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LINKS OF PLANE CURVE SINGULARITIES ARE L-SPACE LINKS

EUGENE GORSKY AND ANDRÁS NÉMETHI

Abstract. We prove that a sufficiently large surgery on any algebraic link is an L-space.
For torus links we give a complete classification of integer surgery coefficients providing
L-spaces.

Definition 1. A 3-manifold Y is called an L-space, if it is a rational homology sphere and

its Heegaard-Floer homology has minimal possible rank: rk ĤF (Y ) = |H1(Y,Z)|.

We refer the reader to [15, 16, 17] for definitions of Heegaard-Floer homology, and to
[6, 14] for the detailed discussion of the properties of L-spaces. Let K ⊂ S3 be the embedded
link of a complex plane curve singularity with r components: K = K1 ∪ · · · ∪ Kr. The
following theorem is the main result of this note.

Theorem 2. Every algebraic link K ⊂ S3 is an L–space link. This means that an integral

surgery of S3 along the link components Ki with all coefficients sufficiently large provides

an L–space.

For r = 1 the result was proved by Hedden [6, Theorem 1.10]. Our proof is of different
nature, is extremely short, and provides the argument uniformly for any r. It is based on
some facts from theory of normal surface singularities and plumbed 3-manifolds. For plumb-
ing calculus (which modifies the possible graph representations of the same 3-manifold) see
[12]. We will need the following facts:

(a) A connected negative definite plumbing graph is called a “smooth graph” if by blowing
down consecutively (−1)–vertices we can blow down the graph to the empty graph. Such a
graph represents S3. When we resolve plane curve singularities and we blow up (C2, 0) in
several infinitely near points we obtain such a graph.

(b) A surface singularity is rational if its geometric genus is zero. This property can be
verified at the level of its negative definite plumbing graph (such graphs are called “rational
graphs”), see [1, 2, 9].

Blowing up a rational graph we get a rational graph. Any subgraph of a rational graph
is rational (use e.g. Laufer’s criterion [9]). Since smooth graphs are rational, subgraphs of
smooth graphs are rational (they are called “sandwiched” graphs, see [18]). The following
remark describes two useful consequences of Laufer’s criterion.

Remark 3. (cf. [18, Rmk 2.3, Prop 2.4]) For each vertex v of the negative definite plumbing
graph Γ define w(v) = −(Ev , Ev), where Ev is the corresponding curve. Let γ(v) denote
the valency of v in Γ.

(a) If Γ is rational, then w(v) ≥ γ(v) − 1 for all v.
(b) If w(v) ≥ γ(v) for all v, then the Γ is rational (and, in fact, sandwiched). Such graphs

are called minimal rational.

A key ingredient in the proof of Theorem 2 is the following result:

Theorem 4. [11, Thms 6.3, 8.3] A 3–manifold plumbed from a rational graph is an L–space.
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Let C = C1∪. . .∪Cr ⊂ C
2 be the plane curve singularity, corresponding to K, so that the

link of the irreducible component Ci is the knot Ki ⊂ S3. The possible minimal embedded
resolution (plumbing) graphs of complex plane curve singularities are well–known. We will
represent such a graph in a schematic way by the graph ΓK shown in Figure 1, emphasizing
only those exceptional curves, say E1, . . . , En which intersect one or more strict transform
components. The strict transform components are encoded by arrowheads. The number of
arrowheads supported by Ei is ai, and the self-intersection number of Ei is bi (1 ≤ i ≤ n).
Definitely, some of bi’s are equal to −1.
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Figure 1. Graphs ΓK ,Γ0 and Γ̃0.

If we delete the arrowheads, we get a smooth graph Γ0 (the second graph in Figure 1).
If we blow up Γ0 few times (starting with Ei’s and continuing with the newly created (−1)

vertices), we obtain another graph Γ̃0, which is again smooth. This is the third graph in
Figure 1. The unmarked vertices are (−2)–vertices and ci = bi−ai. The length of the newly
created legs can be different: the number of (−2)-vertices in the (i, j)th leg is (kij−1), where
kij ≥ 1 for all 1 ≤ i ≤ n, 1 ≤ j ≤ ai.

Lemma 5. For kij ≥ 1 the 3-manifold represented by the graph Γ shown in Figure 2 is an

L-space.
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(kij ≥ 1 for all 1 ≤ i ≤ n, 1 ≤ j ≤ ai)

Figure 2. Graph Γ

Proof. By plumbing calculus (blowing up several times the most right edges) Γ is equivalent

to the graph Γ′ obtained from the smooth graph Γ̃0 by deleting the (−1) vertices from the
end of the new legs. Hence Γ′ is a subgraph of a smooth graph, thus it is rational. In
particular, it represents an L–space. �

Proof of Theorem 2: Suppose that the plane curve singularity, corresponding to K, is
given by the equation {

∏
i,j fij(x, y) = 0}. Consider a positive surgery on S3 along the

link K, where the surgery coefficient for the component Kij equals dij . It is known that
S3
{dij}ij

(K) is a plumbed 3-manifold with the plumbing graph Γ, such that the parameters

kij are defined by the equation kij = dij−mi, wheremi are the multiplicities of the pullback
of fij on the divisor Ei. For dij > mi the surgery space is an L-space by Lemma 5. �
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Remark 6. (a) Note that the above L-spaces are very special: they are given by connected
negative definite sandwiched graphs (e.g, they are irreducible), so they definitely have even
more additional properties.

(b) The above bound (kij ≥ 1) is not optimal, usually one can find a collection of smaller
numbers Bij , Bij smaller than 1, such that all the surgeries with coefficients kij ≥ Bij

provide L–spaces. But for the coefficients Bij = 1 the proof is extremely transparent (and
for smaller coefficients singularity theory is harder to apply).

(c) If ai = 1 for all i then one can take ki1 ≥ 0, and the surgery manifold is still an
L–space. For example, if we take all of them zero then Γ is equivalent to a graph which is
obtained from Γ by deleting the 0 vertices and the supporting Ei vertices. This graph is not
connected, but each component is a subgraph of a smooth graph. Hence the corresponding
3-manifold is a connected sum of L–spaces, which is again an L-space. The proof of the
general case ki1 ≥ 0 (with ai = 1) is a combination of this argument with the proof of
Theorem 2.

(d) It is known that all algebraic knots (with one component) can be presented as iterated
cables of the trivial knot. Hedden proved in [6] that the pq surgery of S3 along an algebraic
knot is an L-space, where p and q are the parameters of the last cabling. One can check
that pq = m1 in this case. See also [7] for a complete description of L-space surgeries of
cable knots.

It turns out that the set of all surgeries on a link providing an L-space has an interesting
structure. This is new phenomenon compared with the irreducible case, where (e.g. by [7])
a d-surgery on a knot K is an L-space iff d ≥ 2g(K) − 1 (hence d runs in a half-line). The
following theorem provides a description of L-space surgery coefficients for torus links.
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Figure 3. Plumbing graph for the singularity x6 + y9 = 0.

Theorem 7. Let p, q > 1 be two coprime integers, r ≥ 1 and (d1, . . . , dr) ∈ Z
r. Assume

that di 6= pq ± 1 for all i. Then (d1, . . . , dr)–surgery on (pr, qr)–torus link is an L-space iff

the surgery space is a rational homology sphere and one of the following conditions hold:

(a) di = pq for some i.
(b) di > pq + 1 for all i.
(c) di < pq − 1 for all i and max(di) ≥ pq − p− q.

Remark 8. It is easy to see that di = dj = pq for i 6= j yields infinite H1 for the surgery
space, so in Theorem 7(a) di = pq for exactly one i.

Remark 9. The surgeries with di = pq ± 1 can be also analyzed by (rather long) case
analysis. In particular:

(a) The (pq ± 1, d)–surgery on (2p, 2q)–torus link is an L-space for all d.
(b) The (pq+1, pq−1, d3, . . . , dr)–surgery on (pr, qr)–torus link coincides with (d3, . . . , dr)

surgery on (p(r − 2), q(r − 2))–torus link. In particular, (pq + 1, pq − 1, d)–surgery on a
(3p, 3q)–torus link is an L-space iff d ≥ pq − p− q.

Proof. The plumbing graph of the surgery space can be described as above, with ki = di−pq
(see Figure 3 for the case of (6, 9) torus link with three components, see also [8] for more
details). It is star-shaped, so the surgery space Y := S3

d(L) is Seifert fibered. By [13],
the intersection matrix for the Neumann normal form is negative definite either for Y or
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for −Y . Any negative definite Seifert graph is almost rational in the sense of [11], so it
represents an L-space if and only if it is rational.

If di = pq then ki = 0 and the surgery space is a connected sum of lens spaces. From
now on we will assume that ki /∈ {−1, 0, 1} for all i.

If ki > 1 for all i, then we get an L-space by Lemma 5. Suppose that ki have different
signs, for example, k1 > 0 and k2 < 0. To obtain the normal form of Y , one needs to blow
up the vertices with positive ki, and there are at most r− 1 of them, so the self-intersection
of the central vertex in the normal form is greater than or equal to −1− (r−1) = −r, while
its valency is r + 2. To obtain the normal form of −Y , one reverses all signs and blows up
all positive vertices (at most r + 1 of them), so the self-intersection of the central vertex is
greater than or equal to 1− (r + 1) = −r. If Y is an L-space, either Y or −Y should be a
negative definite rational graph, what contradicts Remark 3(a).

Finally, suppose that ki < 0 for all i. In this case we can use a theorem of Lisca and
Stipsicz [10] describing Seifert fibered L-spaces. Suppose that 1 ≥ α1 ≥ α2 ≥ . . . ≥ αr+2 ≥ 0
are the Seifert invariants of singular fibers, and the central vertex has self-intersection (−1).
Then the corresponding 3-manifold is an L-space if and only if there are no coprime integers
(l,m) such that

(9.1) mα1 < l < m(1− α2) and mαi < 1 for i ≥ 3.

One can check that in our situation α1 and 1 − α2 are two neighboring fractions (in the
sense of Farey series) with denominators p and q (that is, a

p
and b

q
with aq− bp = ±1), and

αi = 1/|ki−2| for i ≥ 3.
It is well known (see e.g. [3, Section 4.5]) that the fraction a+b

p+q
has the least possible

denominator among rational numbers between a
p
and b

q
. Therefore if ki ≥ −p − q for

some i then (9.1) cannot be satisfied and Y is an L-space; if ki < −p − q for all i then
(l,m) = (a+ b, p+ q) satisfies (9.1) and Y is not an L-space. �

Example 10. For r = 1 the conditions of Theorem 7 are equivalent to the inequality
d1 ≥ pq − p− q = 2g(T (p, q)) − 1, which also follows from [7].

Example 11. Consider the case r = 2. The set of all pairs (d1, d2) providing an L-space is
shown in grey in Figure 4. The point (pq, pq) (marked by a star) provides a surgery with
infinite first homology and should be excluded.

Theorem 2 can be reinterpreted as follows: start with a negative definite non-minimal
plumbing graph Γ0 of S3, put some arrows on the vertices, and regard them as link compo-
nents of K in S3. Then the surgery manifold with all sufficiently large surgery coefficients
is an L–space.

The proof works totally unmodified if we start with any non–minimal rational graph of a
3–manifold M (instead of S3). If we wish to have natural (well–defined) surgery properties,
it is convenient to consider only the case when M is an integral homology sphere. On the
other hand, this is rather restrictive for (negative definite) rational graphs, there are only
two possibilities: M = S3 (case treated above), and M = Σ(2, 3, 5), the Poincaré 3–sphere
oriented as the link of the surface singularity {x2 + y3 + z5 = 0}. Nevertheless, in this case,
by identical proof we obtain:

Theorem 12. Consider any negative definite non-minimal plumbing graph of Σ = Σ(2, 3, 5),
put some arrows on the vertices, and regard them as link components of K in Σ. Then the

surgery manifold Σ(K) for all sufficiently large surgery coefficients is an L–space.

If we drop the integral homology restriction, we can start with any non–minimal rational
graph (now, this family is really large), but we have to consider only those surgeries which
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∗

pq − p− q pq − 1 pq + 1

Figure 4. Possible L-space surgery coefficients for (2p, 2q) torus link

can be realizes by the above construction (steps Γ0 7→ Γ̃0 7→ Γ′). For these surgeries the
statement and the proof still holds.
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