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ON THE DISCRETE LOGARITHMIC MINKOWSKI PROBLEM

KÁROLY J. BÖRÖCZKY, PÁL HEGEDŰS, AND GUANGXIAN ZHU

Abstract. A new sufficient condition for the existence of a solution for the logarithmic Minkowski
problem is established. This new condition contains the one established by Zhu [69] and the discrete
case established by Böröczky, Lutwak, Yang, Zhang [6] as two important special cases.

1. Introduction

The setting for this paper is n-dimensional Euclidean space R
n. A convex body in R

n is a
compact convex set that has non-empty interior. If K is a convex body in R

n, then the surface
area measure, SK , of K is a Borel measure on the unit sphere, Sn−1, defined for a Borel ω ⊂ Sn−1

(see, e.g., Schneider [61]), by

SK(ω) =

∫

x∈ν−1

K
(ω)

dHn−1(x),

where νK : ∂′K → Sn−1 is the Gauss map of K, defined on ∂′K, the set of points of ∂K that have
a unique outer unit normal, and Hn−1 is (n− 1)-dimensional Hausdorff measure.

As one of the cornerstones of the classical Brunn-Minkowski theory, the Minkowski’s existence
theorem can be stated as follows (see, e.g., Schneider [61]): If µ is not concentrated on a great
subsphere of Sn−1, then µ is the surface area measure of a convex body if and only if∫

Sn−1

udµ(u) = 0.

The solution is unique up to translation, and even the regularity of the solution is well investigated,
see e.g., Lewy [40], Nirenberg [57], Cheng and Yau [12], Pogorelov [60], and Caffarelli [9].

The surface area measure of a convex body has clear geometric significance. Another important
measure that is associated with a convex body and that has clear geometric importance is the
cone-volume measure. If K is a convex body in R

n that contains the origin in its interior, then the
cone-volume measure, VK , of K is a Borel measure on Sn−1 defined for each Borel ω ⊂ Sn−1 by

VK(ω) =
1

n

∫

x∈ν−1

K
(ω)

x · νK(x) dH
n−1(x).

For references regarding cone-volume measure see, e.g., [5–8, 42–44, 55, 56, 58, 62–64, 69].
The Minkowski’s existence theorem deals with the question of prescribing the surface area mea-

sure. The following problem is prescribing the cone-volume measure.

Logarithmic Minkowski problem: What are the necessary and sufficient conditions on a
finite Borel measure µ on Sn−1 so that µ is the cone-volume measure of a convex body in R

n?

In [45], Lutwak showed that there is an Lp analogue of the surface area measure (known as
the Lp surface area measure). In recent years, the Lp surface area measure appeared in, e.g.,
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[1,4,10,22,23,25,26,31,42–44,47–49,52,53,55,56,58,59,64]. In [45], Lutwak posed the associated
Lp Minkowski problem which extends the classical Minkowski problem for p ≥ 1. In addition,
the Lp Minkowski problem for p < 1 was publicized by a series of talks by Erwin Lutwak in the
1990’s. The Lp Minkowski problem is the classical Minkowski problem when p = 1, while the
Lp Minkowski problem is the logarithmic Minkowski problem when p = 0. The Lp Minkowski
problem is interesting for all real p, and have been studied by, e.g., Lutwak [45], Lutwak and
Oliker [46], Chou and Wang [14], Guan and Lin [21], Hug, et al. [35], Böröczky, et al. [6]. Additional
references regarding the Lp Minkowski problem and Minkowski-type problems can be found in,
e.g., [6, 11, 14, 20–24, 33–35, 38, 39, 41, 45, 46, 51, 54, 62, 63, 70, 71]. Applications of the solutions to
the Lp Minkowski problem can be found in, e.g., [2, 3, 13, 15, 16, 27–29, 36, 37, 50, 66, 68].

A finite Borel measure µ on Sn−1 is said to satisfy the subspace concentration condition if, for
every subspace ξ of Rn, such that 0 < dim ξ < n,

(1.2) µ(ξ ∩ Sn−1) ≤
dim ξ

n
µ(Sn−1),

and if equality holds in (1.2) for some subspace ξ, then there exists a subspace ξ′, that is comple-
mentary to ξ in R

n, so that also

µ(ξ′ ∩ Sn−1) =
dim ξ′

n
µ(Sn−1).

The measure µ on Sn−1 is said to satisfy the strict subspace concentration inequality if the
inequality in (1.2) is strict for each subspace ξ ⊂ R

n, such that 0 < dim ξ < n.
Very recently, Böröczky and Henk [5] proved that if the centroid of a convex body is the origin,

then the cone-volume measure of this convex body satisfies the subspace concentration condition.
For more references on the progress of the subspace concentration condition, see, e.g., Henk et
al. [32], He et al. [30], Xiong [67], Böröczky et al. [8], and Henk and Linke [31].

In [6], Böröczky, et al. established the following necessary and sufficient conditions for the
existence of solutions to the even logarithmic Minkowski problem.

Theorem 1.1 (Böröczky,Lutwak,Yang,Zhang). A non-zero finite even Borel measure on Sn−1 is
the cone-volume measure of an origin-symmetric convex body in R

n if and only if it satisfies the
subspace concentration condition.

The convex hull of a finite set is called a polytope provided that it has positive n-dimensional
volume. The convex hull of a subset of these points is called a facet of the polytope if it lies entirely
on the boundary of the polytope and has positive (n − 1)-dimensional volume. If a polytope P
contains the origin in its interior and has N facets whose outer unit normals are u1, ..., uN , and
such that if the facet with outer unit normal uk has (n − 1)-measure ak and distance from the
origin hk for all k ∈ {1, ..., N}, then

VP =
1

n

N∑

k=1

hkakδuk
.

where δuk
denotes the delta measure that is concentrated at the point uk.

A finite subset U (with no less than n elements) of Sn−1 is said to be in general position if any
k elements of U , 1 ≤ k ≤ n, are linearly independent.

For a long time, people believed that the data for a cone-volume measure can not be arbitrary.
However, Zhu [69] proved that any discrete measure on Sn−1 whose support is in general position
is a cone-volume measure.
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Theorem 1.2 (Zhu). A discrete measure, µ, on the unit sphere Sn−1 is the cone-volume measure
of a polytope whose outer unit normals are in general position if and only if the support of µ is in
general position and not concentrated on a closed hemisphere of Sn−1.

A linear subspace ξ (1 ≤ dim ξ ≤ n − 1) of Rn is said to be essential with respect to a Borel
measure µ on Sn−1 if ξ ∩ supp(µ) is not concentrated on any closed hemisphere of ξ ∩ Sn−1.

Definition 1.3. A finite Borel measure µ on Sn−1 is said to satisfy the essential subspace concen-
tration condition if, for every essential subspace ξ (with respect to µ) of Rn, such that 0 < dim ξ <
n,

(1.3) µ(ξ ∩ Sn−1) ≤
dim ξ

n
µ(Sn−1),

and if equality holds in (1.3) for some essential subspace ξ (with respect to µ), then there exists a
subspace ξ′, that is complementary to ξ in R

n, so that

(1.4) µ(ξ′ ∩ Sn−1) =
dim ξ′

n
µ(Sn−1).

Definition 1.4. The measure µ on Sn−1 is said to satisfy the strict essential subspace concentration
inequality if the inequality in (1.3) is strict for each essential subspace ξ (with respect to µ) of Rn,
such that 0 < dim ξ < n.

We would like to note that if µ is a Borel measure on the unit sphere that is not concentrated
on a closed hemisphere and satisfies the essential subspace concentration condition, and ξ is an
essential subspace (with respect to µ) that reaches the equality in (1.3), then by Lemma 5.2, ξ′ (in
(1.4)) is an essential subspace with respect to µ.

It is the aim of this paper to establish the following.

Theorem 1.5. If µ is a discrete measure on Sn−1 that is not concentrated on any closed hemisphere
and satisfies the essential subspace concentration condition, then µ is the cone-volume measure of
a polytope in R

n containing the origin in its interior.

If µ is a non-trivial even Borel measure on Sn−1, and ξ is a k-dimensional linear subspace
of Rn spanned by some vectors v1, . . . , vk ∈ supp(µ) for 1 ≤ k ≤ n − 1, then −v1, . . . ,−vk ∈
supp(µ), as well, and hence ξ is an essential subspace. In particular, for even discrete measures,
Theorem 1.5 is equivalent to the sufficient condition of Theorem 1.1. However, there are non-even
discrete measures that satisfy the essential subspace concentration condition, but not the subspace
concentration condition. For example, if a k-dimensional subspace ξ, 1 ≤ k ≤ n − 1, intersects
the support of the measure in k + 1 unit vectors u0, . . . , uk such that u1, . . . , uk are independent,
and u0 = α1u1 + . . . + αkuk for α1, . . . , αk > 0, then there is no condition on the restriction of
the measure to ξ ∩ Sn−1. Therefore, for discrete measures, Theorem 1.5 is a generalization of the
sufficient condition of Theorem 1.1.

We claim that if the support of a discrete measure µ is in general position, then the set of essential
subspaces (with respect to µ) is empty. Otherwise, there exists a subspace ξ with 1 ≤ dim ξ ≤ n−1
such that supp(µ)∩ ξ is not concentrated on a closed hemisphere of Sn−1∩ ξ. Then we can choose
dim ξ + 1 (≤ n) vectors from supp(µ) ∩ ξ that are linearly dependent. But this contradicts the
fact that supp(µ) is in general position. From our declaration, we have, Theorem 1.5 contains
Theorem 1.2 as an important special case.

In R
2, Theorem 1.5 leads to the main result of Stancu ( [62], pp. 162), where she applied a

different method called the crystalline deformation.
New inequalities for cone-volume measures are established in section 6.
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2. Preliminaries

In this section, we collect some basic notations and facts about convex bodies. For general
references regarding convex bodies see, e.g., [17–19, 61, 65].

The vectors of this paper are column vectors. For x, y ∈ R
n, we will write x · y for the standard

inner product of x and y, and write |x| for the Euclidean norm of x. We write Sn−1 = {x ∈ R
n :

|x| = 1} for the boundary of the Euclidean unit ball Bn in R
n, and write κn for the volume of the

unit ball. Let Vk(M) denote the k-dimensional Hausdorff measure of an at most k-dimensional
convex set M . In addition, if k = n− 1, then we also use the notation |M |.

Suppose X1, X2 are subspaces of R
n, we write X1 ⊥ X2 if x1 ·x2 = 0 for all x ∈ X1 and x2 ∈ X2.

Suppose X is a subspace of Rn and S is a subset of Rn, we write S|X for the orthogonal projection
of S on X .

Suppose C is a subset of Rn, the positive hull, pos(C), of C is the set of all positive combinations
of any finitely many elements of C. Let lin(C) be the smallest linear subspace of Rn containing
C. The diameter of C is defined by

d(C) = sup{|x− y| : x, y ∈ C}.

For K1, K2 ⊂ R
n and c1, c2 ≥ 0, the Minkowski combination, c1K1 + c2K2, is defined by

c1K1 + c2K2 = {c1x1 + c2x2 : x1 ∈ K1, x2 ∈ K2}.

The support function hK : Rn → R of a compact convex set K is defined, for x ∈ R
n, by

h(K, x) = max{x · y : y ∈ K}.

Obviously, for c ≥ 0 and x ∈ R
n, we have

h(cK, x) = h(K, cx) = ch(K, x).

The convex hull of two convex sets K,L in R
n is defined by

[K,L] = {z : z = λx+ (1− λ)y, 0 ≤ λ ≤ 1 and x, y ∈ K ∪ L}.

The Hausdorff distance of two compact sets K,L in R
n is defined by

δ(K,L) = inf{t ≥ 0 : K ⊂ L+ tBn, L ⊂ K + tBn}.

It is known that the Hausdorff distance between two convex bodies, K and L, is

δ(K,L) = max
u∈Sn−1

|h(K, u)− h(L, u)|.

We always consider the space of convex bodies as metric space equipped with the Hausdorff
distance. It is known that if a sequence {Km} of convex bodies tends to a convex body K in
R

n containing the origin in its interior, then SKm
tends weakly to SK , and hence VKm

tends weakly
to VK (see Schneider [61]).

For a convex body K in R
n, and u ∈ Sn−1, the support hyperplane H(K, u) in direction u is

defined by

H(K, u) = {x ∈ R
n : x · u = h(K, u)},

the face F (K, u) in direction u is defined by

F (K, u) = K ∩H(K, u).

Let P be the set of all polytopes in R
n. If the unit vectors u1, ..., uN are not concentrated on a

closed hemisphere, let P(u1, ..., uN) be the set of all polytopes P ∈ P such that the set of outer
unit normals of the facets of P is a subset of {u1, ..., uN}, and let PN (u1, ..., uN) be the the set of
all polytopes P ∈ P such that the set of outer unit normals of the facets of P is {u1, ..., uN}.
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3. An extremal problem related to the logarithmic Minkowski problem

Let us suppose γ1, ..., γN ∈ (0,∞), and the unit vectors u1, ..., uN are not concentrated on a
closed hemisphere. Let

(3.0) µ =
N∑

i=1

γiδui
,

and for P ∈ P(u1, ..., uN) define ΦP : Int (P ) → R by

ΦP (ξ) =

∫

Sn−1

log (h(P, u)− ξ · u) dµ(u)

=
N∑

k=1

γk log
(
h(P, uk)− ξ · uk

)
,

(3.1)

where Int (P ) is the interior of P .
In this section, we study the following extremal problem:

(3.2) inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ P(u1, ..., uN) and V (Q) = |µ|

}
,

where |µ| =
∑N

k=1 γk.
We will prove that the solution of problem (3.2) solves the corresponding logarithmic Minkowski

problem.
For the case where u1, ..., uN are in general position and Q ∈ PN (u1, ..., uN), problem (3.2) was

studied in [69]. The results and proofs in this section are similar to [69]. However, for convenience
of the readers, we give detailed proofs for these results.

Lemma 3.1. Suppose µ =
∑N

k=1 γkδuk
is a discrete measure on Sn−1 that is not concentrated on

a closed hemisphere, and P ∈ P(u1, ..., uN), then there exists a unique point ξ(P ) ∈ Int (P ) such
that

ΦP (ξ(P )) = max
ξ∈Int (P )

ΦP (ξ).

Proof. Let 0 < λ < 1 and ξ1, ξ2 ∈ Int (P ). From the concavity of the logarithmic function,

λΦP (ξ1) + (1− λ)ΦP (ξ2) = λ

∫

Sn−1

log (h(P, u)− ξ1 · u) dµ(u)

+ (1− λ)

∫

Sn−1

log (h(P, u)− ξ2 · u) dµ(u)

=
N∑

k=1

γk [λ log(h(P, uk)− ξ1 · uk) + (1− λ) log(h(P, uk)− ξ2 · uk)]

≤

N∑

k=1

γk log [h(P, uk)− (λξ1 + (1− λ)ξ2) · uk]

= ΦP (λξ1 + (1− λ)ξ2),

with equality if and only if ξ1 · uk = ξ2 · uk for all k = 1, ..., N . Since the unit vectors u1, ..., uN

are not concentrated on a closed hemisphere, Rn=lin{u1, ..., uN}. Thus, ξ1 = ξ2. Therefore, ΦP is
strictly concave on Int (P ).

Since P ∈ P(u1, ..., uN), for any x ∈ ∂P , there exists some i0 ∈ {1, . . . , N} such that

h(P, ui0) = x · ui0 .
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Thus, ΦP (ξ) → −∞ whenever ξ ∈ Int (P ) and ξ → x. Therefore, there exists a unique interior
point ξ(P ) of P such that

ΦP (ξ(P )) = max
ξ∈Int (P )

ΦP (ξ).

�

Obviously, for λ > 0 and P ∈ P(u1, ..., uN),

(3.3) ξ(λP ) = λξ(P ),

and if Pi ∈ P(u1, ..., uN) and Pi converges to a polytope P , then P ∈ P(u1, ..., uN).
For the case where u1, ..., uN are in general position, the following lemma was proved in [69].

Lemma 3.2. Suppose µ =
∑N

k=1 γkδuk
is a discrete measure on Sn−1 that is not concentrated on a

closed hemisphere, Pi ∈ P(u1, ..., uN) and Pi converges to a polytope P , then limi→∞ ξ(Pi) = ξ(P )
and

lim
i→∞

ΦPi
(ξ(Pi)) = ΦP (ξ(P )).

Proof. Since ξ(P ) ∈ Int (P ) by Lemma 3.1, we have

lim inf
i→∞

ΦPi
(ξ(Pi)) ≥ lim inf

i→∞
ΦPi

(ξ(P )) = ΦP (ξ(P )).

Let z be any accumulation point of the sequence {ξ(Pi)}; namely, the limit of a subsequence
{ξ(Pi′)}. Since ΦPi

(ξ(Pi)) is bounded from below, and h(P, uk)− ξ(Pi) · uk is bounded from above
for k = 1, . . . , N , it follows that

lim inf
i→∞

(h(P, uk)− ξ(Pi) · uk) = lim inf
i→∞

(h(Pi, uk)− ξ(Pi) · uk) > 0

for k = 1, . . . , N , and hence z ∈ Int (P ). We deduce that

ΦP (z) = lim
i′→∞

ΦP (ξ(Pi′)) = lim
i′→∞

ΦPi′
(ξ(Pi′)) ≥ lim inf

i→∞
ΦPi

(ξ(Pi)) ≥ ΦP (ξ(P )).

Therefore Lemma 3.1 yields z = ξ(P ). �

The following lemma will be needed, as well.

Lemma 3.3. Suppose µ =
∑N

k=1 γkδuk
is a discrete measure on Sn−1 that is not concentrated on

a closed hemisphere, P ∈ P(u1, ..., uN), then

N∑

k=1

γk
uk

h(P, uk)− ξ(P ) · uk

= 0.

Proof. We may assume that ξ(P ) is the origin because for x, ξ ∈ Int P , we have ΦP−x(ξ − x) =
ΦP (ξ). Since ΦP (ξ) attains its maximum at the origin that is an interior point of P , differentiation
gives the desired equation. �

Lemma 3.4. Suppose µ =
∑N

k=1 γkδuk
is a discrete measure on Sn−1 that is not concentrated on

a closed hemisphere, and there exists a P ∈ PN(u1, ..., uN) with ξ(P ) = 0, V (P ) = |µ| such that

ΦP (0) = inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ P(u1, ..., uN) and V (Q) = |µ|

}
.

Then,

VP =
N∑

k=1

γkδuk
.



ON THE DISCRETE LOGARITHMIC MINKOWSKI PROBLEM 7

Proof. According to Equation (3.3), it is sufficient to establish the lemma under the assumption
that |µ| = 1.

From the conditions, there exists a polytope P ∈ PN(u1, ..., uN) with ξ(P ) is the origin and
V (P ) = 1 such that

ΦP (o) = inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ P(u1, ..., uN) and V (Q) = 1

}
.

For τ1, ..., τN ∈ R, choose |t| small enough so that the polytope

Pt =

N⋂

i=1

{x : x · ui ≤ h(P, ui) + tτi} ∈ PN (u1, ..., uN).

In particular, h(Pt, ui) = h(P, ui) + tτi for i = 1, . . . , n, and Lemma 7.5.3 in Schneider [61] yields
that

∂V (Pt)

∂t
=

N∑

i=1

τi|F (Pt, ui)|.

Let λ(t) = V (Pt)
− 1

n . Then λ(t)Pt ∈ PN (u1, ..., uN), V (λ(t)Pt) = 1, λ(t) is C1 and

(3.5) λ′(0) = −
1

n

N∑

i=1

τi|F (P, ui)|.

Define ξ(t) := ξ(λ(t)Pt), and

Φ(t) := max
ξ∈λ(t)Pt

∫

Sn−1

log (h(λ(t)Pt, u)− ξ · u) dµ(u)

=
N∑

k=1

γk log(λ(t)h(Pt, uk)− ξ(t) · uk).

(3.6)

It follows from Lemma 3.3, that

(3.7)

N∑

k=1

γk
uk,i

λ(t)h(Pt, uk)− ξ(t) · uk

= 0

for i = 1, ..., n, where uk = (uk,1, ..., uk,n)
T . In addition, since ξ(P ) is the origin, we have

(3.8)

N∑

k=1

γk
uk

h(P, uk)
= 0.

Let F = (F1, . . . , Fn) be a function from a small neighbourhood of the origin in R
n+1 to R

n such
that

Fi(t, ξ1, ..., ξn) =
N∑

k=1

γk
uk,i

λ(t)h(Pt, uk)− (ξ1uk,1 + ...+ ξnuk,n)

for i = 1, ..., n. Then,

∂Fi

∂t

∣∣∣∣
(t,ξ1,...,ξn)

=

N∑

k=1

γk
−uk,i(λ

′(t)h(Pt, uk) + λ(t)τk)

[λ(t)h(Pt, uk)− (ξ1uk,1 + ... + ξnuk,n)]2

∂Fi

∂ξj

∣∣∣∣
(t,ξ1,...,ξn)

=
N∑

k=1

γk
uk,iuk,j

[λ(t)h(Pt, uk)− (ξ1uk,1 + ... + ξnuk,n)]2
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are continuous on a small neighborhood of (0, 0, ..., 0) with
(
∂F

∂ξ

∣∣∣∣
(0,...,0)

)

n×n

=

N∑

k=1

γk
h(P, uk)2

uku
T
k ,

where uku
T
k is an n× n matrix. Since the unit vectors u1, ..., uN are not concentrated on a closed

hemisphere, Rn =lin{u1, ..., uN}. Thus, for any x ∈ R
n with x 6= 0, there exists a ui0 ∈ {u1, ..., uN}

such that ui0 · x 6= 0. Then,

xT

(
N∑

k=1

γk
h(P, uk)2

uku
T
k

)
x =

N∑

k=1

γk
h(P, uk)2

(x · uk)
2

≥
γi0

h(P, ui0)
2
(x · ui0)

2 > 0.

Therefore, (∂F
∂ξ

∣∣
(0,...,0)

) is positive definite. By this, the fact that Fi(0, ..., 0) = 0 for i = 1, ..., n, the

fact that ∂Fi

∂ξj
is continuous on a neighborhood of (0, 0, ..., 0) for all 1 ≤ i, j ≤ n and the implicit

function theorem, we have

ξ′(0) = (ξ′1(0), ..., ξ
′
n(0))

exists.
From the fact that Φ(0) is a minimizer of Φ(t) (in Equation (3.6)), Equation (3.5), the fact that∑N

k=1 γk = 1 and Equation (3.8), we have

0 = Φ′(0)

=
N∑

k=1

γk
λ′(0)h(P, uk) + λ(0)dh(Pt,uk)

dt

∣∣
t=0

− ξ′(0) · uk

h(P, uk)

=
N∑

k=1

γk
− 1

n
(
∑N

i=1 τi|F (P, ui)|)h(P, uk) + τk − ξ′(0) · uk

h(P, uk)

= −

N∑

i=1

|F (P, ui)|τi
n

+

N∑

k=1

γkτk
h(P, uk)

− ξ′(0) ·

[
N∑

k=1

γk
uk

h(P, uk)

]

=

N∑

k=1

(
γk

h(P, uk)
−

|F (P, uk)|

n

)
τk.

Since τ1, ..., τN are arbitrary, we deduce that γk =
1
n
h(P, uk)|F (P, uk)| for k = 1, ..., N . �

4. Existence of a solution of the extremal problem

In this section, we prove Lemma 4.7 about the existence of a solution of problem (3.2) for the
case where the discrete measure is not concentrated on any closed hemisphere of Sn−1 and satisfies
the strict essential subspace concentration inequality. Having the results of the previous section,
the essential new ingredient is the following statement (see Lemma 4.5).

If µ is a discrete measure on Sn−1 that is not concentrated on any closed hemisphere of Sn−1 and
satisfies the strict essential subspace concentration inequality, and {Pm} is a sequence of polytopes
of unit volume such that the set of outer unit normals of Pm is a subset of the support of µ, and
limm→∞ d(Pm) = ∞ then

lim
m→∞

ΦPm
(ξ(Pm)) = ∞.
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It is equivalent to prove that any subsequence of {Pm} has some subsequence {Pm′} such that
limm→∞ΦPm′

(ξ(Pm′)) = ∞.
To indicate the idea, we sketch the argument for n = 2. Let suppµ = {u1, . . . , uN}, and let

wm = min{hPm
(u) + hPm

(−u) : u ∈ S1} be the minimal width of Pm. Since limm→∞ d(Pm) = ∞
and V (Pm) = 1, we have limm→∞ wm = 0. As Pm is a polygon, we may assume that wm =
hPm

(u1) + hPm
(−u1) possibly after taking a subsequence and reindexing. If the angle of u1 and ui

is αi ∈ (0, π) then V1(F (Pm, ui)) ≤ wm/ sinαi, thus limm→∞ d(Pm) = ∞ implies that −u1 ∈ supp µ
for large m, say u2 = −u1. Let v ∈ S1 be orthogonal to u1, and let γi = µ({ui}) for i = 1, . . . , N .
We may translate Pm in a way such that o ∈ Int Pm in a way such that hPm

(u1) = hPm
(u2) = wm/2,

and hPm
(v) = hPm

(−v) hold for large m. Thus V (Pm) = 1 yields the existence of a constant c1 > 0
such that hPm

(ui) > c1/wm for i = 3, . . . , N . Now lin u1 is an essential subspace with respect
to µ, and hence γ1 + γ2 < γ3 + . . . + γN according to the strict essential subspace concentration
inequality. Therefore writing c2 = min{2, c1}, we have

lim inf
m→∞

exp (ΦPm
(ξ(Pm))) ≥ lim inf

m→∞
exp (ΦPm

(o)) = lim inf
m→∞

N∏

i=1

hPm
(ui)

γi

≥ lim
m→∞

(wm

2

)γ1+γ2
(

c1
wm

)γ3+...+γN

≥ lim
m→∞

(
c2
wm

)γ3+...+γN−γ1−γ2

= ∞.

In the higher dimensional case, the idea is the very same. Only instead of one essential linear
subspace like in the planar case, we will find essential subspaces X0 ⊂ . . . ⊂ Xq−1 in a way such
that for j = 0, . . . , q − 1, Pm|X⊥

j
is ”much larger” than Pm|Xj

for large m after taking suitable

subsequence. This is achieved in the preparatory statements Lemmas 4.1 to 4.4.
Given N sequences, the first two observations will help to do book keeping of how the limits of

the sequences compare.

Lemma 4.1. Let {h1j}
∞
j=1, ..., {hNj}

∞
j=1 be N (N ≥ 2) sequences of real numbers. Then, there

exists a subsequence, {jn}
∞
n=1, of N and a rearrangement, i1, ..., iN , of 1, ..., N such that

hi1jn ≤ hi2jn ≤ ... ≤ hiN jn,

for all n ∈ N.

Proof. We prove it by induction on N . We first prove the case for N = 2. For j ∈ N, consider the
sequence

hj = max{h1j, h2j}.

Since {hj}
∞
j=1 is an infinite sequence and hj either equals to h1j or equals to h2j for all j ∈ N, there

exists an i2 ∈ {1, 2} and a subsequence, {jn}
∞
n=1, of N such that

hjn = hi2jn

for all n ∈ N. Let i1 ∈ {1, 2} with i1 6= i2. Then,

hi1jn ≤ hi2jn,

for all n ∈ N.
Suppose the lemma is true for N = k (with k ≥ 2), we next prove that the lemma is true for

N = k + 1. For j ∈ N, consider the sequence

hj = max{h1j, h2j , ..., hk+1j}.

Since {hj}
∞
j=1 is an infinite sequence and hj equals one of h1j , h2j , ..., hk+1j for all j ∈ N, there

exists an ik+1 ∈ {1, 2, ..., k + 1} and a subsequence, {jn}
∞
n=1, of N such that

hjn = hik+1jn
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for all n ∈ N.
Consider the sequences {hijn}

∞
n=1 (1 ≤ i ≤ k + 1 with i 6= ik+1). By the inductive hypothesis,

there exists a subsequence, jnl
, of jn and a rearrangement, i1, ..., ik, of 1, ..., îk+1, ..., k+1 such that

hi1jnl
≤ hi2jnl

≤ ... ≤ hikjnl

for all l ∈ N. By this and the fact that hjnl
= hik+1jnl

for all l ∈ N, we have

hi1jnl
≤ hi2jnl

≤ ... ≤ hikjnl
≤ hik+1jnl

for all l ∈ N. �

Lemma 4.2. Let {h1j}
∞
j=1, ..., {hNj}

∞
j=1 be N (N ≥ 2) sequences of real numbers with

h1j ≤ h2j ≤ ... ≤ hNj

for all j ∈ N, limj→∞ h1j = 0 and limj→∞ hNj = ∞. Then, there exist q ≥ 1,

1 = α0 < α1 < ... < αq ≤ N < N + 1 = αq+1

and a subsequence, {jn}
∞
n=1, of N such that if i = 1, ..., q, then

lim
n→∞

hαijn

hαi−1jn

= ∞,

if i = 0, ..., q, and αi ≤ k ≤ αi+1 − 1, then

lim
n→∞

hkjn

hαijn

exists and equals to a positive number.

Proof. Let α0 = 1. By conditions,

h1j

h1j
≤

h2j

h1j
≤ ... ≤

hNj

h1j
,

limj→∞
hij

h1j
either exists (equals to a positive number) or goes to ∞, and limj→∞

hNj

h1j
= ∞. Thus,

there exists an α1 (1 < α1 ≤ N) such that for 1 ≤ i ≤ α1 − 1,

limj→∞

hij

h1j

< ∞

and

limj→∞

hα1j

h1j

= ∞.

Hence, we can choose a subsequence, {j′n}
∞
n=1, of N such that

lim
n→∞

hα1j′n

h1j′n

= ∞,

and for 1 ≤ i ≤ α1 − 1,

limn→∞

hij′n

h1j′n

≤ limj→∞

hij

h1j
< ∞.

By choosing α1 − 2 times subsequences of j′n, we can find a subsequence, {j′′n}
∞
n=1, of {j

′
n}

∞
n=1

such that

lim
n→∞

hα1j′′n

h1j′′n

= ∞,

and for 1 ≤ i ≤ α1 − 1,

lim
n→∞

hij′′n

h1j′′n
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exists and equals to a positive number.
By repeating (at most N−α1 times) similar arguments for the sequences {hij′′n

}∞n=1 (α1 ≤ i ≤ N),
we can find q ≥ 1,

1 = α0 < α1 < ... < αq ≤ N < N + 1 = αq+1

and a subset, {jn}
∞
n=1, of N that satisfy the conditions in the lemma. �

The following lemma compares positive hull and linear hull.

Lemma 4.3. Suppose u1, ..., ul ∈ Sd−1 (d ≥ 2), Rd = lin{u1, ..., ul}, and u1, ..., ul are not concen-
trated on a closed hemisphere of Sd−1, then

R
d = pos{u1, ..., ul}.

Moreover, there exists λ > 0 depending on u1, ..., ul such that any u ∈ Sd−1 can be written in the
form

u = ai1ui1 + ... + aiduid

where {ui1, ..., uid} ⊂ {u1, ..., ul} and 0 ≤ ai1 , ..., aid ≤ λ.

Proof. Let Q be the convex hull of {u1, ..., ul}, which is a polytope. Since u1, ..., ul are not concen-
trated on a closed hemisphere of Sd−1, the origin is an interior point of Q. In particular, rBd ⊂ Q
for some r > 0.

For u ∈ Sd−1, there exists some t ≥ r such that tu ∈ ∂Q. It follows that tu ∈ F for some facet
F of Q. We deduce from the Charateodory theorem that there exists vertices ui1, ..., uid of F that
tu lies in their convex hull. In other words,

tu = αi1ui1 + ...+ αiduid

where αi1 , . . . , αid ≥ 0 and αi1 + . . . + αid = 1. Therefore we choose aij = αij/t ≤ 1/r for
j = 1, . . . , d, which in turn satisfy u = ai1ui1 + ...+aiduid. In particular, we may take λ = 1/r. �

The following lemma will be the last preparatory statement.

Lemma 4.4. Suppose µ is a discrete measure on Sn−1 that is not concentrated on any closed
hemisphere of Sn−1 with supp(µ)= {u1, ..., uN} and µ(ui) = γi for i = 1, ..., N . If Pm is a sequence
of polytopes with V (Pm) = 1, ξ(Pm) is the origin, the set of outer unit normals of Pm is a subset
of {u1, ..., uN}, limm→∞ d(Pm) = ∞ and

h(Pm, u1) ≤ h(Pm, u2) ≤ ... ≤ h(Pm, uN)

for all m ∈ N. Then, there exist q ≥ 1, and 1 = α0 < α1 < ... < αq ≤ N < N + 1 = αq+1 such
that if j = 1, ..., q, then

(4.0a) lim
m→∞

h(Pm, uαj
)

h(Pm, uαj−1
)
= ∞,

and if j = 0, ..., q and αj ≤ k ≤ αj+1 − 1, then

(4.0b) lim
m→∞

h(Pm, uk)

h(Pm, uαj
)
= tkj < ∞.

Moreover, Xj = pos{u1, ..., uαj+1−1} are subspaces of Rn for all 0 ≤ j ≤ q and

1 ≤ dim(X0) < dim(X1) < ... < dim(Xq) = n.
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Proof. By the conditions that limm→∞ d(Pm) = ∞, V (K) = 1 and h(Pm, u1) ≤ h(Pm, u2) ≤ ... ≤
h(Pm, uN) for all m ∈ N, we have,

lim
m→∞

h(Pm, u1) = 0 and lim
m→∞

h(Pm, uN) = ∞.

From Lemma 4.2, we may assume that there exist q ≥ 1, and

1 = α0 < α1 < ... < αq ≤ N < N + 1 = αq+1

that satisfy Equations (4.0a) and (4.0b).
For j = 0, ..., q − 1, we consider the cone

Σj = pos{u1, ..., uαj+1−1},

and its negative polar

Σ∗
j = {v ∈ R

n : v · ui ≤ 0 for all i = 1, ..., αj+1 − 1}.

Let 0 ≤ j ≤ q − 1, 1 ≤ p ≤ αj+1 − 1 and v ∈ Σ∗
j ∩ Sn−1. From the condition that ξ(Pm) is the

origin and Lemma 3.3,
N∑

i=1

γi(v · ui)

h(Pm, ui)
= 0.

By this and the fact that v ∈ Σ∗
j ∩ Sn−1,

0 ≥ γp(v · up) = −
∑

i 6=p

h(Pm, up)

h(Pm, ui)
γi(v · ui)

≥ −
∑

i≥αj+1

h(Pm, up)

h(Pm, ui)
γi(v · ui)

≥ −
∑

i≥αj+1

h(Pm, up)

h(Pm, ui)
γi.

By this, (4.0a) and (4.0b), we have, γp(v · up) is no bigger than 0, and no less than any negative
number. Thus,

v · up = 0

for all p = 1, ..., αj+1 − 1 and v ∈ Σ∗
j ∩ Sn−1. Then, for any u ∈ lin{u1, ..., uαj+1−1} and v ∈ Σ∗

j ,
u · v = 0. Hence,

Σ∗
j ∩ lin{u1, ..., uαj+1−1} = {0}.

We claim that {u1, ..., uαj+1−1} is not concentrated on a closed hemisphere of Sn−1∩lin{u1, ..., uαj+1−1}.
Otherwise, there exists a vector u0 ∈ lin{u1, ..., uαj+1−1} such that u0 6= 0 and u0 · up ≤ 0 for
all p = 1, ..., αj+1 − 1. This contradicts the fact that Σ∗

j ∩ lin{u1, ..., uαj+1−1} = {0}. Hence,

{u1, ..., uαj+1−1} is not concentrated on a closed hemisphere of Sn−1 ∩ lin{u1, ..., uαj+1−1}. By
Lemma 4.3,

lin{u1, ..., uαj+1−1} = pos{u1, ..., uαj+1−1}.

Let Xj = pos{u1, ..., uαj+1−1}, dj = dimXj for j = 0, ..., q, and d−1 = 0. Obviously, d0 ≥ 1 and
dq = n. We claim that d0 < d1 < ... < dq. Otherwise, there exist 0 ≤ k < l ≤ q such that dk = dl,
and thus Xk = Xl. We write λ > 0 for the constant of Lemma 4.3 depending on u1, . . . , uN . By
Lemma 4.3, there exist ui1, ..., uidk

∈ {u1, ..., uαk+1−1} and 0 ≤ ai1 , ..., aidk ≤ λ such that

uαl
= ai1ui1 + ... + aidkuidk

.



ON THE DISCRETE LOGARITHMIC MINKOWSKI PROBLEM 13

Hence,

h(Pm, uαl
) = h(Pm, ai1ui1 + ... + aidkuidk

)

≤ ai1h(Pm, ui1) + ...+ aidkh(Pm, uidk
),

for all m ∈ N. But this contradicts (4.0a) and (4.0b). Therefore,

1 ≤ d0 < d1 < ... < dq = n.

�

Lemma 4.5. Suppose µ is a discrete measure on Sn−1 that is not concentrated on any closed
hemisphere of Sn−1, and satisfies the strict essential subspace concentration inequality. If Pm is a
sequence of polytopes with V (Pm) = 1, ξ(Pm) is the origin, the set of outer unit normals of Pm is
a subset of the support of µ and limm→∞ d(Pm) = ∞, then

∫

Sn−1

log h(Pm, u)dµ(u)

is not bounded from above.

Proof. Without loss of generality, we can suppose |µ| = 1. Let supp(µ) = {u1, ..., uN}, and
µ({ui}) = γi, i = 1, ..., N . From Lemma 4.1, we may assume that

(4.1) h(Pm, u1) ≤ ... ≤ h(Pm, uN),

for all m ∈ N. Since limm→∞ d(Pm) = ∞ and V (K) = 1,

lim
m→∞

h(Pm, u1) = 0 and lim
m→∞

h(Pm, uN) = ∞.

By Lemma 4.4, there exist q ≥ 1, and

1 = α0 < α1 < ... < αq ≤ N < N + 1 = αq+1

such that if j = 1, ..., q, then

(4.2a) lim
m→∞

h(Pm, uαj
)

h(Pm, uαj−1
)
= ∞,

and if j = 0, ..., q and αj ≤ k ≤ αj+1 − 1, then

(4.2b) lim
m→∞

h(Pm, uk)

h(Pm, uαj
)
= tk,j < ∞.

Moreover, Xj = pos{u1, ..., uαj+1−1} are subspaces of Rn with respect to µ for all 0 ≤ j ≤ q with

1 ≤ d0 < d1 < ... < dq = n,

where dj = dim(Xj). In particular, X0, . . . , Xq−1 are essential subspaces.

Let X̃0 = X0, and if j = 1, ..., q, then let

X̃j = X⊥
j−1 ∩Xj .

From the definition of Xj and X̃j , we have, X̃j1 ⊥ X̃j2 for j1 6= j2, dim X̃j = dj − dj−1 > 0 for

j = 0, ..., q, and R
n is a direct sum of X̃0, ..., X̃q.

Let λ > 0 be the constant of Lemma 4.3 for u1, . . . , uN . Suppose 0 ≤ j ≤ q and u ∈ Xj ∩ Sn−1.
By Lemma 4.3, there exists a subset, {ui1, ..., uidj

}, of {u1, ..., uαj+1−1} and 0 ≤ ai1 , ..., aidj ≤ λ

such that

u = ai1ui1 + ... + aidjuidj
.
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Then,

h(Pm, u) = h(Pm, ai1ui1 + ...+ aidjuidj
)

≤ ai1h(Pm, ui1) + ... + aidjh(Pm, uidj
).

By this, (4.2a) and (4.2b), if m is large, then

h(Pm, u) ≤ tjh(Pm, uαj
) for all u ∈ Xj ∩ Sn−1

where tj = djλ(tαj+1−1,j + 1) > 0. Hence, for j = 0, ..., q,

Pm|X̃j
⊂ tjh(Pm, uαj

)
(
Bn ∩ X̃j

)
.

By this and the fact that Rn is a direct sum of X̃0, ..., X̃q,

Pm ⊂

q∑

j=0

tjh(Pm, uαj
)
(
Bn ∩ X̃j

)
,

where the summation is Minkowski sum. Let

ω = max
0≤j≤q

tjκ
1

dj−dj−1

dj−dj−1
,

where κdj−dj−1
is the volume of the (dj − dj−1)-dimensional unit ball. Then, for j = 0, ..., q

Vdj−dj−1

(
tjh(Pm, uαj

)
(
Bn ∩ X̃j

))
≤ (ωh(Pm, uαj

))dj−dj−1 .

From this, the fact that Rn is a direct sum of X̃0, ..., X̃q, and Fubini’s formula, we have

1 = V (Pm)

≤ V

( q∑

j=0

tjh(Pm, uαj
)
(
Bn ∩ X̃j

))

=

q∏

j=0

Vdj−dj−1

(
tjh(Pm, uαj

)
(
Bn ∩ X̃j

))

≤

q∏

j=0

(ωh(Pm, uαj
))dj−dj−1 .

It follows from 0 = d−1 < d0 < ... < dq = n that if m is large, then

q∑

j=0

(
dj
n

−
dj−1

n

)
log h(Pm, uαj

) ≥ − log ω.

We rewrite the last inequality as

(4.3) log h(Pm, uαq
) ≥ −

q−1∑

j=0

dj
n
log

h(Pm, uαj
)

h(Pm, uαj+1
)
− log ω.

For j = 0, ..., q, we set βj = µ(Xj ∩ Sn−1) =
∑αj+1−1

i=1 γi, and β−1 = 0. We deduce from the facts
that Xj is an essential subspace with dj = dim(Xj), and from the condition that µ satisfies the
strict essential subspace concentration condition that

(4.4) βj <
dj
n

for 0 ≤ j ≤ q − 1.
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By the fact that h(Pm, u1) ≤ h(Pm, u2) ≤ ... ≤ h(Pm, uN), the fact that βq = 1 and (4.3),

N∑

i=1

γi log h(Pm, ui) =
α1−1∑

i=1

γi log h(Pm, ui) +
α2−1∑

i=α1

γi log h(Pm, ui) + ...+
N∑

i=αq

γi log h(Pm, ui)

≥

α1−1∑

i=1

γi log h(Pm, uα0
) +

α2−1∑

i=α1

γi log h(Pm, uα1
) + ... +

N∑

i=αq

γi log h(Pm, uαq
)

=

q∑

j=0

(βj − βj−1) log h(Pm, uαj
)

= log h(Pm, uαq
) +

q−1∑

j=0

βj log
h(Pm, uαj

)

h(Pm, uαj+1
)

≥ − log ω +

q−1∑

j=0

(
βj −

dj
n

)
log

h(Pm, uαj
)

h(Pm, uαj+1
)
.

It follows from (4.1), (4.2a), (4.4) that for j = 0, ..., q − 1,

lim
m→∞

(
βj −

dj
n

)
log

h(Pm, uαj
)

h(Pm, uαj+1
)
= ∞.

Therefore,

lim
m→∞

N∑

i=1

γi log h(Pm, ui) = ∞.

�

The following lemma will be needed (see, [71], Lemma 3.5).

Lemma 4.6. If P is a polytope in R
n and v0 ∈ Sn−1 with Vn−1(F (P, v0)) = 0, then there exists a

δ0 > 0 such that for 0 ≤ δ < δ0

V (P ∩ {x : x · v0 ≥ h(P, v0)− δ}) = cnδ
n + ... + c2δ

2,

where cn, ..., c2 are constants that depend on P and v0.

Now, we have prepared enough to prove the main result of this section.

Lemma 4.7. Suppose the discrete measure µ =
∑N

k=1 γkδui
is not concentrated on a closed hemi-

sphere. If µ satisfies the strict essential subspace concentration inequality, then there exists a
P ∈ PN(u1, ..., uN) such that ξ(P ) = 0, V (P ) = |µ| and

ΦP (0) = inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ P(u1, ..., uN) and V (Q) = |µ|

}
,

where ΦQ(ξ) =
∫
Sn−1 log (h(Q, u)− ξ · u) dµ(u).

Proof. It is easily seen that it is sufficient to establish the lemma under the assumption that |µ| = 1.
Obviously, for P,Q ∈ P(u1, ..., uN), if there exists an x ∈ R

n such that P = Q + x, then

ΦP (ξ(P )) = ΦQ(ξ(Q)).

Thus, we can choose a sequence Pi ∈ P(u1, ..., uN) with ξ(Pi) = 0 and V (Pi) = 1 such that ΦPi
(0)

converges to

inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ P(u1, ..., uN) and V (Q) = 1

}
.
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Choose a fixed P0 ∈ P(u1, ..., uN) with V (P0) = 1, then

inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ P(u1, ..., uN) and V (Q) = 1

}
≤ ΦP0

(ξ(P0)).

We claim that Pi is bounded. Otherwise, from Lemma 4.5, ΦPi
(ξ(Pi)) is not bounded from

above. This contradicts the previous inequality. Therefore, Pi is bounded.
From Lemma 3.2 and the Blaschke selection theorem, there exists a subsequence of Pi that

converges to a polytope P such that P ∈ P(u1, ..., uN), V (P ) = 1, ξ(P ) = 0 and

(4.5) ΦP (0) = inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ P(u1, ..., uN) and V (Q) = 1

}
.

We next prove that F (P, ui) are facets for all i = 1, ..., N . Otherwise, there exists an i0 ∈
{1, ..., N} such that

F (P, ui0)

is not a facet of P .
Choose δ > 0 small enough so that the polytope

Pδ = P ∩ {x : x · ui0 ≤ h(P, ui0)− δ} ∈ P(u1, ..., uN),

and (by Lemma 4.6)

V (Pδ) = 1− (cnδ
n + ...+ c2δ

2),

where cn, ..., c2 are constants that depend on P and direction ui0.
From Lemma 3.2, for any δi → 0 ξ(Pδi) → 0. We have,

lim
δ→0

ξ(Pδ) = 0.

Let δ be small enough so that h(P, uk) > ξ(Pδ) · uk + δ for all k ∈ {1, ..., N}, and let

λ = V (Pδ)
− 1

n = (1− (cnδ
n + ...+ c2δ

2))−
1

n .

From this and Equation (3.3), we have

N∏

k=1

(h(λPδ, uk)− ξ(λPδ) · uk)
γk = λ

N∏

k=1

(h(Pδ, uk)− ξ(Pδ) · uk)
γk

= λ

[
N∏

k=1

(h(P, uk)− ξ(Pδ) · uk)
γk

] [
h(P, ui0)− ξ(Pδ) · ui0 − δ

h(P, ui0)− ξ(Pδ) · ui0

]γi0

=

[
N∏

k=1

(h(P, uk)− ξ(Pδ) · uk)
γk

]
(1− δ

h(P,ui0
)−ξ(Pδ)·ui0

)γi0

(1− (cnδn + ...+ c2δ2))
1

n

≤

[
N∏

k=1

(h(P, uk)− ξ(Pδ) · uk)
γk

]
(1− δ

d0
)γi0

(1− (cnδn + ...+ c2δ2))
1

n

,

where d0 = d(P ) is the diameter of P . Thus,

(4.6) ΦλPδ
(ξ(λPδ)) ≤ ΦP (ξ(Pδ)) +B(δ),

where

(4.7) B(δ) = γi0 log

(
1−

δ

d0

)
−

1

n
log
(
1− (cnδ

n + ... + c2δ
2)
)
.
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Obviously,

(4.8) B′(δ) = γi0
−1/d0
1− δ/d0

+
1

n

ncnδ
n−1 + ... + 2c2δ

1− (cnδn + ...+ c2δ2)
< 0,

when the positive δ is small enough. From this and the fact that B1(0) = 0,

B(δ) < 0

when the positive δ is small enough.
From this and Equations (4.6), (4.7), (4.8), there exists a δ0 > 0 such that Pδ0 ∈ P(u1, ..., uN)

and

Φλ0Pδ0
(ξ(λ0Pδ0)) < ΦP (ξ(Pδ0)) ≤ ΦP (ξ(P )) = ΦP (0),

where λ0 = V (Pδ0)
− 1

n . Let P0 = λ0Pδ0 − ξ(λ0Pδ0), then P0 ∈ P(u1, ..., uN), V (P0) = 1, ξ(P0) = 0
and

ΦP0
(0) < ΦP (0).

This contradicts Equation (4.5). Therefore, P ∈ PN (u1, ..., uN). �

5. Existence of the solution to the discrete logarithmic Minkowski problem

If µ is a Borel measure on Sn−1 and ξ is a proper subspace of Rn, it will be convenient to write
µξ for the restriction of µ to Sn−1 ∩ ξ. In this section, we prove the main result Theorem 1.5
of this paper based on the folowing idea. Let µ be discrete measure on Sn−1, n ≥ 2, that is not
concentrated on any closed hemisphere and satisfies the essential subspace concentration condition.
If µ satisfies the strict essential subspace concentration inequality, then Lemma 4.7 yields that µ is
a cone volume measure. Otherwise there exist complementary proper subspaces ξ and ξ′ such that
supp µ = Sn−1∩ (ξ ∪ ξ′), and µξ and µ′

ξ are not concentrated on any closed hemisphere of ξ ∩Sn−1

and ξ′ ∩ Sn−1, respectively, and satisfy the essential subspace concentration condition. Therefore
µξ and µ′

ξ are cone volume measures on ξ ∩ Sn−1 and ξ′ ∩ Sn−1, respectively, by induction on the
dimension of the ambient space, which in turn imply that µ is a cone volume measure.

However, it is possible that dim ξ = 1. Therefore in order to execute the plan, we extend the
notions occuring in Theorem 1.5 to R

1. The role of a compact convex set containing the origin in
its interior is played by some interval K = [a, b] with a < 0 and b > 0, and closed hemispheres
of S0 = {−1, 1} are {1} and {−1}. The cone volume measure on S0 associated to K satisfies
VK({−1}) = |a| and VK({1}) = b. In addition, we say that a non-trivial measure µ on S0 satisfies
the essential subspace concentration inequality if it is not concentrated on any closed hemisphere;
namely, if µ({−1}) > 0 and µ({1}) > 0. These notions are in accordance with Definition 1.3
because if n = 1, then there is no subspace ξ such that 0 < dim ξ < n.

We note that the notion of strict essential subspace concentration inequality is defined and used
only if the dimension n ≥ 2.

The following lemma will be needed. The proof is the same that of Lemma 7.1 in [6].

Lemma 5.1. Suppose n ≥ 2, µ is a discrete measure on Sn−1 that satisfies the essential subspace
concentration condition. If ξ is an essential linear subspace with respect to µ for which

µ(ξ ∩ Sn−1) =
1

n
µ(Sn−1) dim ξ,

then µξ satisfies the essential subspace concentration condition.

For even measures, the following lemma was stated for even measures as Lemma 7.2 in [6].
However, the proof in [6] does not use the property that the measure is even.
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Lemma 5.2. Let ξ and ξ′ be complementary subspaces in R
n with 0 < dim ξ < n. Suppose µ is a

Borel measure on Sn−1 that is concentrated on Sn−1 ∩ (ξ ∪ ξ′), and so that

µ(ξ ∩ Sn−1) =
1

n
µ(Sn−1) dim ξ.

If µξ and µξ′ are cone-volume measures of convex bodies in the subspaces ξ and ξ′, then µ is the
cone-volume measure of a convex body in R

n.

In addition, we also need the following lemma.

Lemma 5.3. Suppose µ is a Borel measure on Sn−1, n ≥ 2, that is not concentrated on any closed
hemisphere, and µ concentrated on two complementary subspaces ξ and ξ′ of R

n. Then, µξ is
not concentrated on any closed hemisphere of ξ ∩ Sn−1 and µξ′ is not concentrated on any closed
hemisphere of ξ′ ∩ Sn−1.

Proof. We only need prove that µξ is not concentrated on any closed hemisphere of ξ ∩ Sn−1.
Suppose µξ is concentrated on a closed hemisphere, C, of ξ ∩ Sn−1. Then, µ is concentrated on

Sn−1 ∩ pos{C ∪ ξ′}.

However, Sn−1 ∩ pos{C ∪ ξ′} is a closed hemisphere of Sn−1. This contradicts the conditions of
the lemma. Therefore, µξ is not concentrated on any closed hemisphere of ξ ∩ Sn−1. �

Now, we have prepared enough to prove the main theorem of this paper.

Theorem 5.4. If µ is a discrete measure on Sn−1, n ≥ 1 that is not concentrated on any closed
hemisphere and satisfies the essential subspace concentration condition, then µ is the cone-volume
measure of a polytope in R

n.

Proof. We prove Theorem 5.4 by induction on the dimension n ≥ 1. If n = 1, then the theorem
trivially holds, therefore let n ≥ 2.

If µ satisfies the strict essential subspace concentration inequality, then µ is the cone-volume
measure of a polytope in R

n according to Lemma 3.4 and Lemma 4.7.
Therefore we assume that there exists an essential subspace (with respect to µ), ξ, of R

n,
and a subspace, ξ′, of Rn such that ξ, ξ′ are complementary subspaces of Rn, µ concentrated on
Sn−1 ∩ {ξ ∪ ξ′} with

µ(Sn−1 ∩ ξ) =
dim ξ

n
µ(Sn−1) and µ(Sn−1 ∩ ξ′) =

dim ξ′

n
µ(Sn−1).

From the fact that µ is not concentrated on a closed hemisphere and Lemma 5.3, we have, µξ

is not concentrated on a closed hemisphere of Sn−1 ∩ ξ, and µξ′ is not concentrated on a closed
hemisphere of Sn−1∩ ξ′. By Lemma 5.1, µξ satisfies the essential subspace concentration condition
on ξ ∩ Sn−1, and µξ′ satisfies the essential subspace concentration condition on ξ′ ∩ Sn−1. From
the induction hypothesis, µξ is the cone-volume measure of a convex body in ξ ∩R

n, and µξ′ is the
cone-volume measure of a convex body in ξ′ ∩ R

n. By Lemma 5.2, µ is the cone-volume measure
of a convex body in R

n. Since µ is discrete, µ is the cone-volume measure of a polytope in R
n. �

6. New inequalities for cone-volume measures

In this section, we establish some inequalities for cone-volume measures.
The following example shows that the cone-volume measure of a convex body does not need to

satisfy the essential subspace concentration condition with respect to essential linear subspace.
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Example 6.1. Let u1, . . . , un be an orthonormal basis of Rn, and let W = {x ∈ u⊥
1 : |x·ui| ≤ 1, i =

2, . . . , n} be an (n−1)-dimensional cube. For r > 0 and i = 1, . . . , n−1, ξi = lin{u1, . . . , ui} is an
essential subspace for the cone-volume measure of the truncated pyramid Pr = [−ru1+rW, u1+W ].
If r > 0 is small, then Pr approximates [o, u1 +W ], and thus

VPr
(ξi ∩ Sn−1) > VPr

({u1}) = V ([o, u1 +W ]) > i
n
V (Pr).

We next establish new inequalities for the cone-volume measures.

Lemma 6.2. If K is a convex body in R
n, n ≥ 3, with o ∈Int(K), then for u ∈ Sn−1

(6.1) VK({u}) + VK({−u}) + 2(n− 1)
√
VK({u})VK({−u}) ≤ V (K),

with equality if and only if F (K,−u) is a translate of F (K, u), K = [F (K, u), F (K,−u)], and
h(K, u) = h(K,−u).

In R
2, we have

Lemma 6.3. If K is a convex body containing the origin in its interior in R
2, and u ∈ S1, then

(6.2)
√

VK({u}) +
√

VK({−u}) ≤
√

V (K),

with equality if and only if K is a trapezoid with two sides parallel to u⊥, and u⊥ contains the
intersection of the diagonals.

We obtain the following estimate from Lemma 6.2 and Lemma 6.3.

Corollary 6.4. If K is a convex body in R
n, n ≥ 2 with o ∈Int(K) and u ∈ Sn−1, then

VK({u}) · VK({−u}) ≤
1

4n2

(
V (K)

)2
,

with equality if and only if F (K,−u) is a translate of F (K, u), K = [F (K, u), F (K,−u)], and
h(K, u) = h(K,−u).

We next prove Lemma 6.2 and Lemma 6.3 together.

Proof. For the case |F (K, u)| · |F (K,−u)| = 0, Lemma 6.2 and Lemma 6.3 are trivially true. Thus
we prove Lemma 6.2 and Lemma 6.3 under the condition that |F (K, u)| · |F (K,−u)| > 0.

Let VK({u}) = α > 0 and VK({−u}) = β > 0, let hK(u) = a and hK(−u) = b, and for
0 ≤ x ≤ a + b let

Kx =
(
(a− x)u+ u⊥

)
∩K.

Since K is a convex body,

x

a+ b
F (K,−u) +

a+ b− x

a + b
F (K, u) ⊂ Kx.

From this and the Brunn-Minkowski inequality,

|Kx| ≥

∣∣∣∣
x

a+ b
F (K,−u) +

a+ b− x

a+ b
F (K, u)

∣∣∣∣

=

∣∣∣∣
(

x

a+ b
F (K,−u) +

a+ b− x

a + b
F (K, u)

)

u⊥

∣∣∣∣

=

∣∣∣∣
x

a + b
F (K,−u)|u⊥ +

a+ b− x

a+ b
F (K, u)|u⊥

∣∣∣∣

≥

(
x

a + b

∣∣F (K,−u)|u⊥

∣∣ 1

n−1 +
a+ b− x

a+ b

∣∣F (K, u)|u⊥

∣∣ 1

n−1

)n−1

=

(
x

a+ b

∣∣F (K,−u)
∣∣ 1

n−1 +
a+ b− x

a + b

∣∣F (K, u)
∣∣ 1

n−1

)n−1

,

(6.3)
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with equality if and only if Kx = x
a+b

F (u(K,−u)+ a+b−x
a+b

F (K, u), and F (K,−u)|u⊥ and F (K, u)|u⊥

are homothetic.
Let t = a+b−x

a+b
. From (6.3) and Fubini’s formula,

V (K) =

∫ a+b

0

|Kx|dx

≥

∫ a+b

0

(
x

a+ b

∣∣F (K,−u)
∣∣ 1

n−1 +
a+ b− x

a + b

∣∣F (K, u)
∣∣ 1

n−1

)n−1

dx

= (a+ b)

∫ 1

0

(
t|F (K, u)|

1

n−1 + (1− t)|F (K,−u)|
1

n−1

)n−1

dt

= (a+ b)

n−1∑

i=0

|F (K, u)|
i

n−1 |F (K,−u)|
n−1−i
n−1

(
n− 1

i

)∫ 1

0

ti(1− t)n−1−i dt

=
a+ b

n

n−1∑

i=0

|F (K, u)|
i

n−1 |F (K,−u)|
n−1−i
n−1 .

(6.4)

Let S1 = |F (K, u)| and S2 = |F (K,−u)|. From (6.4) and the arithmetic-geometric inequality,
we have

V (K) =
a + b

n

n−1∑

i=0

S
i

n−1

1 S
n−1−i
n−1

2

=
a

n
S1 +

b

n
S2 +

1

n

n−1∑

i=1

(
aS

n−1−i
n−1

1 S
i

n−1

2 + bS
n−1−i
n−1

2 S
i

n−1

1

)

≥ α + β + 2(n− 1)
√

αβ.

(6.5)

Thus, we get (6.1) and (6.2).
From the equality conditions for (6.3), (6.4) and the arithmetic-geometric inequality, we have,

equality holds in (6.5) if and only if F (K, u)|u⊥ and F (K,−u)|u⊥ are homothetic, K = [F (K, u), F (K,−u)],
and

(6.6)
a

b
=

(
S1

S2

) 2i−n+1

n−1

,

for all 1 ≤ i ≤ n− 1.
Therefore, equality holds in (6.2) (n = 2) if and only if K is a trapezoid with two sides parallel

to u⊥, and u⊥ contains the intersection of the diagonals.
When n ≥ 3, (6.6) hold for i = 1, ..., n − 1. Thus, a

b
= S1

S2
= 1. Therefore, equality holds in

(6.1) if and only if F (K,−u) is a translation of F (K, u), K = [F (K, u), F (K,−u)], and hK(u) =
hK(−u). �
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[7] J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The log-Brunn-Minkowski inequality. Adv. Math. 231, 1974-

1997 (2012).
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