i, j) = F(i, j),

G (̄i, j̄) = F (̄i, j̄),

G(i, j̄) = F(i, j̄) ∪ F (̄i, j),

G (̄i, j) = F(i, j̄) ∩ F (̄i, j).

With this in mind it is easy to prove the following.

Lemma 2.1. (i) If F is r-wise t-intersecting then sij(F) is r-wise t-intersecting.
(ii) ∆l(sij(F)) ⊂ sij(∆l(F)).

In view of (ii), in proving lower bounds for ∆l(F) we can assume that F is shifted.

Lemma 2.2 (Frankl [52]). If F is shifted k-uniform with |F| =
(
x
k

)
, x ≥ k, then

|F(1̄)| ≤
(
x− 1

k

)
. (15)

Proof. We prove the statement simultaneously with Lovász version of the Kruskal–
Katona Theorem, i.e.,

|∆k−1(F)| ≥
(

x

k − 1

)
. (16)

Without loss of generality F is shifted. Apply induction on ⌊x⌋. Note that |F(1̄)| > 0

implies {2, 3, . . . , k + 1} ∈ F . Whence by shiftedness
(
[k+1]
k

)
⊂ F , forcing x ≥ k + 1.

The inequality (15) is true for ⌊x⌋ = k, which is our base case. (16) is checked in
the same way.

Now the induction step. Suppose for contradiction that |F(1̄)| =
(
y
k

)
, y > x − 1.

As ⌊x⌋ ≥ k + 1, ⌊y⌋ ≥ k and using the induction hypothesis

|∆k−1(F(1̄))| ≥
(

y

k − 1

)
>

(
x− 1

k − 1

)
.

However, by shiftedness ∆k−1(F(1̄)) ⊂ F(1) yielding |F(1)| >
(
x−1
k−1

)
. Consequently(

x

k

)
= |F| = |F(1̄)| + |F(1)| >

(
x− 1

k

)
+

(
x− 1

k − 1

)
=

(
x

k

)
,

a contradiction. Now |F(1)| = |F| − |F(1̄)| ≥
(
x
k

)
−
(
x−1
k

)
=
(
x−1
k−1

)
follows from (15).

Then (16) is a consequence of |∆k−1(F)| ≥ |F(1)| + |∆k−2(F(1))| and the induction
hypothesis. □

It is worth noting that the main reason that the whole proof works and that the full
Kruskal–Katona Theorem can be proved by this approach is the following obvious
fact.
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Proposition 2.1 (Frankl [57]). If F ⊂
(
n
k

)
is shifted then ∆k−1(F) = ∆k−1(F \

F(1̄)).

In [57] the same approach is used to prove strong bounds on the size of complexes.
Here we recall the definition. We say that a family C ⊂ 2[n] (resp. F ⊂ 2[n]) is called
a complex (resp. filter) if it satisfies C ′ ⊂ C ∈ C implies C ′ ∈ C (resp. F ∋ F ⊂ F ′

implies F ′ ∈ F). For a complex C define

A(C) = {A ∈ C :̸ ∃B ∈ C, A ⊂ B,A ̸= B}.
Clearly, A(C) is an antichain and it determines C:

C = {C ⊂ [n] : ∃A ∈ A(C), C ⊂ A}.
Set I(C) = C \ A(C). We call it the interior of C.

Theorem 2.2 (Frankl [57]). Suppose that C ⊂ 2[n] is a complex of size at least(
n
0

)
+ · · ·+

(
n

k−1

)
+
(
x
k

)
for some 1 ≤ k ≤ x ≤ n, then |I(C)| ≥

(
n
0

)
+ · · ·+

(
n

k−2

)
+
(

x
k−1

)
.

For an filter F ⊂ 2[n] define its exterior E(F) by

E(F) = {E ⊂ [n] : ∃F ∈ F , E ⊂ F, |F \ E| = 1}.

Theorem 2.3 (Frankl [57]). Suppose that F ⊂ 2[n] is an filter and that |F| =(
n
n

)
+ · · · +

(
n

k+1

)
+
(
x
k

)
with 1 ≤ k ≤ x ≤ n, then |E(F)| ≥

(
n

n−1

)
+ · · · +

(
n
k

)
+
(

x
k−1

)
.

The above two theorems imply important, classical results of Kleitman [108] and
Harper [94], which incidentally both appeared in the first volume of Journal of Com-
binatorial Theory, 50 years ago!

Theorem 2.4 (Kleitman). Let C ⊂ 2[n] be a complex with |A(C)| ≥
(
n
k

)
for some

integer 1 ≤ k ≤ n/2, then |C| ≥
(
n
0

)
+ · · · +

(
n
k

)
.

Note that the original proof was incomplete. In [90] a full proof due to A. M. Odlyzko
is reproduced.

For a family F ⊂ 2[n] define its full boundary σ(F) by σ(F) = {G ⊂ [n] : ∃F ∈
F , |F△G| ≤ 1}.

Theorem 2.5 (Harper (handy version) [94]). If |F| =
(
n
n

)
+ · · ·+

(
n

k+1

)
+
(
x
k

)
where

n ≥ x ≥ k ≥ 1, then |σ(F)| ≥
(
n
n

)
+ · · · +

(
n
k

)
+
(

x
k−1

)
.

Note that in Harper’s theorem F is not required to be a complex or filter, but that
can be taken care of via ‘down shifting,’ which we will not cover in this survey.

The following result gives a lower bound for the size of shadows in a family with
independence number restrictions.

Theorem 2.6 (Frankl [59]). If F ⊂
(
[n]
k

)
contains no s + 1 pairwise disjoint sets,

then |∆k−1(F)| ≥ |F|/s.
We mention that there are some similar results in [59].

We say that two families A and B are cross intersecting if A∩B ̸= ∅ for all A ∈ A
and B ∈ B. We can use the following inequality concerning cross intersecting families
to prove the Hilton–Milner Theorem.
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Lemma 2.3 ([77]). If A ⊂
(
[n]
a

)
and B ⊂

(
[n]
b

)
are non-empty cross intersecting

families with n ≥ a + b, a ≤ b, then it follows that |A| + |B| ≤
(
n
b

)
−
(
n−a
b

)
+ 1.

More generally, Wang and Zhang obtained the following inequality.

Theorem 2.7 (Wang–Zhang [151]). Let n, a, b, t be positive integers with n ≥ 4,

a, b ≥ 2, t < min{a, b}, a + b < n + t, (n, t) ̸= (a + b, 1), and
(
n
a

)
≤
(
n
b

)
. If A ⊂

(
[n]
a

)
and B ⊂

(
[n]
b

)
are cross t-intersecting, that is, |A ∩B| ≥ t for all A ∈ A and B ∈ B,

then |A| + |B| ≤
(
n
b

)
−
∑t−1

i=0

(
a
i

)(
n−a
b−i

)
+ 1.

Proof of the inequality in Theorem 1.6. Suppose that |F| is maximal with respect to
the conditions. The covering number τ(F) is defined by the minimal integer t such
that there exists a t-element set T satisfying T ∩ F ̸= ∅ for all F ∈ F . First we
deal with an important special case τ(F) ≤ 2, that is, there is an A := {a, b} ∈

(
[n]
2

)
such that A ∩ F ̸= ∅ for all F ∈ F . It follows from the maximality of |F| that

{G ∈
(
[n]
k

)
: A ⊂ G} ⊂ F . Define

A := {F \ {a} : F ∈ F , F ∩ A = {a}},
B := {F \ {b} : F ∈ F , F ∩ A = {b}}.

Then A,B are cross-intersecting families on [n]\A, and Lemma 2.3 yields |A|+ |B| ≤(
n−2
k−1

)
−
(
(n−2)−(k−1)

k−1

)
+1. Thus, |F| ≤

(
n−2
k−1

)
−
(
n−k−1
k−1

)
+1+

(
n−2
k−2

)
=
(
n−1
k−1

)
−
(
n−k−1
k−1

)
+1,

as desired.
Next consider the case when F is shifted and τ(F) ≥ 3. Let Y := [n] \ {1, 2} and

define

A := {F \ {1} : F ∈ F , F ∩ {1, 2} = {1}} ⊂
(

Y
k−1

)
,

B := {F \ {2} : F ∈ F , F ∩ {1, 2} = {2}} ⊂
(

Y
k−1

)
,

C := {F \ {1, 2} : F ∈ F , {1, 2} ⊂ F} ⊂
(

Y
k−2

)
,

D := {F ∈ F : F ∩ {1, 2} = ∅} ⊂
(
Y
k

)
.

Since τ(F) ≥ 3 and F is shifted we have {2, 3, . . . , k+1} ∈ F and {3, 4, . . . , k+1} ∈
A ∩ B. Thus A and B are non-empty cross intersecting families, and we can apply
Lemma 2.3 to get |A| + |B| ≤

(
n−2
k−1

)
−
(
n−k−1
k−1

)
+ 1.

On the other hand, C,D are cross-intersecting and D is 2-intersecting. (To see the
latter, suppose to the contrary that there are D1, D2 ∈ D such that D1 ∩D2 = {x}.
Then, by the shiftedness, it follows that both D′

1 := (D1 \ {x}) ∪ {1}, and D′
2 :=

(D2\{x})∪{2} are in F , but D′
1∩D′

2 = ∅, a contradiction.) Let Dc := {[n]\D : D ∈
D} ⊂

(
Y

(n−2)−k

)
and S := ∆k−2(Dc) ⊂

(
Y

k−2

)
. Then by the cross intersecting property

of C and D we have C ∩ S = ∅. Since D is 2-intersecting, Dc is (n− 2) − (2k − 2) =
(n− 2k)-intersecting. Thus Theorem 1.5 on shadows in intersecting families implies
that |S| ≥ |Dc| = |D|. Therefore, |C| + |D| ≤ |C| + |S| ≤ |

(
Y

k−2

)
| =

(
n−2
k−2

)
. Again, we

obtain |F| = |A| + |B| + |C| + |D| ≤
(
n−1
k−1

)
−
(
n−k−1
k−1

)
+ 1.

Now to the general case. Apply shifting operations sij repeatedly to F . Either
we obtain a shifted non-trivial intersecting family of the same size (and we are done
by the first or second case according to the covering number) or at some point the
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family stops to be non-trivial. That is for some non-trivial intersecting G ⊂
(
[n]
k

)
with |F| = |G| we have that

∩
H∈sij(G) H ̸= ∅. In this case clearly {i} =

∩
H∈sij(G)H

and consequently {i, j} ∩ G ̸= ∅ for all G ∈ G. Thus we can apply the first special
case to G and we are done. □

3. Independence number and the Erdős matching conjecture

For a family F ⊂ 2[n] with ∅ ̸∈ F let α(F) denote its independence number, i.e.,
the maximum number s such that there exist pairwise disjoint sets F1, . . . , Fs ∈ F .
One of the classical results of extremal set theory is the following.

Theorem 3.1 (Kleitman [109]). Let F ⊂ 2[n] satisfy α(F) ≤ s− 1.

(i) If n = sq − 1 for some positive integer q then

|F| ≤
∑

q≤i≤n

(
n

i

)
. (17)

(ii) If n = sq (q ≥ 1 integer) then

|F| ≤ 2
∑

q≤i≤n−1

(
n− 1

i

)
=

(
n− 1

q

)
+
∑

q<i≤n

(
n

i

)
. (18)

Noting that from a family G ⊂ 2[n−1] with α(G) = s − 1 one can construct F :=
{F ⊂ [n] : F ∩ [n− 1] ∈ G} satisfying α(F) = s− 1 and |F| = 2|G|, one can see that
(18) implies (17). For the cases n ̸≡ 0 or − 1 (mod s) the methods of [109] do not
provide the exact answer. As a matter of fact the exact answer is unknown except
for s = 3 (cf. Quinn [129]).

Definition 3.1. Let us call F1, . . . ,Fs ⊂ 2[n] cross-dependent if there are no Fi ∈ Fi,
i = 1, . . . , s which are pairwise disjoint.

Example 3.1. Let n = qs + p with q ≥ 1, 0 ≤ p < s. Define Hi = {F ⊂ [n] : |F | ≥
q + 1} for 1 ≤ i ≤ p + 1 and Hj = {F ⊂ [n] : |F | ≥ q} for p + 1 < j ≤ s. It is easy
to see that these families are cross-dependent.

Theorem 3.2 (Frankl–Kupavskii [62]). Suppose that F1, . . . ,Fs ⊂ 2[n] are cross-
dependent, n = qs + p with q ≥ 1, 0 ≤ p < s then

s∑
i=1

|Fi| ≤
s∑

i=1

|Hi| = (s− p− 1)

(
n

q

)
+ s

∑
l>q

(
n

l

)
. (19)

Note that by setting F1 = · · · = Fs = F (19) implies (17) and (18).
There is an attractive open problem related to the independence number.

Conjecture 3.1 (Erdős–Kleitman [43]). Suppose that F ⊂ 2[n] satisfies α(F) = s
but for all E ∈ 2[n] \ F , α(F ∪ {E}) ≥ s + 1, then

|F| ≥ 2n − 2n−s = 2n(1 − 2−s).

The case s = 1 was already proved in [44]. However, for s ≥ 2 no non-trivial lower
bound is known. Even to prove |F| ≥ (1

2
+ ϵ)2n is a challenging open problem.

Let us consider now the uniform case.
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Example 3.2. For n ≥ k(s + 1) and 1 ≤ i ≤ k define

Ai(n, k) = {A ∈
(

[n]

k

)
: |A ∩ [i(s + 1) − 1]| ≥ i}.

Then α(Ai(n, k)) = s is easy to verify. With rather tedious computation the first
author verified that for every n, k with n ≥ sk, the maximum of |Ai(n, k)| is either
|A1(n, k)| or |Ak(n, k)|. However, no proof of it was ever published.

Conjecture 3.2 (Erdős matching conjecture [38]). Suppose that A ⊂
(
[n]
k

)
satisfies

α(A) = s where s ≥ 1, n ≥ k(s + 1). Then

|A| ≤ max{|A1(n, k)|, |Ak(n, k)|}. (20)

For k = 2, (20) is an old result of Erdős and Gallai [42]. Erdős [38] proved (20)
for n > n0(k, s). The bounds for n0(k) were subsequently improved by Bollobás,
Daykin and Erdős [13] to 2k3s, by Huang, Loh, and Sudakov [96] to 3k2s, by Frankl,
 Luczak, Mieczkowska [69] to 3k2s/(2 log k). Let us note that for s = 1 the condition
reduces to A being intersecting.

As mentioned in section 2, shifting maintains the property α(A) ≤ s. Therefore
it is sufficient to deal with shifted families. One can use this to prove the following
general bound.

Proposition 3.1 (Frankl [56]). Suppose that A ⊂
(
[n]
k

)
satisfies α(A) = s, n ≥

k(s + 1), then

|A| ≤ s

(
n− 1

k − 1

)
. (21)

Note that for n > n0(k, s) one has |A1(k, s)| = (s − o(1))
(
n−1
k−1

)
, i.e., (21) is only

slightly worse than (20).

Proof. Let s ≥ 1 be fixed. Apply induction on n (simultaneously for all k). The case
k = 1 is trivial and the case n = k(s + 1) follows from (18). (To see the latter, let

G := A ∪
∪

i>k

(
[n]
i

)
. Then, τ(G) = s, and |G| = |A| +

∑
k<i≤n

(
n
i

)
. So, by (18), we

have that |A| ≤
(
n−1
k

)
=
(
ks+k−1

k

)
= ks

k

(
ks+k−1
k−1

)
= s
(
n−1
k−1

)
.) Without loss of generality

let A be shifted. Then both A(n̄) and A(n) satisfy α(A(n)) = s, α(A(n̄)) = s. By
the induction hypothesis |A(n̄)| ≤ s

(
n−1
k−1

)
, |A(n)| ≤ s

(
n−1
k−2

)
. Now (21) follows from

|A| = |A(n)| + |A(n̄)|. □
The current record on n0(k, s) is due to the first author, and is slightly less than

2ks. In particular, it is less than double k(s+1), the first case for which the question
arises. However, in all these cases A1(n, k) is the optimal family. On the other hand
for n = k(s + 1) it follows from Kleitman’s Theorem case (ii) that (20) is true with
Ak(n, k) providing the maximum. Very recently the first author showed (20) for a
narrow range.

Theorem 3.3 (Frankl [61]). Let F ⊂
(
[n]
k

)
, α(F) = s. For every k there exists a

positive ϵ = ϵ(k) such that |F| ≤ |Ak(n, k)| =
(
k(s+1)−1

k

)
holds for k(s + 1) ≤ n <

k(s + 1) + ϵs.
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 Luczak, Mieczkowska [119] proved (20) in the case k = 3 and s very large. In [60]
(20) is proved for k = 3 and all s.

4. Conditions on the size of the union

Definition 4.1. For positive integers r, t, r ≥ 2, a family F ⊂ 2[n] is called r-wise
t-union if |F1 ∪ · · · ∪ Fr| ≤ n− t for all F1, . . . ,Fr ∈ F .

Note that F is r-wise t-union if and only if the family of complements F c =
{[n] \ F : F ∈ F} is r-wise t-intersecting. There are two reasons that we use the
union terminology in this section. The first is that for most of the examples it
is more direct to verify the union condition. The second is that there are some
beautiful theorems and conjectures that were made and are more natural for the
union terminology. Let us start with such a result due to Brace and Daykin.

Definition 4.2. For n− t ≥ ri let us define the families

Di(n, r, t) = {D ⊂ [n] : |D ∩ [t + ri]| ≤ i}.

In memory of David E. Daykin we call them the Daykin families. Since the union
of any r members restricted to [t + ri] has size at most ri, Di(n, r, t) has the r-wise
t-union property.

Theorem 4.1 (Brace–Daykin [18]). Suppose that F ⊂ 2[n] has the r-wise 1-union
property. If

∪
F∈F = [n] then

|F| ≤ |D1(n, r, 1)|. (22)

Note that for r = 2, (22) gives |F| ≤ 2n−1, which was already pointed out by
Erdős, Ko and Rado. However, for r ≥ 3 one has |D1(n, r, 1)| = r+2

2r+1 2n and already

for r = 3, 5
16

is much smaller than 1
2
. That is, the Brace–Daykin Theorem is a strong

stability result showing that if we exclude the trivial construction then the maximum
size of an r-wise 1-union family drops considerably.

Note that if F is r-wise t-union then the complex generated by F , i.e., {G : ∃F ∈
F , G ⊂ F} has the same property. For this reason from now on we always assume

that F is a complex. Then
∪

F∈F F = [n] is equivalent to saying that
(
[n]
1

)
⊂ F .

Conjecture 4.1 (Frankl [58]). Suppose that F ⊂ 2[n] is r-wise t-union, r ≥ 3 and(
[n]
1

)
⊂ F . Then

|F| ≤ |D1(n, r, t)| for t < 2r − r − 1. (23)

Note that for t ≥ 2r − r − 1 one has |D1(n, r, t)| ≥ |D0(n, r, t)| = 2n−t, i.e.,
(23) ceases to be a stability result. Moreover, for t ≥ 2r+1 − 3r one has already
|D1(n, r, t)| < |D2(n, r, t)|, i.e., (23) is no longer true.

Since the property
(
[n]
l

)
⊂ F is invariant under shifting for all l, upon proving (22)

or (23) one can always assume that F is shifted. Throughout this section, unless
otherwise stated we shall always assume that F is shifted.

Let δ(F) = mini∈[n] |F(i)| be the minimum degree of the family F . Note that
δ(D1(n, r, 1)) = 2n−r−1. There is a beautiful conjecture due to Daykin.
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Conjecture 4.2 (Daykin [26]). Suppose that F ⊂ 2[n], δ(F) > 2n−r−1, r ≥ 3. Then
there exist F1, . . . , Fr ∈ F such that F1 ∪ · · · ∪ Fr = [n].

The Daykin conjecture was proved in [27] for r ≥ 25. In [58] it is established for
r ≥ 5. However the cases r = 3 and 4 remain wide open. Especially in the case r = 3
some new ideas seem to be needed. Let us mention also that in [58] (23) is proved
for all but six values of (r, t), namely, r = 3, 2 ≤ t ≤ 4, and r = 4, t = 8, 9, 10.

Let us explain the reason that such problems are easier to tackle in the cases of
relatively large r. For a fixed l ≥ 1 let us say that F is l-complete if

(
[n]
l

)
⊂ F holds.

Observation 4.1. If F is r-wise t-union and l-complete, then it is (r − 1)-wise
(t + l)-union as well.

Using this observation s times for some 1 ≤ s ≤ r − 2 one concludes that F is
(r − s)-wise (t + sl)-union. This property can be used to obtain relatively strong
upper bounds on |F| even though the exact value of

m(n, r, t) := max{|F| : F ⊂ 2[n] is r-wise t-union}
is unknown for fixed r ≥ 3 and e.g., t > 22r. The reason is that there are some
relatively good upper bounds for the general case.

Let αr denote the unique positive root of the polynomial xr−2x+1
x−1

, α2 = 1, α3 =
√
5−1
2

.

m(n, r, t) ≤ 2nαt
r,

m(n + s, r, t + s) ≤ m(n, r, t)(2αr)
s. (24)

Since m(n, r, t) ≤ m(n + s, r, t + s) is obvious, and αr → 1
2

as r → ∞, the bound
(24) is quite accurate for large values of r.

These bounds are obtained based on the Frankl random walk method. We briefly
explain the main idea. The walk associated to a set F ⊂ [n] is an n-step walk on the
integer grid Z2 starting at the origin (0, 0) whose i-th step is up (going from (x, y)
to (x, y + 1)) if i ∈ F , and is right (going from (x, y) to (x+ 1, y)) if i ̸∈ F . Suppose
that G ⊂ 2[n] is a shifted r-wise t-intersecting family. Then one can show that for
each G ∈ G the walk corresponding to G hits a line y = (r− 1)x+ t. This enables us
to bound the size of G by counting the number of all n-step lattice walks that hit the
line, or equivalently, by the probability that a random walk starting from the origin,
with one step up or to the right, hits the line. See [56, 70, 147] for more details.

Definition 4.3. The families F1, . . . ,Fr ⊂ 2[n] are called r-cross t-union if |F1∪· · ·∪
Fr| ≤ n− t holds for all choices of Fi ∈ Fi, i = 1, . . . , r.

Let us mention the following result.

Theorem 4.2 (Frankl [58]). Suppose that F1, . . . ,Fr ⊂ 2[n] are r-cross t-union,
n ≥ t, then the following hold.

(i) |F1| · · · |Fr| ≤ (2n−t)r for t ≤ 2r − r − 2 with equality if and only if F1 =
· · · = Fr = 2[t+1,n].

(ii) |F1| · · · |Fr| ≤ (2n−2r−r−2αt−2r−r−2)r for t > 2r − r − 2.
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Let us turn to uniform families, F ⊂
(
[n]
k

)
. If rk ≤ n− t then F is automatically

r-wise t-union. Therefore we assume that rk > n− t. The first non-trivial result is
the following generalization of the Erdős–Ko–Rado Theorem.

Theorem 4.3 (Frankl [49]). Suppose that F ⊂
(
[n]
k

)
is r-wise 1-union, n ≤ kr, then

|F| ≤
(
n− 1

k

)
. (25)

Proof. Let us use Katona’s cyclic permutation method (cf. [101]). Let (x1, . . . , xn)
be a random cyclic ordering of 1, . . . , n. By cyclic we mean that x1 is considered
to be the next element after xn. Note that there are altogether (n − 1)! cyclic
orderings. Ai := {xi, xi+1, . . . , xi+k−1} is called an interval. Here again xi+j = xi+j−n

for i + j > n. There are n intervals of length k.

Claim 4.1. Out of the n intervals of length k at most n− k are members of F .

Note that the claim implies (25). Indeed, the probability that Ai ∈ F is |F|/
(
n
k

)
.

Therefore the expected number of intervals Ai that are in F is n|F|/
(
n
k

)
. By the

claim n|F|/
(
n
k

)
≤ n− k, or equivalently,

|F| ≤
(
n

k

)
n− k

n
=

(
n− 1

k

)
.

Now let us turn to the proof of the claim. Let s = ⌈n/k⌉ be the minimum integer
such that ks ≥ n holds. Obviously, 2 ≤ s ≤ r holds. Let us first consider the case
n = sk. One can divide the n intervals into k groups of s each:

A1, Ak+1, . . . , A(s−1)k+1

A2, Ak+2, . . . , A(s−1)k+2

· · ·
Ak, A2k, . . . , Ask.

Since in each group the s intervals form a partition of [n], at least one of them is
missing from F . These amount to at least k missing sets, as desired.

Now let ks = n+ t for some 1 ≤ t < k. Without loss of generality An ∈ F . Let us
define An+i = An for i = 1, . . . , t and consider the above k groups of s intervals each.
It is easy to verify that the union of the s sets in each group is still [n]. Therefore
at least one interval from each group is missing from F . Since An ∈ F , there is no
overlapping and the proof of the claim is complete. □

Let us mention that unless r = 2 and n = 2k,
(
[n−1]

k

)
is the unique optimal family,

cf. Theorem 11.1 in [56].

One can further extend Theorem 4.3 as follows.

Theorem 4.4 ([78]). Suppose that F1, . . . ,Fr ⊂
(
[n]
k

)
are r-cross 1-union, n ≤ kr,

then
∏r

i=1 |Fi| ≤
(
n−1
k

)r
.
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This is an easy consequence of the next result, which is a variant of the Kruskal–
Katona theorem. To state the result we need a definition. For F ⊂

(
[n]
k

)
choose a

unique real x ≥ k so that |F| =
(
x
k

)
, and let ∥F∥k := x.

Theorem 4.5 ([78]). Let n ≤ rk and let F1, . . . ,Fr ⊂
(
[n]
k

)
be r-cross 1-union

families. Then
∑r

i=1 ∥Fi∥k ≤ r(n− 1).

We propose the following conjectures.

Conjecture 4.3. Let 1/r ≤ ki/n ≤ 1 and Fi ⊂
(
[n]
ki

)
for 1 ≤ i ≤ r. If F1, . . . ,Fr

are r-cross 1-union, then
∏r

i=1 |Fi|/
(
n
ki

)
≤
∏r

i=1(1 − ki/n).

The corresponding product measure version should be the following. For 0 < p ≤ 1
and F ⊂ 2[n] let µp(F) :=

∑
F∈F p|F |(1 − p)n−|F |.

Conjecture 4.4. Let 1/r ≤ pi ≤ 1 and Fi ⊂ 2[n] for 1 ≤ i ≤ r. If F1, . . . ,Fr are
r-cross 1-union, then

∏r
i=1 µpi(Fi) ≤

∏r
i=1(1 − pi).

If both conjectures are true, then it would be more interesting to find a general
result which contains them as special cases.

5. Excluding simplices

One of the first problems concerning multiple intersections, as so many other
problems, is due to Erdős.

Definition 5.1. Three sets F0, F1, F2 are forming a triangle if Fi ∩ Fj ̸= ∅ for
0 ≤ i < j ≤ 2 but F0 ∩ F1 ∩ F2 = ∅.

Erdős [39] posed the following question. Let k ≥ 3. Is it true that if F ⊂
(
[n]
k

)
does not contain a triangle and 3k ≤ 2n then |F| ≤

(
n−1
k−1

)
? This is now known to be

true in a stronger sense as we will see below, see Theorem 5.4. Chvátal introduced
the more general notion of a simplex.

Definition 5.2. We say that {F0, . . . , Fd} ⊂ 2[n] is a d-simplex if F0 ∩ · · · ∩ Fd = ∅
but

∩
i∈I Fi ̸= ∅ for all I ⊂ {0, 1, . . . , d} with |I| = d.

Let us note that if |F0| = · · · = |Fd| = d then the only d-simplex is
(
[d+1]
d

)
, the

complete d-graph on d + 1 vertices. To determine the maximum of |F| for F ⊂
(
[n]
d

)
not containing a d-simplex is Turán’s problem (cf. e.g., [40, 149, 103]) and seems to
be beyond reach for d ≥ 3.

We say that F ⊂
(
[n]
k

)
is a star if F = {F ∈

(
[n]
k

)
: i ∈ F} for some fixed i ∈ [n].

Conjecture 5.1 (Chvátal [22]). Suppose that k ≥ d + 1 ≥ 2, n ≥ k(d + 1)/d, and

F ⊂
(
[n]
k

)
contains no d-simplex. Then |F| ≤

(
n−1
k−1

)
, moreover, equality holds if and

only if F is a star.

Chvátal proved this conjecture for the case k = d + 1. Frankl [53] proved Erdős’s
conjecture for k ≥ 5 and n > n0(k). Let us also mention that the case d−1

d
n < k ≤

d
d+1

n follows from (23).

Let s(n, k, d) denote the maximum of |F|, F ⊂
(
[n]
k

)
, F contains no d-simplex.
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Theorem 5.1 (Frankl–Füredi [66]).

s(n, k, d) ≤
(

n

k − 1

)
. (26)

Let us mention that the proof of (26) is a simple linear independence argument.
Also, for 2k > n the bound is trivial because of

(
n

k−1

)
≥
(
n
k

)
. For n ≥ n0(k) Frankl

and Füredi proved Chvátal’s conjecture.

Theorem 5.2 (Frankl–Füredi [66]). For n > n0(k, d), s(n, k, d) =
(
n−1
k−1

)
holds.

Moreover, the only family achieving equality is a star.

Definition 5.3. We say that {H0, . . . , Hd} ⊂
(
[n]
k

)
is a special d-simplex if for some

(d + 1)-element set C = {x0, . . . , xd} one has Hi ∩ C = C \ {xi}, moreover, the sets

Hi \C are pairwise disjoint for 0 ≤ i ≤ d. Note that |
∪d

i=0Hi| = (d + 1)(k − d + 1).

Theorem 5.3 (Frankl–Füredi [66]). Suppose that k ≥ d+3, n > n0(k), and F ⊂
(
[n]
k

)
contains no special d-simplex. Then |F| ≤

(
n−1
k−1

)
, moreover equality holds if and only

if F is a star.

They conjectured that the same is true for k = d+ 1 and k = d+ 2 as well. In the
case d = 2 they did actually prove it.

A nontrivial intersecting family of size d + 1 is a family of d + 1 distinct sets
F0, . . . , Fd that have pairwise nonempty intersection, but

∩d
i=0 Fi = ∅.

Theorem 5.4 (Mubayi–Verstraëte [123]). Suppose that k ≥ d + 1 ≥ 3, n ≥ (d +

1)k/d, and F ⊂
(
[n]
k

)
contains no nontrivial intersecting family of size d + 1. Then

|F| ≤
(
n−1
k−1

)
, moreover equality holds if and only if F is a star.

Definition 5.4. We say that {F0, . . . , Fd} ⊂
(
[n]
k

)
is a d-cluster if

∩d
i=0 Fi = ∅ and

|
∪d

i=0 Fi| ≤ 2k. If, moreover, it is also d-simplex, then we call it a d-cluster-simplex.

Mubayi posed the following conjecture, which is a generalization of a conjecture
due to Frankl and Füredi in [63].

Conjecture 5.2 (Mubayi [124]). Suppose that k ≥ d + 1 ≥ 2, n ≥ k(d + 1)/d, and

F ⊂
(
[n]
k

)
contains no d-cluster. Then |F| ≤

(
n−1
k−1

)
, moreover, equality holds if and

only if F is a star.

The above conjecture holds for d = 2; this was first verified by Frankl and Füredi
for n > k2 + 3k in [63], and then completed (for n ≥ 3k/2) by Mubayi [124]. Chen,
Liu and Wang [21] observed that the case k = d + 1 of Conjecture 5.2 is reduced to
Conjecture 5.1, which is true by a result of Chvátal.

Conjecture 5.3 (Keevash–Mubayi [106]). Suppose that k ≥ d + 1 ≥ 2, n > k(d +

1)/d, and F ⊂
(
[n]
k

)
contains no d-cluster-simplex. Then |F| ≤

(
n−1
k−1

)
, moreover,

equality holds if and only if F is a star.
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6. Intersections and unions

We have seen so far problems related to intersections and also to unions. As noted
earlier an intersection problem is basically the same as the corresponding union
problem considered on the family of the complements. However, if we impose both
intersection and union conditions to the same family then we get different problems.
Let us present the first non-trivial case which was solved independently by many
authors, including Marica and Schonheim [120], Daykin and Lovász [28], Seymour
[134], Anderson [7], and Kleitman [107].

Theorem 6.1 (IU-Theorem). Suppose that F ⊂ 2n satisfies

F ∩ F ′ ̸= ∅ for all F, F ′ ∈ F , (27)

and

F ∪ F ′ ̸= [n] for all F, F ′ ∈ F . (28)

Then

|F| ≤ 2n−2. (29)

It is easy to see that (29) is best possible. Let Y ∪ Z be an arbitrary partition of
[n] and let G ⊂ 2Y , H ⊂ 2Z be families satisfying |G| = 2|Y |−1, G ∩ G′ ̸= ∅ for all
G,G′ ∈ G; |H| = 2|Z|−1, H ∪H ′ ̸= Z for all H,H ′ ∈ G. Define F = {G ∪ H : G ∈
G, H ∈ H} then |F| = |G| · |H| = 2n−2 and clearly F satisfies both (27) and (28).

From the actual proof of the following result it follows that all optimal families F
come from the above construction.

Lemma 6.1 (Kleitman’s Lemma [107]). If A ⊂ 2[n] is a complex and B ⊂ 2[n] is a
filter then

|A ∩ B|/2n ≤ (|A|/2n)(|B|/2n). (30)

Of course (30) is equivalent to |A ∩ B|2n ≤ |A||B|. We write it in this fraction
form because it is more about negative correlation. Namely, if we consider the
uniform distribution on 2[n] where each set S ⊂ [n] has probability 1/2n then |A|/2n,
|B|/2n, and |A ∩ B|/2n are the probabilities that a randomly chosen set S ⊂ [n] is
in A,B or both, respectively. I.e., (30) expresses that the probability of both events
happening is not larger than the product of the individual probabilities. That is
negative correlation. Extensions of Kleitman’s Lemma were discovered and applies
in theoretical physics. See also [135] for some other extensions.

Proof. The case n = 1 is very easy to check. To prove the general case let us apply
induction. Consider the four families A(1),A(1̄),B(1),B(1̄) on [n−1], and note that
A(1) and A(1̄) are complexes with A(1) ⊂ A(1̄), while B(1) and B(1̄) are filters with
B(1) ⊃ B(1̄). This implies that we may apply the induction hypothesis to both pairs
(A(1),B(1)) and (A(1̄),B(1̄)), and also see inequality

(|A(1)| − |A(1̄)|)(|B(1)| − |B(1̄)|) ≤ 0. (31)
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From the induction hypothesis we obtain

|A ∩ B|
2n

=
|A(1) ∩ B(1)|

2n
+

|A(1̄) ∩ B(1̄)|
2n

≤ 1

2

(
|A(1)|
2n−1

· |B(1)|
2n−1

+
|A(1̄)|
2n−1

· |B(1̄)|
2n−1

.

)
In order to prove (30) it is sufficient to show that the RHS is not more than

|A(1)| + |A(1̄)|
2n

· |B(1)| + |B(1̄)|
2n

.

Multiplying by 22n it is equivalent to

2(|A(1)||B(1)| + |A(1̄)||B(1̄)|) ≤ (|A(1)| + |A(1̄)|)(|B(1)| + |B(1̄)|).
This inequality is equivalent to (31). □

Let us mention that Kleitman discovered this inequality in order to prove the
following result which was conjectured by Erdős.

Theorem 6.2 (Kleitman [107]). Suppose that F1, . . . ,Fs are intersecting families
on [n]. Then

|F1 ∪ · · · ∪ Fs| ≤ 2n − 2n−s

for all 2 ≤ s ≤ n.

Let g(n, t) denote the maximum of |G| over G ⊂ 2[n], G is t-intersecting. Note
that g(n, t) is determined by the Katona Theorem (Theorem 1.3). Katona [101]
conjectured the validity of the following.

Theorem 6.3 (Frankl [48]). Suppose that F ⊂ 2[n] is t-intersecting and at the same
time F ∪ F ′ ̸= [n] for all F, F ′ ∈ F . Then

|F| ≤ g(n− 1, t). (32)

By considering a t-intersecting family F ⊂ 2[n−1] of maximal size shows that, if
true, the bound (32) is optimal.

Proof. Without loss of generality F is shifted, i.e., 1 ≤ i < j ≤ n and F ∩{i, j} = {j}
imply that (F \ {j}) ∪ {i} is also in F .

Claim 6.1. For all F, F ′ ∈ F one has

|F ∩ F ′ ∩ [n− 1]| ≥ t. (33)

Let us first show that (33) implies (32). Consider

F∗ = {F ∗ ⊂ [n] : ∃F ∈ F , F ⊂ F ∗},
F∗ = {F∗ ⊂ [n] : ∃F ∈ F , F∗ ⊂ F}.

Then (33) holds for all F, F ′ ∈ F∗ as well while F ∪ F ′ ̸= [n] follows for F, F ′ ∈ F∗.
By this second property

|F∗| ≤ 2n−1.

From (33) it follows that both F∗(n) and F∗(n̄) are t-intersecting, yielding

|F∗| = |F∗(n)| + |F∗(n̄)| ≤ 2g(n− 1, t).
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So (32) follows from Kleitman’s Lemma.
Now we prove the claim. Suppose the contrary. Since F is t-intersecting we must

have

|F ∩ F ′| = t and n ∈ F ∩ F ′.

By the union condition F ∪F ′ ̸= [n], i.e., we can find i ∈ [n−1], i ̸∈ F ∪F ′. However
F is shifted, implying F ′′ := (F ′ \{n})∪{i} ∈ F . As |F ∩F ′′| = |F ∩F ′|−1 = t−1,
we obtained a contradiction concluding the proof of both the claim and (32). □

Let us present a version for two families. Let g2(n, t) = max |F||G| where the
maximum is over all cross t-intersecting F ,G ⊂ 2[n]. It was shown by Matsumoto
and Tokushige in [121] that g2(n, t) is g(n, t)2 if n−t is even, and max{g(n, t)2, g(n, t−
1)g(n, t + 1)} if n− t is odd.

Theorem 6.4 (Frankl [48]). Suppose that F ,G ⊂ 2[n] are cross t-intersecting and
cross 1-union. Then |F||G| ≤ g2(n− 1, t) holds.

The proof is almost the same except that one proves the two families version of
the claim. The interesting thing is that it does not rely on any knowledge of g2(n, t)
or g(n, t).

Well, the situation in general, namely, if F is required to be s-union for some
s ≥ 2, is much more difficult.

Definition 6.1. Let h(n, t, s) denote the maximum of |F| over all F ⊂ 2[n] that are
both t-intersecting and s-union.

Conjecture 6.1 (Frankl [48]). Suppose that n ≥ t + s. Then

h(n, t, s) = max
q

g(q, t)g(n− q, s).

If one defines h2(n, t, s) analogously as max |F||G| for F ,G ⊂ 2[n], where F ,G are
both t-intersecting and s-union, then one can make the following conjecture.

Conjecture 6.2. h2(n, t, s) = maxq g2(q, t)g2(n− q, s).

7. Intersecting families with fixed covering number

For a family F ⊂ 2[n] its covering number τ(F) is the minimal integer t such that
there exists a t-element set T satisfying T ∩ F ̸= ∅ for all F ∈ F . The covering
number is a very important notion both in graph theory and extremal set theory.
There is a vast, excellent literature on problems related to the covering numbers.
Even though it is almost thirty years old, we recommend the excellent survey of
Füredi [86]. Here we only deal with some natural questions related to intersecting
families.

Note that if F is intersecting then every member F of F is a cover, i.e., F ∩F ′ ̸= ∅
for all F ′ ∈ F . In particular, if F is k-uniform then τ(F) ≤ k holds.

Theorem 7.1 (Erdős–Lovász [45]). If F ⊂
(
[n]
k

)
is intersecting and τ(F) = k then

|F| ≤ kk. (34)
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The above result shows that

max{|F| : F is k-uniform, intersecting and τ(F) = k}
exists. Let us denote this quantity by r(k). For a family G ⊂ 2[n] let us define

Ct(G) = {C ∈
(

[n]

t

)
: C ∩G ̸= ∅ for all G ∈ G}.

Also set ct(G) = |Ct(G)|. Obviously, ct(G) = 0 for t < τ(G).

Theorem 7.2 (Gyárfás [92]). Let G ⊂
(
[n]
k

)
and t = τ(G). Then

ct(G) ≤ kt. (35)

Let us reproduce the proof.

Proof. First we consider the case t = 1. Let G ∈ G be an arbitrary edge. If {x} is
a cover then x ∈ G. Thus c1(G) ≤ |G| = k. Now we apply induction. Fix again
G ∈ G and for every x ∈ G consider C(x) = {C \ {x} : x ∈ C ∈ Ct(G)} together with
G(x̄) = {G′ ∈ G : x ̸∈ G′}. Since C ∩G ̸= ∅ for all C ∈ Ct(G),∑

x∈G

|C(x)| ≥ |Ct(G)|. (36)

On the other hand provided C(x) ̸= ∅ we have τ(G(x̄)) = t−1 and C(x) ∈ Ct−1(G(x̄)).
By the induction hypothesis |C(x)| ≤ kt−1 follows. Using (36) we obtain the validity
of (35). □

If G consists of t pairwise disjoint k-sets then equality holds in (35). Also, if F is
k-uniform, intersecting and τ(F) = k then Ck(F) ⊃ F . Therefore (35) implies (34).

Erdős and Lovász [45] showed the following recursive lower bound for r(k).

r(k + 1) ≥ (k + 1)r(k) + 1. (37)

Proof. If F realizes the bound k then let F0 be a (k + 1)-set disjoint to all F ∈ F
and define F0 = {F0} ∪ {F ∪ {x} : F ∈ F , x ∈ F0}. It is easy to check that F0 is
(k + 1)-uniform, intersecting and τ(F0) = k + 1. Since |F0| = 1 + (k + 1)|F|, we are
done. □

Starting with r(1) = 1, using (37) one obtains r(2) ≥ 3, r(3) ≥ 10, r(4) ≥ 41
etc. In general, r(k) ≥ ⌊k!(e − 1)⌋ follows. Lovász [116] conjectured that one has
equality here (and (37)). However, this was disproved in [73] by an example showing
r(4) ≥ 42.

Then Majumder and Mukherjee [126] showed that there are at least two non-
isomorphic 4-uniform families of size 42 with covering number 4, and r(5) ≥ 234.
For general k, in [73, 126], the following lower bound is given.

Theorem 7.3. r(k) > (⌊k/2⌋ + 1)k−1.

Let us give a construction for k = 2d, d ≥ 2. Let A1, . . . , A2d−1 be pairwise disjoint
sets of size d + 1 and let y be an extra vertex. Define two families A and B:

A = {A : |A| = 2d, y ∈ A, |A ∩ Aj| = 1 for i = 1, . . . , 2d− 1},
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and B = B1 ∪ · · · ∪ B2d−1 where

Bi = {B : |B| = 2d, Ai ⊂ B, |B ∩ Aj| = 1 for j = i + 1, . . . , i + d− 1},
where addition is modulo 2d − 1. Note that |A| = (d + 1)2d−1, A ∪ B is k-uniform,
intersecting and τ(A∪B) = k is not too hard to verify. The bounds for r(k) are still
quite far apart. We believe that r(k) = O((µk)k) holds with some µ < 1 (cf. [73]).

The covering number τ(F) can be considered as a measure of nontriviality for
the intersecting family F . By the Erdős–Ko–Rado Theorem, |F| ≤

(
n−1
k−1

)
for all

intersecting families F ⊂
(
[n]
k

)
. The family giving equality is all k-sets through a

fixed vertex, it has covering number 1. The Hilton–Milner Theorem (Theorem 1.6)
determines the maximum size of F for intersecting families with τ(F) ≥ 2.

Definition 7.1. Fix k > t > 0 and define

c(n, k, t) = max{|F| : F ⊂
(

[n]

k

)
, F is intersecting, τ(F) ≥ t}.

To determine c(n, k, t) seems to be very difficult. Even in the case n > n0(k, t)
only partial results are known.

Theorem 7.4 (Frankl [52]). For k ≥ 4

c(n, k, 3) = (k2 − k + 1 + o(1))

(
n− 3

k − 3

)
.

The following result was proved for k ≥ 9 in [72], then completed by Furuya and
Takatou [83, 84].

Theorem 7.5. For k ≥ 5, c(n, k, 4) = (k3 − 3k2 + 6k − 4 + o(1))
(
n−4
k−4

)
.

Actually in both of the above results the exact value and the essentially unique
optimal families are determined for n > n0(k, t).

Let us close this section by the following conjecture.

Conjecture 7.1 ([73]). For k > k(t), c(n, k, t) = (kt−1 −
(
t−1
2

)
kt−2 + p(k, t) +

o(1))
(
n−t
k−t

)
holds where p(k, t) is a polynomial of k and t with the degree of k being

at most t− 3.

One can also consider

n(k) := min{|F| : F is k-uniform, intersecting and τ(F) = k}.
Erdős and Lovász [45] proved n(k) ≥ 8k/3 − 3 for all k ≥ 2. The general belief was
that n(k)/k tends to infinity. Therefore it came as a big surprise when Kahn [98]
proved

n(k) = O(k).

To determine the exact value of n(k) appears to be hopelessly difficult.
We mention one more related problem. Let m(k) denote the minimum size of

k-uniform maximal intersecting families. Clearly we have m(k) ≥ n(k), and so
m(k) ≥ 8k/3 − 3. Dow et al. [32] improved the bound by showing m(k) ≥ 3k for
k ≥ 4.

Conjecture 7.2 (Kahn [98]). m(k) = O(k).



INVITATION TO INTERSECTION PROBLEMS FOR FINITE SETS 25

8. Intersections in vector spaces, permutations, and graphs

Fix a finite field F and let Vn denote an n-dimensional vector space over F. Then
many intersection problems on families of subsets of [n] can be translated to the
corresponding problems on families of subspaces of Vn. Let

[
Vn

k

]
denote the set

of k-dimensional subspaces of Vn, and let Ln :=
∪n

i=0

[
Vn

i

]
. Let

[
n
k

]
denote the

cardinality of
[
Vn

k

]
, that is,

[
n
k

]
=
∏k

i=1
qn+1−i−1

qi−1
. We say that r families of subspaces

F1, . . . ,Fr ⊂ Ln are r-cross t-intersecting if

dim(F1 ∩ F2 ∩ · · · ∩ Fr) ≥ t

for all Fi ∈ Fi, 1 ≤ i ≤ r. As usual when we say r-cross t-intersecting we omit r
(resp. t) if r = 2 (resp. t = 1). If F , . . . ,F (r times) are r-cross t-intersecting, then
F is called r-wise t-intersecting. Chowdhury and Patkós established a vector space
version of Theorem 4.3.

Theorem 8.1 ([23]). Let (r − 1)/r ≥ k/n. If F ⊂
[
Vn

k

]
is r-wise intersecting, then

|F| ≤
[
n−1
k−1

]
. Moreover, equality holds if and only if F = {F ∈

[
Vn

k

]
: L ⊂ F} for

some L ∈
[
Vn

1

]
unless r = 2 and n = 2k.

The proof of the above result in [23] is a combinatorial one, which is based on the
following vector space version of Theorem 1.4.

Theorem 8.2 (Chowdhury–Patkós [23]). Let F ⊂
[
Vn

k

]
and let y ∈ R be such that

|F| =
[
y
k

]
. Then |{G ∈

[
Vn

k−1

]
: G ⊂ F for some F ∈ F}| ≥

[
y

k−1

]
.

We propose the following conjecture.

Conjecture 8.1. Let (r− 1)/r ≥ max{k1/n, . . . , kr/n}. If F1 ⊂
[
Vn

k1

]
, . . . ,Fr ⊂

[
Vn

kr

]
are r-cross intersecting, then

∏r
i=1 |Fi| ≤

∏r
i=1

[
n−1
ki−1

]
.

This conjecture is true if F1 = · · · = Fr by Theorem 8.1 and if r = 2 by Theorem 10.3
in section 10.

Theorem 8.3. Let k ≥ t ≥ 1. Suppose that two families A,B ⊂
[
Vn

k

]
are cross

t-intersecting. Then we have

|A||B| ≤

{[
n−t
k−t

]2
if n ≥ 2k,[

2k−t
k

]2
if 2k − t < n ≤ 2k.

Extremal configurations are following:

(i) If n > 2k and |A||B| =
[
n−t
k−t

]2
, then A = B = {F ∈

[
Vn

k

]
: T ⊂ F} for some

T ∈
[
Vn

t

]
.

(ii) If 2k − t < n < 2k and |A||B| =
[
2k−t
k

]2
, then A = B =

[
Y
k

]
for some

Y ∈
[

Vn

2k−t

]
.

(iii) If n = 2k and |A||B| =
[
n−t
k−t

]2
=
[
2k−t
k

]2
, then A = B = {F ∈

[
Vn

k

]
: T ⊂ F}

for some T ∈
[
Vn

t

]
or A = B =

[
Y
k

]
for some Y ∈

[
Vn

2k−t

]
.
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This result (except item (iii)) for the case A = B was first obtained by Frankl
and Wilson [81] using linear algebra. Tanaka [141] gave another algebraic proof for
the case A = B (including item (iii)). Then using an idea in [5] (see also [36])
Theorem 8.3 can be easily deduced from the Frankl–Wilson’s proof with Tanaka’s
result for (iii).

Blokhuis et al. obtained a vector space version of the Hilton–Milner theorem, see
[11].

Leffman obtained a vector space version of Theorem 1.3. Define

K[n, t] =

{∪n
k=d

[
Vn

k

]
if n + t = 2d,

(
∪n

k=d+1

[
Vn

k

]
) ∪
[
Vn−1

d

]
if n + t = 2d + 1,

where Vn−1 is an (n− 1)-dimensional subspace of Vn.

Theorem 8.4 (Leffman [114]). Let 1 ≤ t ≤ n and let F ⊂ Ln be t-intersecting.
Then |F| ≤ |K[n, t]|. Moreover if t > 1 then equality holds if and only if F ∼= K[n, t].

Leffman also obtained the upper bound for the size of a family F ⊂ Ln satisfying
dim(F ∩ F ′) ̸∈ {s, s + 1, . . . , t} for all F, F ′ ∈ F , see [115].

Let Sn denote the symmetric group, the group of all permutations of [n]. Two

permutations σ, τ ∈ Sn are said to t-intersect if there is some T ∈
(
[n]
t

)
such that

σ(i) = τ(i) for all i ∈ T . We say that a family of permutations I ⊂ Sn is t-intersecting
if any two permutations in I t-intersect.

Deza and Frankl [31] observed that if I ⊂ Sn is 1-intersecting, then

|I| ≤ (n− 1)!. (38)

Then, Cameron and Ku [20], and independently, Larose and Malvenuto [113] proved
that if equality holds in (38), then I is a 1-coset. Deza and Frankl conjectured that
the similar statement holds for t-intersecting families of permutations provided n is
large enough. They verified the conjecture for t = 2, 3 with infinitely many values of
n.

Theorem 8.5 (Ellis–Friedgut–Pilpel [36]). If n > n0(t) and I ⊂ Sn is t-intersecting,
then |I| ≤ (n− t)!. Equality holds if and only if I is a t-coset of Sn.

Conjecture 8.2 (Ellis [33]). If n > n0(t) and I ⊂ Sn with no two permutations in
I agreeing on exactly t− 1 points, then I ≤ (n− t)!. Equality holds if and only if I
is a t-coset of Sn.

The above conjecture is known to be true if t = 1 by (38), and t = 2 by Ellis [33],
see also [105].

Let F be a family of graphs on the same vertex set. Then F is called triangle-
intersecting if for every G,H ∈ F , G∩H contains a triangle. If we fix a triangle and
take all subgraphs of Kn containing this triangle, then we get a triangle-intersecting

family of size 2(n
2)−3. Sós conjectured that example gives the maximum and the only

family (up to isomorphism) which has the maximum size, see [136]. Ellis, Filmus,
and Friedgut verified this conjecture in the following stronger sense.
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A family F of subgraphs of Kn is called odd-cycle-intersecting if for every G,H ∈
F , G ∩ H contains an odd cycle. For a real p ∈ (0, 1) and a graph G ∈ F let

µp(G) = p|E(G)|(1 − p)(
n
2)−|E(G)|, and let µp(F) =

∑
G∈F µp(G).

Theorem 8.6 ([35]). Let p ≤ 1/2 and let F be an odd-cycle-intersecting family of
subgraphs of Kn. Then µp(F) ≤ p3 with equality iff all graphs in F contains a fixed
triangle.

For some related and other results, see a nice survey by Borg [14].

9. L-systems

Let n, k be positive integers with n ≥ k, and let L ⊂ {0, 1, . . . , k − 1}. We say

that a family of k-element subsets F ⊂
(
[n]
k

)
is an (n, k, L)-system if

|F ∩ F ′| ∈ L

holds for all distinct F, F ′ ∈ F . We also call it a (k, L)-system or just an L-system
for short. Let m(n, k, L) denote the maximum size of (n, k, L)-systems. If there exist
positive reals α, c, c′ depending only on k and L such that

cnα < m(n, k, L) < c′nα,

then we define α(k, L) = α, and we say that (k, L)-systems have exponent α.

Conjecture 9.1. For every k and L, the exponent α(k, L) exists.

In this section we only consider pairs k, L such that the corresponding exponents
exist (and if the conjecture is true, then this is a void restriction). No irrational
exponent is known so far.

Theorem 9.1 (Frankl [55]). For every rational number q ≥ 1 there are infinitely
many choices of k and L such that α(k, L) = q.

As an example, let us construct a family showing α(k, L) ≥ 2.5. To this end let
k = 10 and L = {0, 1, 3, 6}. We need an (n, k, L)-system F with |F| = Θ(n2.5). Let

p be a positive integer, V :=
(
[p]
2

)
, and let F := {

(
A
2

)
: A ∈

(
[p]
5

)
}. If F, F ′ ∈ F

(F ̸= F ′) with F =
(
A
2

)
, F ′ =

(
A′

2

)
, then |F ∩ F | =

(|A∩A′|
2

)
, which is one of 0, 1, 3, 6.

Thus F is a (k, L)-system on V , where n := |V | =
(
p
2

)
and |F| =

(
p
5

)
, as required.

On the other hand one can also show that α(10, L) ≤ 2.5 by using Theorem 9.3.
Deza, Erdős, and Frankl obtained the following general upper bound for m(n, k, L).

Theorem 9.2 ([30]). Let n ≥ 2kk3, and let F be an (n, k, L)-system, where L =
{l1, l2, . . . , ls} with 0 ≤ l1 < l2 < · · · < ls < k. Then we have the following.

(i) |F| ≤
∏
l∈L

n− l

k − l
.

(ii) If |F| ≥ 2s−1k2ns−1, then |
∩
F| ≥ l1, where

∩
F =

∩
F∈F F .

(iii) If s ≥ 2 and |F| ≥ 2kk2ns−1, then

(l2 − l1)|(l3 − l2)| · · · |(ls − ls−1)|(k − ls),

where a|b means a divides b.
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On the other hand no general lower bound for m(n, k, L) or even α(k, L) is known.
However, Füredi proposed a conjecture which (if true) would give a strong lower
bound for α(k, L) in terms of a combinatorial invariant. Before stating the conjecture
we must first introduce some notion and auxiliary results. Let k ∈ N and L ⊂
{0, 1, . . . , k − 1} be given. A family I ⊂ 2[k] is called a closed L-system if I is an
L-system and I ∩ I ′ ∈ I for all (not necessarily distinct) I, I ′ ∈ I. The rank of I is
defined by

rank(I) := min{t ∈ N : ∆t(I) ̸=
(
[k]
t

)
},

where ∆t denotes the t-shadow, and then the rank of (k, L)-system is defined by

rank(k, L) := max{rank(I) : I ⊂ 2[k] is a closed L-system}.
We say that I ⊂ 2[k] is an intersection structure of a (k, L)-system if I is a closed
L-system whose rank is rank(k, L). A generator set I∗ of I is the collection of all
maximal elements of I, that is

I∗ := {I ∈ I : ̸ ∃I ′ ∈ I such that I ⊂ I ′, I ̸= I ′}.
We can retrieve I from I∗ by taking all possible intersections.

For a family F ⊂
(
[n]
k

)
and an edge F ∈ F define the restriction of F on F by

F|F := {F ∩ F ′ : F ′ ∈ F \ {F}} ⊂ 2F .

Moreover, if F is k-partite with k-partition [n] = X1⊔· · ·⊔Xk, namely, if |F∩Xi| = 1
for all F ∈ F and 1 ≤ i ≤ k, then we define the projection π : {G ⊂ [n] : |G ∩Xi| ≤
1 for all i} → [k] by

π(G) := {i : |G ∩Xi| = 1},
and write π(F|F ) for {π(G) : G ∈ F|F}. Füredi proved the following fundamental
result, which was conjectured by Frankl.

Theorem 9.3 ([85, 87])). Given k ≥ 2 and L ⊂ {0, 1, . . . , k − 1} there exists a

positive constant c = c(k, L) such that every (k, L)-system F ⊂
(
[n]
k

)
contains a

k-partite subfamily F∗ ⊂ F with k-partition [n] = X1 ∪ · · · ∪Xk satisfying (i)–(iii).

(i) |F∗| > c|F|.
(ii) If F1, F2 ∈ F∗, then π(F∗

|F1) = π(F∗
|F2). We write IS(F∗) for this common

family in 2[k].
(iii) IS(F∗) is a closed L-system.

In the above situation, we say that IS(F∗) is the intersection structure of F∗. We
also say that F∗ is a canonical (k, L)-system or a canonical family. It is an immediate
consequence of Theorem 9.3 that for fixed (k, L)-system the rank is an upper bound
for the exponent.

Theorem 9.4. Let k, L be given. If the exponent α = α(k, L) exists then we have

α(k, L) ≤ rank(k, L).

Proof. Let F be an (n, k, L)-system with |F| = Θ(nα). Choose a canonical family
F∗ from Theorem 9.3. Let I = IS(F∗) ⊂ 2[k] be the intersection structure and let

t = rank(I). By the definition of rank there is an I ∈
(
[k]
t

)
such that I ̸∈ ∆t(I).
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Then for every G with π(G) = I (so |G ∩ Xi| = 1 for i ∈ I) there is at most one
F ∈ F∗ such that G ⊂ F . Thus the size |F∗| is at most the number of choices for
G, and

|F∗| ≤
∏
i∈I

|Vi| = O(nt).

Then (i) of Theorem 9.3 yields |F| = O(nt) as needed. □
On the other hand, Füredi conjectures the following:

Conjecture 9.2 ([87]). α(k, L) > rank(k, L) − 1.

This conjecture is true if rank(k, L) = 2. In fact if I ⊂ 2[k] is a closed L-system
with rank at least 2, then there is an (n, k, L)-system F with |F| = Ω(nk/(k−1)),
see [87]. It is also true if k ≤ 12 for all L, see [74, 144], where all corresponding

exponents are determined. We say that B ⊂
(
[k]
b

)
is a Steiner system S(t, b, k) if

every T ⊂
(
[k]
t

)
there is a unique B ∈ B such that T ⊂ B. Thus an S(t, b, k) is

a (k, b, [0, t − 1])-system of size
(
k
t

)
/
(
b
t

)
. If there exists a Steiner system S(t, b, k)

then we have rank(k, L) = t + 1 for L = [0, t − 1] ∪ {b}. Rödl and Tengan found a
construction which verifies the conjecture in this situation.

Theorem 9.5 ([132]). Suppose that a Steiner system S(t, b, k) exists. Then there is
ϵ > 0 and a sequence Fn of k-partite (kn, k, L)-system with L = [0, t− 1] ∪ {b} and
|Fn| = Ω(nt+ϵ).

An obvious necessary condition for the existence of S(t, b, k) is that
(
b−i
t−i

)
divides(

k−i
t−i

)
for all 0 ≤ i < t. Very recently Keevash [104] published a deep result that if

this necessary condition is satisfied and k > k0(b, t) then an S(t, b, k) exists.
Now let t < k and consider an (n, k, L)-system F with L = [0, t − 1]. Then for

every T ∈
(
[n]
t

)
there is at most one F ∈ F such that T ⊂ F . This gives

(
n
t

)
≥ |F|

(
k
t

)
and

m(n, k, [0, t− 1]) ≤
(
n
t

)
/
(
k
t

)
. (39)

Erdős and Hanani conjectured that the bound in (39) is always almost tight pro-
vided n is large enough for fixed t and k. Then Rödl proved this conjecture using
probabilistic method, which is one of the basic tools used in [104]. Rödl’s proof tech-
nique was further extended by Frankl and Rödl to obtain the following result stating
that almost regular hypergraphs have almost perfect matchings. Here we include a
stronger version given by Pippenger.

Theorem 9.6 ([75, 128]). Let H ⊂
(
X
h

)
satisfy the following.

(1) There is D such that #{H ∈ H : x ∈ H} = D for all x ∈ X.
(2) For all {x, y} ∈

(
X
2

)
, #{H ∈ H : {x, y} ⊂ H} = o(D) as D → ∞.

Then there exist pairwise disjoint H1, . . . , Hm ∈ H with m ∼ |X|/h (as D → ∞ and
hence |X| → ∞).

See [6] for a proof of even more general cases. Let us present how Theorem 9.6
implies the following.
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Theorem 9.7 (Rödl [131]). It follows m(n, k, [0, t− 1]) = (1 − o(1))
(
n
t

)
/
(
k
t

)
.

Proof. Since we have a trivial inequality (39), it suffices to show that for every ϵ > 0
there is n0 such that if n > n0 then we can find m(n, k, [0, t − 1])-system F with
|F| > (1 − ϵ)

(
n
t

)
/
(
k
t

)
.

Let X =
(
[n]
t

)
and h =

(
k
t

)
. Define H := {

(
F
t

)
: F ∈

(
[n]
k

)
} ⊂

(
X
h

)
. Then H is

D-regular, where D =
(
n−t
k−t

)
. Moreover, for a pair {x, y} ⊂ X, we have

#{H ∈ H : {x, y} ⊂ F} ≤
(
n− t− 1

k − t− 1

)
=

k − t

n− t
D = o(D).

Thus, by Theorem 9.6, we have a matching H1, . . . , Hm ∈ H with m ∼
(
n
t

)
/
(
k
t

)
. For

1 ≤ i ≤ m we can write Hi =
(
Fi

t

)
for some Fi ∈

(
[n]
k

)
. Then |Fi ∩ Fj| < t for i ̸= j,

and F := {F1, . . . , Fm} is a desired m(n, k, [0, t− 1])-system. □

We mention that Theorem 9.5 is also an application of Theorem 9.6. For some
other related results for special L, where L is a union of intervals, see [64, 65, 76, 125].

Linear algebra method is also one the useful tools for studying L-systems. The
typical one is the following result due to Ray-Chaudhuri and Wilson, see also [4] for
a proof using space of multilinear polynomials.

Theorem 9.8 ([130]). Let F be an (n, k, L)-system with |L| = s. Then |F| ≤
(
n
s

)
.

Frankl and Wilson obtained a modular version of Theorem 9.8 which has many
applications. We write a ∈ L (mod p) if a ≡ l (mod p) for some l ∈ L.

Theorem 9.9 (Frankl–Wilson [80]). Let n > k ≥ s be positive integers, and let p be

a prime. Let L ⊂ [0, p− 1] be a set of s integers. Suppose that F ⊂
(
[n]
k

)
satisfies the

following:

(i) k ̸∈ L (mod p).
(ii) If F, F ′ ∈ F with F ̸= F ′, then |F ∩ F ′| ∈ L (mod p).

Then |F| ≤
(
n
s

)
follows.

The condition that p is a prime cannot be dropped in general.

Example 9.1 (Frankl [54]). Let G := {G ∈
(
[m]
11

)
: {1, 2, 3} ⊂ G}. Then we

have |G ∩ G′| ∈ [3, 10] for distinct G,G′ ∈ G. Let p = 6, L = {0, 3, 4}, and let
F := {

(
G
2

)
: G ∈ G} be a k-uniform family on n :=

(
m
2

)
vertices, where k =(

11
2

)
= 55 ≡ 1 (mod p). Then it follows that |F ∩ F ′| ∈ {

(
i
2

)
: 3 ≤ i ≤ 10} ≡ L

(mod p) for distinct F, F ′ ∈ F . So F satisfies (i) and (ii) in Theorem 9.9, but
|F| = |G| =

(
m−3
8

)
= Θ(n4) ≫

(
n
3

)
.

Grolmusz obtained a much stronger superpolynomial lower bound. He used a low-
degree polynomial representing the Boolean OR function mod m due to Barrington,
Eigel and Rudich along with the construction of [54], see also [112].
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Theorem 9.10 ([91]). Let m be a positive integer, and suppose that m has r different
prime divisors. Then there exists c = c(m) > 0 such that for every integer h > 0
there exists a uniform family H on n vertices such that for H,H ′ ∈ H

|H ∩H ′|

{
≡ 0 (mod m) if H = H ′,

̸≡ 0 (mod m) if H ̸= H ′,

and

|H| ≥ exp

(
c(log n)r

(log log n)r−1

)
.

In other words, |H| grows faster than any polynomial of n.

In [91] Grolmusz posed the following question.

Problem 9.1. Let F ⊂ 2[n]. Suppose that for F, F ′ ∈ F it follows that

|F ∩ F ′|

{
≡ 0 (mod 6) if F = F ′,

̸≡ 0 (mod 6) if F ̸= F ′.

Then is it true that |F| = 2o(n)?

On the other hand, Babai et al. [9] showed that under the condition of Theorem 9.9

modulo a prime power, it follows that |F| ≤
∑f(s)

k=0

(
n
k

)
, where f(s) ≤ 2s−1.

Finally we list some randomly chosen problems concerning L-systems.

Conjecture 9.3 (Frankl–Füredi[65]). If l ≥ l′, thenm(n, k, L) = (1+o(1))
(
n
l

)(
k+l′

l′

)(
k+l′

l

)−1
,

where L = [0, l − 1] ∪ [k − l′ + 1, k − 1].

This conjecture is true if k − l has a prime power divisor q with q > l′, see [65].

Conjecture 9.4 (Snevily [140]). Let p be a prime, and let K and L be disjoint
subsets of [0, p − 1]. Let {F1, F2, . . . , Fm} ⊂ 2[n] be a family such that |Fi ∩ Fj|
(mod p) is in K if i = j, and in L if i ̸= j. Then m ≤

(
n
|L|

)
.

For some recent related results, see [93, 19].

Conjecture 9.5. Let n, k, p, r be positive integers with 0 ≤ r < p, p|k, and let

F ⊂
(
[n+r]
k+r

)
. Suppose that |F ∩ F ′| ≡ r (mod p) for all distinct F, F ′ ∈ F . If

n > n0(k), then |F| ≤
(⌊n/p⌋

k/p

)
, where n0(k) is a polynomial in k.

This conjecture is true if we drop the condition that n0(k) is a polynomial, see
[79]. When p = 2 this result has an application in classification of antipodal sets in
oriented real Grassmann manifolds, see [142, 143].

Conjecture 9.6. α(24, {0, 1, 2, 3, 4, 8}) = 6.

Theorem 9.5 with the existence of the Witt design S(5, 8, 24) implies that the above
exponent is more than 5. On the other hand, Theorem 9.2 yields that the exponent is
at most 6. Using the structure of S(5, 6, 12) it is shown that α(12, {0, 1, 2, 3, 4, 6}) = 6
in [144].
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10. Application of semidefinite programming

The aim of this section is to present a semidefinite programming (SDP) approach
to some intersection problems for readers not familiar with SDP. We consider simple
concrete problems, then encode them into SDP problems and solve them. These
problems in the next three subsections can be solved as linear programming (LP)
problems, or by using completely different method, say, shifting technique. Moreover
rewriting the problems into SDP setting looks complicated at the first sight. So
one may wonder if SDP approach is a right way. Where is the merit? Well, we
will generalize problems step by step, and the corresponding SDP problems can
be obtained in almost the same way, only with slight changes. So we can start
with an easy problem and reach a rather difficult one without much effort. In the
last subsection we obtain Theorem 10.2 which is just a ‘correctly’ rewritten and
extended version of easy Proposition 10.3. This theorem provides some nontrivial
results, and the SDP approach is the only known way to prove some of them so
far, e.g., Theorem 10.3 and Theorem 10.4. Extending the celebrated LP bound
due to Delsarte [29], Schrijver established the SDP bound in [133] and obtained
better upper bounds for the size of codes in many cases by solving the corresponding
SDP problems directly (using computer). Along this line, de Klerk and Pasechnik
obtained the exact value of the independence number of an orthogonality graph, see
[110]. In this section, we follow Schrijver’s idea, but we will not solve the original
problem (called primal form) directly, instead we will find a solution to its ‘dual’
problem and use the ‘weak duality’ property, which then will give a sharp bound for
the original problem. The authors learned most of the material concerning SDP in
this section from Hajime Tanaka.

10.1. A quick introduction to SDP and its weak duality. Since SDP is an
extension of linear programming (LP) we briefly recall LP and one of its basic prop-
erties called weak duality.

The LP problem in primal form is

(P): minimize cTx,
subject to Ax = b,

x ≥ 0,

where A ∈ Rm×n (the set of all m × n real matrices), b ∈ Rm, c ∈ Rn are given,
x ∈ Rn is the variable. By x ≥ 0 we mean that x is nonnegative, that is, every entry
of x is nonnegative. We say that x is feasible in (P) if x satisfies the constraints
Ax = b and x ≥ 0.

The corresponding dual form is

(D): maximize bTy,
subject to yTA ≤ cT,

where y ∈ Rn is the variable. Then we have the following easy but useful fact.

Proposition 10.1 (Weak duality for LP). If x is feasible in (P) and y is feasible
in (D), then cTx ≥ bTy.

Proof. Indeed, cTx ≥ (yTA)x = yT(Ax) = yT b = bTy. □
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We can use this fact in the following way. Suppose that if x is feasible in (P) and
y is feasible in (D). Suppose, moreover, that x and y happen to satisfy cTx = bTy.
Then, by the weak duality, we see that both x and y are optimal. In application it
often happens that one easily finds a feasible solution x for (P) which is a candidate
for an optimal solution. To prove that x is in fact optimal, it suffices to find a feasible
solution y for (D) satisfying cTx = bTy. (Of course finding such y is usually more
difficult than finding x.)

Now we proceed to SDP. In this case variables are taken from the set of real
symmetric matrices of a fixed order, say n, denoted by SRn×n. For two matrices
A,B ∈ SRn×n we define the inner product by A • B := tr(ATB). We say that
A ∈ SRn×n is positive semidefinite if xTAx ≥ 0 for all x ∈ Rn (here we assume
that x is a column vector), and write A ⪰ 0. We write A ≥ 0 if every entry of A is
nonnegative. We recall some basic facts from linear algebra.

Fact 10.1. Let A,B,X ∈ SRn×n.

(i) All eigenvalues of A are nonnegative iff A ⪰ 0.
(ii) If A ⪰ 0 then tr(A) ≥ 0.

(iii) If A ⪰ 0 and B ⪰ 0 then A •B ≥ 0.
(iv) Let a ∈ Rn and A := a(aT) ∈ SRn×n. If X ∈ SRn×n then A •X = aTXa.

Proof. First suppose that A has nonnegative eigenvalues α1, . . . , αn. Then there ex-
ists a nonsingular P ∈ SRn×n such that P−1AP is a diagonal matrix D with diagonals
α1, . . . , αn. In this case let

√
D be a diagonal matrix with diagonals

√
α1, . . . ,

√
αn,

and let
√
A := P−1

√
DP . Then

√
A ∈ SRn×n and

√
A
√
A = A. So, for any x ∈ Rn,

we have xTAx = xT
√
A
√
Ax = (

√
Ax)T

√
Ax = |

√
Ax|2 ≥ 0, which means that

A ⪰ 0. Next suppose that A ⪰ 0. If α is an eigenvalue of A with eigenvector
x ̸= 0, then we have Ax = αx. It follows that 0 ≤ xTAx = xT(αx) = α|x|2,
which yields α ≥ 0. This gives us (i), and since tr(A) is the sum of all eigenvalues,

(ii) follows. By (i) we see that A has a square root
√
A ⪰ 0. Then it follows that

A • B = tr(ATB) = tr(
√
A
√
AB) = tr(

√
AB

√
A). If B ⪰ 0 then for every x ∈ Rn

we have xT(
√
AB

√
A)x = (

√
Ax)TB(

√
Ax) ≥ 0, which means that

√
AB

√
A ⪰ 0.

So (ii) implies tr(
√
AB

√
A) ≥ 0, and noting that the LHS equals to A • B we get

(iii). Finally, just noting that a is a column vector, (iv) follows from the definition
and simple computation. □

The SDP problem in primal form is

(P): minimize C •X,
subject to Ai •X = bi, i = 1, 2, . . . ,m,

X ⪰ 0,

where Ai ∈ SRn×n, b ∈ Rm, C ∈ SRn×n are given, and X ∈ SRn×n is the variable.
The corresponding dual form is

(D): maximize bTy,
subject to

∑m
i=1 yiAi + S = C, S ⪰ 0,

where y ∈ Rm, S ∈ SRn×n are the variables. As in LP we have the following weak
duality in SDP as well.
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Proposition 10.2 (Weak duality for SDP). If X is feasible in (P) and (y, S) is
feasible in (D), then C •X ≥ bTy.

Proof. By the constraints in (P) and (D) we have

C •X − bTy =

(∑
i

yiAi + S

)
•X − bTy =

∑
i

yibi + S •X − bTy = S •X.

Since X,S ⪰ 0 it follows from Fact 10.1 (iii) that X • S ≥ 0. □

See, e.g., [148] for more about semidefinite programming in general.

10.2. Bounding the independence number of a graph. Let G be a graph on
the vertex set Ω with |Ω| = n. Let U ⊂ Ω be an independent set, that is, there are
no edges between any two vertices in U , and let x = (x1, . . . , xn) ∈ {0, 1}n be the
characteristic (column) vector of U . Finally let

X :=
1

|U |
xxT ∈ SRn×n.

Then X ⪰ 0, in fact, for any y ∈ Rn it follows that yTXy = 1
|U |y

TxxTy =
1
|U | |x

Ty|2 ≥ 0. Also X ≥ 0 (all entries are nonnegative). Moreover simple com-

putation shows that

I •X = xTIx =
1

|U |
(x2

1 + · · · + x2
n) = 1,

J •X = xTJx =
1

|U |
(x1 + · · · + xn)2 = |U |,

where I is the identity matrix and J is the all ones matrix. If A = (aij) is the
adjacency matrix of G, then it follows that

A •X =
1

|U |
∑
i,j

aijxixj = 0.

Indeed if aij ̸= 0 then the vertices i and j are adjacent, and so xixj = 0 because x
is a characteristic vector of an independent set. In other words, aijxixj is always 0.
Consequently X is a feasible solution to the following SDP problem in primal form:

(P): maximize J •X,
subject to I •X = 1,

A •X = 0,
X ⪰ 0, X ≥ 0,

where A ∈ SRn×n is given, and X ∈ SRn×n is the variable. The corresponding dual
form is

(D): minimize α,
subject to αI − J = S + Z + γA,

S ⪰ 0, Z ≥ 0,

where α, γ ∈ R, and S, Z ∈ SRn×n are the variables.
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Proposition 10.3 (Weak duality). If X is feasible in (P) and (α, γ, S, Z) is feasible
in (D), then J •X ≤ α.

Proof. We take the bullet product with X on both sides of αI − J = S + Z + γA.
From the LHS we get α−J •X. From the RHS we get S •X +Z •X ≥ 0, where we
use S •X ≥ 0 (because S ⪰ 0 and X ⪰ 0), Z •X ≥ 0 (because Z ≥ 0 and X ≥ 0),
and A •X = 0. □

So any feasible solution α to (D) gives an upper bound for the optimal solution to
(P ), which provides an upper bound for the size of an independent set U in G. In
summary, the independence number of G is at most α.

Let G be a d-regular graph with n vertices. Let A be the adjacency matrix with
eigenvalues d = λ1 > λ2 ≥ · · · ≥ λn. Since 0 = tr(A) =

∑
i λi and λ1 = d > 0 it

follows that λn < 0.

Corollary 10.1 (Hoffman’s ratio bound). The independence number of G is at most

α :=
−λn

λ1 − λn

n.

Proof. For 1 ≤ i ≤ n let xi be the eigenvector corresponding to λi, where we take
x1 = 1 (the all ones vector). We notice that for 2 ≤ i ≤ n, xi is perpendicular to x1

with respect to the standard inner product. We will check that α (defined above),
γ := α/λn, and Z := 0 give a feasible solution to (D). To this end it suffices to
show that S := αI − J − Z − γA = αI − J − (α/λn)A is positive semidefinite, or
equivalently, all eigenvalues of S are nonnegative. In fact it follows

(αI − J − (α/λn)A)x1 = (α− n− (α/λn)λ1)x1 = 0x1,

and for 2 ≤ i ≤ n

(αI − J − (α/λn)A)xi = (α− (α/λn)λi)xi = α(1 − λi/λn)xi,

where α(1 − λi/λn) ≥ 0, as desired. □

Let us define the Kneser graph G(n, k, t) = (Ω, E) with Ω :=
(
[n]
k

)
and u, v ∈ Ω

are adjacent if and only if |u ∩ v| < t. (Note that u and v are k-element subsets of
[n].) Recall that U ⊂ Ω is a t-intersecting family if |u ∩ v| ≥ t for all u, v ∈ U . This
is equivalent to the statement that U is an independent set in G(n, k, t).

Let t = 1, n ≥ 2k and let A be the adjacency matrix of G(n, k, 1). With some
efforts one can show that the set of eigenvalues of A is{

(−1)i
(
n− k − i

k − i

)
: i = 0, 1, . . . , k

}
with corresponding multiplicities

(
n
i

)
−
(

n
i−1

)
, see, e.g., [89]. If we rearrange the

eigenvalues of A as λ1 ≥ · · · ≥ λN where N =
(
n
k

)
, then λ1 =

(
n−k
k

)
and λN =

−
(
n−k−1
k−1

)
. Thus it follows from Corollary 10.1 that the independence number of

G(n, k, 1) is at most
−λN

λ1 − λN

N =

(
n− 1

k − 1

)
.
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So this gives us an alternative proof of the Erdős–Ko–Rado theorem for the 1-
intersecting case, see Lovász [117].

It is much more difficult to deal with the t-intersecting case for t ≥ 2 along this
line, but Wilson found a way to do this. Instead of the adjacency matrix he used
a pseudo adjacency matrix A = (aij) of a regular graph G, that is, A is indexed by
Ω = V (G), and

• if i, j ∈ Ω and ij ̸∈ E(G), then aij = 0, and
• the all ones vector 1 is one of the eigenvectors of A.

If ij ∈ E(G), then aij can take any real number. Wilson [152] succeeded to construct
a pseudo adjacency matrix of the Kneser graph G(n, k, t) with largest eigenvalue(
n
k

)(
n−t
k−t

)−1 − 1 and least eigenvalue −1, where n ≥ (t+ 1)(k− t+ 1). Thus it follows

from Corollary 10.1 that the independence number of G(n, k, t) is at most
(
n−t
k−t

)
. In

other words, the maximum size of k-uniform t-intersecting family on n vertices is(
n−t
k−t

)
.

10.3. The measure version. In the previous subsection we considered the maxi-
mum size of an independent set of a graph, and the maximum size of an intersecting
families. It is sometimes useful to consider the corresponding measure version de-
scribed in detail shortly. The SDP approach also works in the measure setting, in
fact, it is a natural generalization of the SDP problem we discussed in the previous
subsection.

Let G = (Ω, E) be a regular graph, and let

µ : Ω → [0, 1]

be a probability measure, that is,
∑

x∈Ω µ(x) = 1. Now we are interested in the
maximum of µ(U), where U ⊂ Ω runs over all independent sets in G. If we take a
uniform measure µ(x) = 1/|Ω| for all x ∈ Ω, then we get the original problem in the
previous subsection. But there is another important measure called product measure.
To define this let Ω = 2[n] and let p ∈ (0, 1) be a fixed real. Then the measure is
defined by µ(x) = p|x|(1− p)n−|x| for x ∈ Ω, where |x| denotes the cardinality of x as
a subset of [n].

Let U ⊂ Ω := {v1, v2, . . . , vn} be an independent set, and let x be the characteristic
vector of U . Let

X :=
1

µ(U)
xxT ∈ SRn×n.

Then X ⪰ 0 and X ≥ 0. Let ∆ ∈ SRn×n be a diagonal matrix with diagonals
µ({v1}), µ({v2}), . . . , µ({vn}). Then it follows that

∆ •X = 1,

∆J∆ •X = µ(U).

Let Eij ∈ SRn×n denote the matrix (indexed by Ω) with a 1 in the (vi, vj)-entry and
0 elsewhere. If vi ∼ vj, namely, vi and vj are adjacent, then

Eij •X = 0.

Therefore X is a feasible solution to the following SDP problem in primal form:
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(P): maximize ∆J∆ •X,
subject to ∆ •X = 1,

Eij •X = 0 for vi ∼ vj,
X ⪰ 0, X ≥ 0,

where X ∈ SRn×n is the variable. The corresponding dual form is

(D): minimize α,
subject to α∆ − ∆J∆ = S + Z +

∑
vi∼vj

γijEij,

S ⪰ 0, Z ≥ 0,

where α, γij ∈ R, and S,Z ∈ SRn×n are the variables. Here we remark that if γij ≡ 1
then

∑
vi∼vj

γijEij is the adjacency matrix of G. One can verify the weak duality as

in the proof of Proposition 10.3.

Proposition 10.4 (Weak duality). If X is feasible in (P) and (α, γij, S, Z) is feasible
in (D), then ∆J∆ •X ≤ α.

As a consequence any feasible solution α to (D) provides an upper bound for the
maximum measure µ(U) where U runs over all independent sets in G.

Example 10.1. Let G = (Ω, E) be a graph with Ω = 2[n] and u ∼ v iff u ∩ v = ∅,
namely two vertices u, v in G are adjacent if and only if they are disjoint as subsets
of [n]. Fix p, q ∈ (0, 1) with p+ q = 1, and let µ : Ω → [0, 1] be the product measure,
that is, µ(v) := p|v|qn−|v|. If p ≤ 1/2 and U ⊂ Ω is an independent set (in other
words, U ⊂ 2[n] is intersecting), then

µ(U) ≤ p.

Proof. It suffices to find a feasible solution to (D) with optimal value α = p. If n = 1
then U = {{1}} is the only (nonempty) independent set in G, and µ(U) = p follows.
But we construct an optimal solution to (D) carefully, because it can be expanded to
the general case quite easily. The trick due to Friedgut [82] is to use tensor product.

So let n = 1. Let c = p/q and define

A :=

[
1 − c c

1 0

]
, D :=

[
1 0
0 −c

]
, V :=

[
1

√
c

1 −
√

1/c

]
, ∆ :=

[
q 0
0 p

]
,

where the rows and columns are indexed in the order ∅, {1}. Then it follows that

AV = V D, V T∆V = I, (∆A)T = ∆A, (40)

from which it follows that

V T(∆A)V = D. (41)

We also have that

V T(∆J∆)V = E11, (42)

that is, (1, 1)-entry is a 1 and 0 elsewhere. Then we construct an optimal solution by
letting α = p, Z = 0, and

∑
γijEij = q∆A (that is, γ11 = q(q−p), γ12 = γ12 = −pq).

In this case S = p∆ − ∆J∆ + q∆A is the zero matrix and S ⪰ 0, as needed.
Next we move to the general case n ≥ 2. Let An := A ⊗ · · · ⊗ A be an 2n × 2n

matrix obtained by taking n-folded tensor of the 2 × 2 matrix A. We naturally
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identify 2{1} × · · · × 2{n} with Ω = 2[n], and we understand that A is indexed by Ω.
Then it follows that

if u ̸∼ v in G then (u, v)-entry of An is 0. (43)

We define Dn, Vn,∆n in the same manner. These new matrices again satisfy (40),
(41) and (42). Now an optimal solution to (D) will be given by α = p, Z = 0,
and

∑
γijEij = q∆nAn, where γij’s are well-defined by (43). We have to show that

S := p∆n−∆nJ∆n +q∆nAn is positive semidefinite. By (40), (41) and (42) we have

V T
n SVn = pI − E11 + qDn

∼=
⊕
z∈2[n]

S(z),

where

S(∅) :=

[
0 0
0 0

]
, S(z) :=

(
p + q(−c)|z|

) [1 0
0 1

]
(z ̸= ∅).

Since Vn is nonsingular it follows that S ⪰ 0 if and only if V T
n SVn ⪰ 0. So we need to

check that S(z) ⪰ 0 for all z ⊂ [n]. This follows from p+q(−c)j = p+q(−p/q)j ≥ 0 for
all 1 ≤ j ≤ n. Indeed, this is clear if j is even, and if j is odd then this is equivalent
to p/q ≥ (p/q)j, which follows from 0 < p/q < 1 (because p < 1/2 < q). □

The matrices used in the above proof were introduced by Friedgut in [82]. Actu-
ally he found matrices corresponding to t-intersecting families to show the following
result.

Theorem 10.1. Let 0 < p < 1
t+1

and let µ be the product measure. If F ⊂ 2[n] is

t-intersecting, then µ(F) ≤ pt.

His proof can be viewed as a measure version of Wilson’s proof of the Erdős–Ko-
Rado Theorem. Both proofs are within scope of the Delsarte LP bound [29]. In the
next subsection we present examples of intersection problems that cannot be reduced
to LP problems and require the full strength of the SDP approach.

10.4. The bipartite graph version. In this subsection, we consider a problem of
bounding the measures of cross independent sets in a bipartite graph as an SDP
problem.

Let Ω1,Ω2 be finite sets, and let Ω := Ω1 ⊔ Ω2. Let G be a bipartite graph with
bipartition V (G) = Ω = Ω1 ⊔ Ω2. We say that U1 ⊂ Ω1 and U2 ⊂ Ω2 are cross
independent if there are no edges between U1 and U2 in G. For i = 1, 2, let µi be a
probability measure on Ωi. We are interested in the maximum of µ1(U1)µ2(U2).

Example 10.2. Let n, k, l, t be positive integers, and let Ω1 =
(
[n]
k

)
and Ω2 =

(
[n]
l

)
.

For x ∈ Ω1 and y ∈ Ω2 let x ∼ y if |x∩y| < t. Let µi(z) = 1/|Ωi| for every z ∈ Ωi. In
this case to determine the maximum of µ1(U1)µ2(U2) for cross independent U1 ⊂ Ω1

and U2 ⊂ Ω2 is equivalent to determine the maximum of the product of sizes |A||B|
for cross t-intersecting families A ⊂

(
[n]
k

)
and B ⊂

(
[n]
l

)
.

We are going to explain how to encode a problem such as Example 10.2 as a
positive semidefinite problem. Let RΩ×Ω be the set of real matrices with rows and
columns indexed by Ω, and let RΩ be the set of real column vectors with coordinates
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indexed by Ω. The sets RΩi×Ωj and RΩi are similarly defined. Let SRΩ×Ω be the set
of symmetric matrices in RΩ×Ω.

Now, suppose that U1 ⊂ Ω1, U2 ⊂ Ω2 are cross independent in G. Let xi ∈ RΩi be
the characteristic vector of Ui, and let x := (x1/

√
µ1(U1),x2/

√
µ2(U2)) ∈ RΩ be a

column vector. Define a matrix X representing U1, U2 by

X := xxT ∈ SRΩ×Ω.

Then X ⪰ 0 and X ≥ 0. Let Jij ∈ RΩi×Ωj be the all ones matrix, and let ∆i ∈ RΩi×Ωi

be the diagonal matrix whose (x, x)-entry is µi({x}) for x ∈ Ωi. Then it follows that

1

2

[
0 ∆1J12∆2

∆2J21∆1 0

]
•X =

√
µ1(U1)µ2(U2), (44)[

∆1 0
0 0

]
•X =

[
0 0
0 ∆2

]
•X = 1. (45)

For x ∈ Ωi, y ∈ Ωj, let Exy ∈ RΩi×Ωj be the matrix with a 1 in the (x, y)-entry and
0 elsewhere. Then,[

0 Exy

Eyx 0

]
•X = 0 for x ∈ Ω1, y ∈ Ω2, x ∼ y, (46)

So X is a feasible solution to the following SDP problem in primal form:

(P): maximize the LHS of (44)
subject to (45), (46),

X ⪰ 0, X ≥ 0,

where X ∈ SRΩ×Ω is the variable, and X ≥ 0 means that X is nonnegative.
The corresponding problem in dual form is

(D): minimize α + β

subject to

[
α∆1 0

0 β∆2

]
− 1

2

[
0 ∆1J12∆2

∆2J21∆1 0

]
= S + Z +

∑
x∼y

γxy

[
0 Exy

Eyx 0

]
,

S ⪰ 0, Z ≥ 0,

where α, β, γxy ∈ R, and S, Z ∈ SRΩ×Ω are the variables. Then one can routinely
verify the weak duality: if X is feasible in (P) and (α, β, γxy, S, Z) is feasible in (D),
then ∆J∆ •X ≤ α + β. This immediately yields the following.

Theorem 10.2 ([139]). Let G be a bipartite graph with bipartition V (G) = Ω1 ⊔Ω2,
and let µi be a probability measure on Ωi for i = 1, 2. Suppose that U1 ⊂ Ω1, U2 ⊂ Ω2

are cross independent in G. If (α, β, γxy, S, Z) is feasible in (D), then

µ1(U1)µ2(U2) ≤ (α + β)2.

We will present some applications of Theorem 10.2. We start with extending
Corollary 10.1 for bipartite graphs. For this we need some preparation.

Let A12 be the bipartite adjacency matrix of G with rows indexed by Ω1 =
{x1, . . . , xm} and columns indexed by Ω2 = {y1, . . . , yn}, that is, (x, y)-entry of A12
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is 1 if x ∼ y and 0 otherwise, and let A21 := AT
12. Then the adjacency matrix A of

G is

A =

[
0 A12

A21 0

]
.

Definition 10.1. We say that G is biregular with respect to µ1, µ2 if the following
conditions are satisfied.

(P1) For i = 1, 2 there exists Vi ∈ RΩi×Ωi whose first column is the all ones vector.
(P2) There exists D12 ∈ RΩ1×Ω2 and D21 := DT

12 which have (the same) diagonal
entries σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} ≥ 0 and 0 elsewhere.

(P3) By letting

V :=

[
V1 0
0 V2

]
, D :=

[
0 D12

D21 0

]
, ∆ :=

[
∆1 0
0 ∆2

]
,

these matrices satisfy

AV = V D, V T∆V = I, (∆A)T = ∆A.

Call the σi’s singular values of G with respect to µ1, µ2.

If G is biregular with respect to µ1, µ2, then it follows that

V T∆AV = D, V T
1 ∆1J12∆2V2 = E11. (47)

In fact, for the latter, V T∆V = I implies
∑

l(∆1)l(V1)li(V1)lj = δij, and using (P1)
with j = 1 it follows

∑
l(∆1)l(V1)li = δi1, so (i, j)-entry of (V T

1 ∆1J12∆2V2) is∑
k

(V1)ki
∑
l

(∆1)k(∆2)l(V2)lj =
∑
k

(∆1)k(V1)ki
∑
l

(∆2)l(V2)lj = δi1δj1,

as needed. If we compare (P3) and (47) with (40), (41) and (42), then we see that
this bipartite graph version of SDP is a natural generalization of Example 10.1.

Corollary 10.2. Let G be a bipartite graph with bipartition Ω1⊔Ω2, and for i = 1, 2
let µi be a probability measure on Ωi. Suppose that G is biregular with respect to
µ1, µ2 with largest two singular values σ1 > σ2 > 0. If U1 ⊂ Ω1 and U2 ⊂ Ω2 are
cross independent, then √

µ1(U1)µ2(U2) ≤
σ2

σ1 + σ2

,

Proof. We construct a feasible solution to (D) with objective value θ := σ2

σ1+σ2
. To

this end we let α = β = θ/2, Z = 0, and we need to show that by choosing γ suitably
it follows that

S :=
θ

2
∆ − 1

2

[
0 ∆1J12∆2

∆2J21∆1 0

]
+ γ∆A ⪰ 0,

where A is the adjacency matrix of G and ∆ is defined in (P3).
Using the biregular property it follows

V TSV =
θ

2
I − 1

2

[
0 E11

E11 0

]
+ γD ∼=

⊕
i

S(i),
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where

S(1) :=
1

2

[
θ 2γσ1 − 1

2γσ1 − 1 θ

]
, S(i) :=

1

2

[
θ 2γσi

2γσi θ

]
(i ≥ 2).

To show S ⪰ 0 it suffices to show V TSV ⪰ 0, or S(i) ⪰ 0 for all i. This can be done
by choosing γ so that det(S(i)) ≥ 0, e.g., γ = 1

2(σ1+σ2)
. □

Corollary 10.2 is a cheap application of Theorem 10.2, but if µ1 = µ2 (and Ω1 =
Ω2), then it provides a sharp upper bound for the product of measures in some cases,
see e.g., [145, 146]. The cases when µ1 ̸= µ2 are more difficult to deal with. It was
only 2014 when Suda and Tanaka came up with the following vector space version of
the Erdős–Ko–Rado theorem for cross intersecting families by making the best use
of Theorem 10.2.

Theorem 10.3 (Suda–Tanaka [138]). Let V be an n-dimensional vector space over
Fq. For i = 1, 2, let n ≥ 2ki and Ui ⊂

[
V
ki

]
. If dim(x ∩ y) ≥ 1 for all x ∈ U1 and

y ∈ U2, then

|U1||U2| ≤
[
n− 1

k1 − 1

][
n− 1

k2 − 1

]
.

They constructed a feasible solution to the dual problem (D) as a one-parameter
family, where the use of Z > 0 is inevitable for the optimality. The same proof can
be applied to obtain the corresponding result for families of subsets (and it is even
easier). We also get a bipartite graph version of Example 10.1.

Example 10.3. Let G be a bipartite graph with bipartition Ω1 ⊔Ω2 with Ωi = 2[n],
and x ∼ y iff x ∩ y = ∅ for x ∈ Ω1 and y ∈ Ω2. For i = 1, 2 let pi ∈ (0, 1/2] and
let µi : Ωi → [0, 1] be the product measure. If U1 ⊂ Ω1 and U2 ⊂ Ω2 are cross
independent (in other words, U1, U2 ⊂ 2[n] are cross intersecting), then

µ1(U)µ2(U2) ≤ p1p2.

Sketch of Proof. We construct an optimal feasible solution to (D) and apply Theo-
rem 10.2. The construction is very similar to that of Example 10.1. Assume that
p1 ≥ p2. For the case n = 1 let ci :=

√
pi/qi, and define

Aij :=

[
1 − pj

qi

pj
qi

1 0

]
, Dij :=

[
1 0
0 −cicj

]
, Vi :=

[
1 ci
1 − 1

ci

]
, ∆i :=

[
qi 0
0 pi

]
.

Then we have V T
i (∆iAij)Vj = Dij and (∆iAij)

T = ∆jAji. We choose

α = β =
√
p1p2/2,

∑
x∼y

γxyExy = η∆1A12, Z =

[
ϵ1∆1A11 0

0 ϵ2∆2A22

]
,

where ϵ2 will be used as a parameter. After some computation one can verify that
S ⪰ 0, where[

α∆1 0
0 β∆2

]
− 1

2

[
0 ∆1J12∆2

∆2J21∆1 0

]
= S + Z +

[
0 η∆1A12

η∆2A21 0

]
,
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if and only if

ϵ1 =
p2
p1
ϵ2 +

(p1 − p2)p2
2
√
p1p2

, η =
p2√
p1p2

ϵ2 +
q2
2
, 0 ≤ ϵ2 ≤

√
p1p2/2.

In this case we get a feasible solution of (D) with objective value
√
p1p2, and this

completes the proof for the case n = 1. Finally the general case n ≥ 2 follows from
this with the tensor product trick as in Example 10.1. □

We present one more application which extends Example 10.3. Let us define
a probability measure µ on Ω = 2[n] with respect to a probability vector p =
(p(1), p(2), . . . , p(n)) ∈ (0, 1)n as follows: For U ⊂ Ω let

µ(U) :=
∑
x∈U

∏
l∈x

p(l)
∏

k∈[n]\x

(1 − p(k)).

This measure was introduced by Fishburn, Frankl, Freed, Lagarias, and Odlyzko in
[46], where they considered the maximum measure for intersecting families. In [139]
the following extension of their result to cross intersecting families is obtained based
on Theorem 10.2.

Theorem 10.4 ([139]). For i = 1, 2, let µi be a probability measure on Ωi = 2[n] with

respect to a probability vector pi = (p
(1)
i , . . . , p

(n)
i ), and let Ui ⊂ Ωi. Suppose that U1

and U2 are cross intersecting.

(i) If p
(1)
i = max{p(l)i : 1 ≤ l ≤ n} for i = 1, 2, and p

(l)
i ≤ 1/2 for all i = 1, 2,

2 ≤ l ≤ n, then µ1(U1)µ2(U2) ≤ p
(1)
1 p

(1)
2 .

(ii) If p
(1)
1 p

(1)
2 = max{p(l)1 p

(l)
2 : 1 ≤ l ≤ n}, and p

(l)
i ≤ 1/3 for all i = 1, 2,

1 ≤ l ≤ n, then µ1(U1)µ2(U2) ≤ p
(1)
1 p

(1)
2 .

We remark that we do not require p
(1)
i ≤ 1/2 in (i).

Borg considered a problem concerning cross intersecting integer sequences in [15],
and obtained similar results to Theorem 10.4 using shifting technique under assump-

tion that p
(1)
i ≥ p

(2)
i ≥ · · · ≥ p

(n)
i .

Conjecture 10.1 ([139]). (ii) of Theorem 10.4 is still valid if we replace the condi-

tion p
(l)
i ≤ 1/3 with p

(l)
i ≤ 1/2.

It is interesting that if this conjecture is true then each family in the optimal case is
intersecting, but not necessarily measure maximal.

Another interesting problem is to obtain cross t-intersecting version of the Erdős–
Ko–Rado Theorem (or its measure version).

Problem 10.1. For i = 1, 2, let µi be a probability measure on Ωi = 2[n] with respect
to a probability vector pi. Determine or estimate maxµ1(U1)µ2(U2) where U1 ⊂ Ω1

and U2 ⊂ Ω2 run over all cross t-intersecting families.

See [16, 70, 122, 127, 145, 146] for some related results.
Finally we mention that Borg established the following striking result using a

purely combinatorial argument very recently.
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Theorem 10.5 (Borg [17]). Let 7 ≤ t ≤ a ≤ b and n ≥ (t + 2)(b − t) + a − 1. If

A ⊂
(
[n]
a

)
and B ⊂

(
[n]
b

)
are cross t-intersecting, then |A||B| ≤

(
n−t
a−t

)(
n−t
b−t

)
.
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[40] P. Erdős. On the combinatorial problems which I would most like to see solved. Combinatorica
1 (1981), no. 1, 25–42.
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1984.
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