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Abstract: In a caching game introduced by Alpern et al. (Alpern et al., Lecture notes in computer science (2010) 220–233) a
Hider who can dig to a total fixed depth normalized to 1 buries a fixed number of objects among n discrete locations. A Searcher who
can dig to a total depth of h searches the locations with the aim of finding all of the hidden objects. If he does so, he wins, otherwise
the Hider wins. This zero-sum game is complicated to analyze even for small values of its parameters, and for the case of 2 hidden
objects has been completely solved only when the game is played in up to 3 locations. For some values of h the solution of the game
with 2 objects hidden in 4 locations is known, but the solution in the remaining cases was an open question recently highlighted by
Fokkink et al. (Fokkink et al., Search theory: A game theoretic perspective (2014) 85–104). Here we solve the remaining cases of
the game with 2 objects hidden in 4 locations. We also give some more general results for the game, in particular using a geometrical
argument to show that when there are 2 objects hidden in n locations and n→ ∞, the value of the game is asymptotically equal to
h/n for h≥n/2. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 23–31, 2016
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1. INTRODUCTION

In [3], Alpern et al. introduced a new type of search game
called a caching game. A caching game is a zero-sum game
between a Searcher and a Hider in which the Hider has some
material that he wishes to hide or cache in several possible
hiding places. The Hider could be a terrorist caching weapons
or explosives, or, as in [4], the Hider could be an animal such
as a squirrel, caching nuts or some other food. The Hider’s
aim is to end up with a certain minimal amount of material. In
the case of a terrorist, this may be a minimal amount required
to carry out an attack, or in the case of a squirrel it could be a
minimal amount of food to survive the winter. The Searcher,
who has a limited amount of resources with which to search,
has to decide how to distribute these resources about the hid-
ing locations to maximize the probability that the Hider will
be left with insufficient material.

The caching game we discuss in this article (defined for-
mally later in Section 3) takes place in a finite number of
locations and the Hider’s material takes the form of a finite
number of objects, which he can “bury” in the locations. He
is limited by the total amount that he can “dig,” but he is
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permitted to bury multiple objects in the same location. We
shall see later that this allows him to mislead the Searcher
using “decoys.” The Hider’s limitation could correspond to
a time restriction in the case of a terrorist caching weapons,
or an energy restriction in the case of a squirrel burying nuts.
The Searcher also has a restriction on the amount he is able to
dig. The Searcher can use an adaptive strategy (called a smart
strategy in [4]), meaning that he is not required to specify the
depths to which he will dig in each location in advance, but
can change his plan based on new information discovered in
the course of the search. We model this as a zero-sum win-
lose game, where the Hider wins if and only if he is left with
at least one object after the Searcher has finished searching.

In general, computing the value of the game and the opti-
mal mixed strategies seems to be hard, not least because both
players have infinite strategy sets. In [3], the game was solved
in the case that the Hider hides 2 objects in 2 locations and
the case that he hides 2 objects in 3 locations. For certain
values of the energy parameters, Fokkink et al. [13] describe
the solution to the game for 2 objects in 4 locations, taken
from [19]. In Section 3 of this work, we solve the game for
2 objects in 4 locations in the previously unsolved cases. We
also give some more general results for the game played in
an arbitrary number of locations in Section 4.
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2. RELATED LITERATURE

Caching games are a natural ancestors of accumulation
games, introduced by Kikuta and Ruckle ([16–18]) and fur-
ther studied in [1, 2, 5]. Accumulation games, in their most
general form, take place between a Hider who accumu-
lates resources in stages over several time periods, and a
Searcher who confiscates some of the resources in every
period. Caching games are single stage versions of accumu-
lation games, but in the caching game we study here, the
amount of material the Searcher can confiscate from a loca-
tion depends on the amount of his energy that he dedicates
to these locations. This adds an extra layer of complexity on
top of traditional accumulation games in which, on speci-
fying some subset of locations, the Searcher confiscates all
the material cached at those locations. The first author also
extends caching games by considering “limit games” [11] in
which the set of locations of the hidden objects is not a finite
set but an interval [0, T ] or [0, ∞).

Accumulation games and caching games are also related
to inspection games, as studied, for example in [7, 9, 12].
Inspection games model a situation in which an inspectee is
legally obliged to comply with some regulation such as an
arms control treaty, and an inspector wishes to detect a vio-
lation. Caching games also have a strong geometric flavor
and are related to geometric games of search and ambush,
as found in [14, 20, 21]. See [8] for some interesting open
problems in the area.

This work sits more generally in the field of search games,
good accounts of which can be found in the monographs
[6, 15]; and search theory, as surveyed in [10].

3. THE MODEL AND MAIN RESULTS

In this section, we describe the game, as defined in [3],
and give the solution for 2 objects hidden in 4 locations in
the previously unsolved cases.

3.1. Game Definition and Example

The general form of the game that we consider takes place
in n locations. The Hider must choose where to bury k objects
in these locations and a strategy for him corresponds to n
sets, (S1, . . . , Sn) with

∑
i≤n |Si | = k, where each Si con-

tains the (non-negative) depths at which objects are buried
in location i. For “location i” we use the abbreviation Li .
The Hider is permitted to hide several objects in the same
location, but he is restricted in the total amount he can dig,
so that

∑n
i=1 max {x : x ∈ Si} is no greater than a constant

which we normalize to 1. In other words, the sum of the
depths at which he buries the deepest object in each location
is no greater than 1. For convenience, if Si = ∅ we write
Si = 0 and if Si = {d} is a singleton, then we write Si = d.

For example, if n = 3, k = 3 and there are objects buried at
depths 1/2 and 2/3 in L1 and an object buried at depth 1/3
in L2 we write the strategy as ({1/2, 2/3} , 1/3, 0).

The Searcher’s strategies are more complicated to describe,
and we refer to [3] for a precise description. Informally, a
Searcher strategy is a plan of how to dig in the locations.
He can dig a total distance bounded above by some constant
h ≥ 0, and he can change his digging plan dynamically as he
gains new information about the locations of the objects. The
Searcher is permitted to dig simultaneously in more than one
location (this may be seen as the limit of a strategy in which
he alternates between locations, digging a very small amount
ε in each one).

The payoff of the game is 1 if the Searcher discovers all
the objects; in this case we say the Searcher wins and the
Hider loses. Otherwise, if the Hider is left with at least one
object, the payoff is 0, the Hider wins and the Searcher loses.
We assume that 1 ≤ h < n, otherwise the solution of the
game is trivial. In [3] it was shown that the game has a near
value and near optimal strategies (though in previously solved
examples of the game, exact optimal strategies are found).

We illustrate the game with a simple example, as described
in [3], in the case of n = 2 locations and k = 2 objects.
Observe that the Hider can always ensure that the value is at
most 1/2 by choosing randomly between (1, 0) and (0, 1), as
the Searcher cannot dig to a depth of 1 in both locations. If
h ≥ 3/2, then the Searcher can ensure an expected payoff
of at least 1/2 by digging to depth 1 in a randomly chosen
location and digging to depth 1/2 in the other location. To see
this, observe that if the objects are the in same location, the
Searcher wins if he chooses to dig to depth 1 in this location
(which happens with probability 1/2); if the objects are in
different locations, we can assume without loss of generality
that they are at depths x in L1 and y in L2 with y ≤ 1/2, in
which case the Searcher wins if he digs to a depth of 1 in L1

(which happens with probability 1/2). Hence the value of the
game is 1/2 if h ∈ [3/2, 2).

Now consider the same game with 2 objects hidden in
2 locations but with h < 3/2. In this case, the Hider can
guarantee he wins with probability at least 1/3 by choosing
equiprobably between (1/2, 1/2), (1/2, 1), and (1, 1/2). It is
clear that the Searcher cannot win against more than 1 of these
strategies. On the other hand, the Searcher can guarantee a
win with probability at least 1/3 by guessing equiprobably
between the three possibilities that (i) the objects are in dif-
ferent locations, (ii) they are both in L1, or (iii) they are both
in L2. If he guesses correctly, it is easy to see he only needs to
dig a total depth of 1 to win with certainty. Hence the value of
the game is 1/3 if h ∈ [1, 3/2). Note that this strategy relies
on the Searcher’s ability to adapt his search as he goes along.

We also remark that for the second Hider strategy described
above (and trivially the first), after finding the first object, the
second object will be optimally placed in the subgame faced
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Table 1. Value of the game for 2 objects in 4 locations

h Value

[1, 3/2) 1/10
[3/2, 5/3) 3/20
[5/3, 7/4) 1/5
[7/4, 9/5) 9/40
[9/5, 11/6) 7/30
[11/6, 2) 1/4
[2, 11/5) 2/5
[11/5, 7/3) 9/20
[7/3, 3) 1/2
[3, 4) 3/4

by the Searcher. Fokkink et al. [13] conjecture that the optimal
Hider strategy always has this property (“A Kikuta-Ruckle
Conjecture for Caching Games”). Indeed, this property can
be seen in the solutions we present in this section, but in [11],
the first author shows the conjecture is not true in general.

The reader will notice that in the proof of the following
lemmas, we do not make the assumption that the total depth
dug by the Hider is precisely 1. Counterintuitive as it may
seem, it is shown in [11] that for some large values of n the
Hider’s optimal strategy must with positive probability place
the objects at depths whose sum is strictly less than 1, so we
must not neglect these strategies.

3.2. New Results for 2 Objects Hidden in 4 Locations

In [3], the full solution of the game can be found for
k = 2 and n ≤ 3. In [13], the solution of the game for
n = 4 and k = 2 is given for all values of h except
h ∈ [7/4, 2) and h ∈ [11/5, 7/3). Here, we give solutions
for these missing cases. The value of the game is the same
for all h ∈ [11/5, 7/3), whereas for h ∈ [7/4, 2) the optimal
strategies and value depend on which of three subintervals
h belongs to. Therefore, our solution breaks down into four
cases.

We begin by summarizing the results in for the case
n = 2, k = 4 in Theorem 1, emphasizing new results in
bold.

THEOREM 1: The solution of the game for 2 objects hid-
den in 4 locations is shown in Table 1, with new results
emphasized in bold.

We will prove the theorem using 4 lemmas, corresponding
to the 4 cases, which we will present in increasing order of
complexity, beginning with the simplest case, h ∈ [11/6, 2).
The proofs are often very similar to one another and involve a
systematic checking of cases, in which case we give a detailed
exposition the first time and simply sketch the details in later
proofs. The players’ optimal strategies are of more interest
than the proofs themselves.

We first spend some time discussing how we will describe
the optimal strategies for the players, as this is nontrivial.
As we are restricting our attention to the game with 2 hid-
den objects, we can describe the Searcher’s strategy in two
stages, which we will call Stage 1 and Stage 2. Stage 1 spec-
ifies what the Searcher does until he finds the first object and
Stage 2 describes what he does after finding the first object
(if he does).

To describe Stage 1, we simply give a sequence of vec-
tors of the form (x1, x2, x3, x4) which signify that at time
x1 + x2 + x3 + x4 the Searcher has dug to depth xi in Li for
i = 1, . . . , 4. At intermediate times, he transforms from one
vector to the next in a linear way. For example, the interpre-
tation of the sequence (1, 0, 0, 0), (1, 1/2, 0, 0), (1, 1, 1/2, 0)

would be to dig to depth 1 in L1, then dig to depth 1/2 in
L2, and finally to dig simultaneously to depth 1 in L2 and to
depth 1/2 in L3.

To describe Stage 2, we will specify some rules telling the
Searcher the order in which to proceed to search for the sec-
ond object after finding the first. As the depth of the first object
gives a natural restriction on the depth of the second object
it will be clear how deep to dig in the other locations once
the order is established. For example, if the rule is to search
for the second object in L1 and then L2 after finding the first
object then supposing the first object is found at depth 1/3 in
L1, the Searcher should proceed to dig to depth 1 in L1 and
then depth 2/3 in L2. We call a Stage 2 search of this type an
intelligent search, abbreviated IS, and we denote Stage 2 of
the Searcher’s strategy in the preceding example by IS(12).
Similarly, for any sequence σ of locations, we write IS(σ )

for the IS in Stage 2 which searches for the second object in
the locations specified by their order in σ at the maximum
possible depths they could be in those locations.

To denote the Hider’s optimal strategies, we will distin-
guish between strategies where the objects are in different
locations and those where they are in the same locations. For
x ∈ [0, 1], let D(x) be the set of all Hider strategies where
one object is hidden at depth x in some location and the other
object is at depth 1−x in some other location. (So if x �= 1/2
then D(x) has size 3 × 4 = 12, and if x = 1/2 then D(x)

has size 12/2 = 6.) Also let E(x) be the set of the 4 Hider
strategies where both objects are hidden in the same location
at depths x and 1.

We begin with the case h ∈ [11/6, 2).

LEMMA 2: For n = 4, k = 2 and h ∈ [11/6, 2), the value
of the game is 1/4. The Hider’s optimal strategy is to choose
equiprobably from the 4 pure strategies in E(1).

The Searcher’s optimal strategy is to number the locations
randomly and proceed as follows.
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Stage 1: Dig according to the sequence (1/2, 0, 0, 0), (1/2,
1/2, 0, 0), (1, 1/2, 0, 0).

Stage 2: If an object is found in L1, follow IS(1234); if an
object is found in L2, follow IS(234).

PROOF: First note that the given Hider strategy clearly
guarantees that the expected payoff is no greater than 1/4
since h < 2 so the Searcher can dig to depth 1 in at most one
location.

So we just need to show that the Searcher’s strategy guaran-
tees he will win with probability at least 1/4 against any pure
Hider strategy. We will assume in this proof (and in the proofs
of the optimality of the Searcher strategies in the other 3 lem-
mas) that the objects are hidden at depths x and y with x ≥ y.
We split the analysis into 4 cases: (a) the two objects are in
the same locations, (b) the objects are in different locations
with x ≥ 5/6, (c) the objects are in different locations with
x ∈ [1/2, 5/6], and (d) the objects are in different locations
with x ≤ 1/2.

CASE (A): Objects in the same location. In this case, it is
clear that the Searcher wins if L1 contains the objects,
and this happens with probability 1/4.

CASE (B): Objects in different locations with x ≥ 5/6. In
this case, there are 12 equally probable combinations
for the locations of the two objects, with respect to the
Searcher’s ordering. We show that the Searcher wins for
the 3 of these combinations in which the object at depth
x is in L1.
Indeed, if the other object is in L2 then the Searcher will
certainly find both of them, since he will dig to depth 1/2
in L1, then to depth y in L2, finding one of the objects,
then to depth x in L1, finding the other (a total depth of
only x + y ≤ 1).
If the other object is in L3 or L4 then the Searcher will
dig to depth 1/2 in L1 then to depth 1/2 in L2 before
continuing to depth 1 in L1 and then to depth 1 − x in
L3 and L4, thereby finding both objects after digging to
a total depth d given by

d = 1 + 1/2 + 2(1 − x) = 7/2 − 2x ≤ 11/6,

with the last inequality following from x ≥ 5/6.

CASE (C): Objects in different locations with x ∈ [1/2, 5/6]
Similarly, in this case we show that the Searcher wins in
3 of the 12 possible combinations for the locations of the
two objects. First suppose the object at depth y is in L2

and the object at depth x is in L1 or L3. In this case, the
Searcher digs to depth 1/2 in L1 then to depth y in L2,
finally continuing to depth 1 − y in L1 and L3, finding
both objects after digging to a total depth d given by

d = (1 − y) + y + (1 − y) = 2 − y ≤ 11/6,

as y ≥ 1/6.
Finally, suppose the object at depth x is in L2 and the
other is in L1. Then the Searcher digs to depth y in L1,
finds the first object, continues to depth 1 in L1 and then
digs to depth 1 − y in L2, finding both objects after
digging a maximum total depth of d = 1 + (1 − y) ≤
11/6.

CASE (D): Objects in different locations with x ≤ 1/2. In
this case the Searcher wins in 4 of the 12 possible combi-
nations: when the objects are in L1 and L2 or L2 and L3.
Indeed, if they are in L1 and L2, the Searcher finds the
object in L1 before reaching depth 1/2. He then contin-
ues digging to depth 1 in L1, and then digs in L2, finding
the other object having dug a total depth of no more than
3/2.
If the objects are in L2 and L3 then the Searcher digs
to depth 1/2 in L1, before digging in L2 until finding
an object at some depth x ≤ 1/2. He then digs to depth
1 − x in L1 and then digs in L3 until finding the other
object at some depth y ≤ 1/2, making a total depth d

satisfying

d ≤ (1 − x) + x + y ≤ 3/2 ≤ 11/6. �

Next we give the solution of the game in the case h ∈
[11/5, 7/3).

LEMMA 3: For n = 4, k = 2 and h ∈ [11/5, 7/3),
the value of the game is 9/20. The Hider’s optimal strat-
egy is choose equiprobably between the 20 pure strategies in
D(1/3) ∪ E(1/3) ∪ E(2/3).

The Searcher’s optimal strategy is to number the locations
randomly and proceed as follows.

Stage 1: Dig according to the sequence

(3/5, 0, 0, 0), (3/5, 2/5, 0, 0), (4/5, 3/5, 0, 0),

(4/5, 4/5, 0, 0), (1, 4/5, 0, 0), (1, 1, 0, 0).

Stage 2: If an object is found in L1, follow IS(1234); if
an object is found in L2, with probability 4/5
follow IS(1234) and with probability 1/5 follow
IS(134).

PROOF: We first show that the Hider’s strategy ensures
an expected payoff of no more than 9/20 against any pure
search strategy of the Searcher. We will show that whatever
strategy the Searcher chooses, he can check at most 9 of
the Hider’s 20 possible configurations for the 2 objects. First
note that if we fix the Hider’s strategy, we only need consider
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a finite number of Searcher strategies, where in every time
interval [t/3, (t+1)/3) for t = 0, 1, 2, . . . he digs in the same
location. Hence, we only need to solve a finite optimization
problem. Also note that after Stage 1 of the Searcher’s strat-
egy has been used and he has found an object, it is clear that
he should proceed to look for the remaining object using an
IS.

We analyze the problem by splitting it into 3 cases, depend-
ing on Stage 1 of the Searcher’s strategy up to time 1. By
symmetry we can assume that Searcher begins by digging in
L1, followed by the other 3 locations in increasing order.

CASE 1: Stage 1 of the Searcher’s strategy begins with (2/3,
0, 0, 0), (2/3, 1/3, 0, 0). In this case, there are two pos-
sibilities: either the Searcher has or has not found an
object by time 1. If he has not, then he can either continue
digging in L2 to depth 2/3, in which case he wins against
precisely 2 of the Hider’s pure strategies ((0, 2/3, 1/3, 0)

and (0, 2/3, 0, 1/3)); or he can dig to depth 1/3 in L3

or L4, in which case he will only win against 1 of the
Hider’s pure strategies.
If the Searcher has found an object by time 1, it must
be at time 1/3, 2/3 or 1. If it is at time 1 then the
Searcher can win against 1 further Hider pure strat-
egy, say (0, {1/3, 1} , 0, 0). If it is at time 2/3 then the
Searcher can win against each of the 4 Hider pure strate-
gies for which there is an object at depth 2/3 in L1. If
it is at time 1/3 then the Searcher can win against 2
further Hider pure strategies, say ({1/3, 1} , 0, 0, 0) and
(1/3, 2/3, 0, 0).
In total this means the Searcher wins against a maxi-
mum of 2 + 1 + 4 + 2 = 9 of the 20 pure strategies of
the Hider.

CASE 2: Stage 1 of the Searcher’s strategy begins with (1/3,
0, 0, 0), (1/3, 1/3, 0, 0), (2/3, 1/3, 0, 0). This is similar
to the previous case, in that if the Searcher has not found
an object by time 1 he can win against a maximum of
2 of the Hider’s pure strategies. Also, if he finds an
object at time 1/3 then he wins against 2 further pure
strategies of the Hider. If he finds an object at time 1 how-
ever, he can win against the 3 Hider pure strategies of
({2/3, 1} , 0, 0, 0), (2/3, 0, 1/3, 0) and (2/3, 0, 0, 1/3);
and if he finds an object at time 2/3 he can win against
only 2 pure strategies of the Hider, say (2/3, 1/3, 0, 0)

and (0, {1/3, 1} , 0, 0). This also sums to 9 pure Hider
strategies in total.

CASE 3: Stage 1 of the Searcher’s strategy begins with (1/3,
0, 0, 0), (1/3, 1/3, 0, 0), (1/3, 1/3, 1/3, 0). In this case,
it is easy to check that if the Searcher has not found any-
thing by time 1, he can win against a maximum of 3 of
the Hider’s pure strategies. If he finds an object at time
1/3, 2/3 or 1 then he can win against at most 2 of the

Hider’s pure strategies. So in total, the Searcher wins
against 3 + 2 + 2 + 2 = 9 of the Hider’s pure strategies.

We must also show that the Searcher’s strategy guarantees
that he will win with probability at least 9/20 against any
pure Hider strategy where the objects are hidden at depths x
and y with x ≥ y. We sketch the proof and leave it to the
reader to check the details.

First suppose the objects are buried in the same location.
In this case, it is easy to check that the Searcher wins with
probability 1 if they are both in L1 and he wins with proba-
bility 4/5 if they are in L2, so that the overall probability of
a win is (1 + 4/5)/4 = 9/20.

Now suppose the objects are in different locations with
x, y ∈ [2/5, 3/5]. In this case we claim that the Searcher
wins with probability at least 1/2: in particular, he wins if the
objects are in L1 and L2, L1 and L3, or L2 and L3. This is
easily verified.

If the objects are in different locations with x ≤ 1/5,
then the Searcher wins against the same combinations of the
locations as in the previous case.

Finally, suppose the objects are in different locations with
x ≥ 1/5 and y ≤ 2/5. We claim that the Searcher wins if the
deepest object is in L1 or if it is in L2 and the other object is
in L1 or L3. He also wins with probability 1/5 if either the
deeper object is in L2 and the other is in L4 or the deeper
object is in L3 and the other is in L2. To check these claims,
it is best to split the analysis into the 4 cases, x ∈ [1/5, 2/5],
x ∈ [2/5, 3/5], x ∈ [3/5, 4/5] and x ∈ [4/5, 1]. So the total
probability with which he wins is (5 + 2/5)/12 = 9/20. �

We note that for the case described in Lemma 3, the opti-
mal Searcher strategy involves digging in two locations at the
same time. None of the other Searcher strategies we present
here have this property, and indeed it rarely occurs in optimal
solutions to previous cases of the game.

We present the solution to the game for h ∈ [7/4, 9/5) in
Lemma 4 and for h ∈ [9/5, 11/6) in Lemma 5 with sketch
proofs.

LEMMA 4: For n = 4, k = 2 and h ∈ [7/4, 9/5), the
value of the game is 9/40. The Hider’s optimal strategy is
to choose equiprobably between the 40 pure strategies in
D(1/5) ∪ D(2/5) ∪ E(1/5) ∪ E(2/5) ∪ E(3/5) ∪ E(4/5).

The Searcher’s optimal strategy is to number the locations
randomly and with probability 3/4 proceed as follows.

Stage 1: Dig according to the sequence (3/4, 0, 0, 0),
(3/4, 1/4, 0, 0), (1, 1/4, 0, 0), (1, 3/4, 0, 0).

Stage 2: If an object is found in L1, follow IS(1234); if an
object is found in L2, follow IS(134).

With probability 1/4, proceed as follows.
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Table 2. Performance of the optimal Hider strategy for h ∈
[7/4, 9/5)

Depths dug at time Max. number of
4/5 in Stage 1 N1 N2 pure strategies beaten

(4/5, 0, 0, 0) 0 9 9
(3/5, 1/5, 0, 0) 3 6 9
(2/5, 2/5, 0, 0) 3 6 9
(2/5, 1/5, 1/5, 0) 4 5 9
(1/5, 1/5, 1/5, 1/5) 4 4 8

Stage 1: Dig according to the sequence (3/4, 0, 0, 0), (3/4,
3/4, 0, 0), (1, 3/4, 0, 0).

Stage 2: If an object is found in L1, then with probability
3/5 follow IS(1234) and with probability 2/5 fol-
low IS(234); if an object is found in L2, follow
IS(134).

PROOF: The proof of the optimality of the Hider strategy
is similar to the proof of the upper bound in Lemma 3, and we
give an outline, leaving it to the reader to check the details.

We need to show that the Searcher can win against a maxi-
mum of 7 of the Hider’s pure strategies. We break the analysis
down into 5 cases, depending on the depth the Searcher has
dug in each location after time 4/5 in Stage 1 of his strategy.
For each of these cases there are two subproblems that must
be solved: how many Hider pure strategies can the Searcher
win against if he has not found an object by time 4/5, and
how many Hider pure strategies can the Searcher win against
if he has found an object by time 4/5? Denote these numbers
by N1 and N2 and we give their values in each of the 5 cases
in Table 2, showing that they sum to no more than 9.

To show that the Searcher strategy is optimal amounts to
checking that it wins with probability at least 9/40 against
three classes of Hider strategy. (As usual we assume the
objects are at depths x and y with x ≥ y.) The first class
is when both the objects are in the same location. In this
case, the Searcher will win with probability 9/40 if they are
in L1.

Next, if the objects are in different locations with x ≥ 3/4,
then the Searcher wins according to the probabilities given in
Table 3, where the Hider strategies are written with respect
to the Searcher’s ordering of the locations.

As there are 12 possible orderings, the total probability
that the Searcher wins is (1 + 1/4 · 2/5 + 3/4 + 1/4 · 2/5 +
3/4)/12 = 9/40.

Finally, if the objects are at depths x, y ≤ 3/4, the Searcher
wins according to the probabilities given in Table 4.

Hence the total probability of a Searcher win is 2(1 +
1/10 + 1/4)/12 = 9/40. �

LEMMA 5: For n = 4, k = 2 and h ∈ [9/5, 11/6), the
value of the game is 7/30. The Hider’s optimal strategy is

Table 3. Performance of the optimal Searcher strategy for h ∈
[7/4, 9/5) when objects are in different locations at x ≥ 3/4 and
y ≤ x

Hider strategy (x, y, 0, 0) (y, x, 0, 0) (x, 0, y, 0) (x, 0, 0, y)

Minimum 1 1/4 · 2/5 3/4 + 1/4 · 2/5 3/4
probability
Searcher wins

Table 4. Performance of the optimal Searcher strategy for h ∈
[7/4, 9/5) when objects are in different locations at x, y ≤ 3/4

(x, y, 0, 0) or (x, 0, y, 0) or (0, x, y, 0) or
Hider strategy (y, x, 0, 0) (y, 0, x, 0) (0, y, x, 0)

Minimum 1 1/10 1/4
probability
Searcher wins

to choose equiprobably between the 30 pure strategies in
D(1/6) ∪ D(1/2) ∪ E(1/6) ∪ E(1/2) ∪ E(5/6).

The Searcher’s optimal strategy is to number the locations
randomly and with probability 2/3 proceed as follows.

Stage 1: Dig according to the sequence (1, 0, 0, 0), (1, 4/5,
0, 0).

Stage 2: If an object is found in L1, follow IS(1234); if an
object is found in L2, follow IS(34).

With probability 1/3, proceed as follows.

Stage 1: Dig according to the sequence (3/5, 0, 0, 0),
(3/5, 3/5, 0, 0), (1, 3/5, 0, 0), (1, 4/5, 0, 0).

Stage 2: If an object is found in L1, then with probability
4/5 follow IS(1234) and with probability 1/5 fol-
low IS(234); if an object is found in L2, follow
IS(134).

PROOF: We first show that the Searcher can win against
a maximum of 9 of the Hider’s 30 pure strategies. Similarly
to the proof of Lemma 4, we break the analysis down into 4
cases, depending on the depth to which the Searcher has dug
in each location after time 5/6 in Stage 1 of his strategy. The
analysis is summed up in Table 5, using the notation N1 and
N2 as in the proof of Lemma 4.

To show that the Searcher strategy is optimal is also similar
to the proof of Lemma 4. We check that the strategy wins with
probability at least 7/30 against 4 classes of Hider strategy.
As before, the first is when both the objects are in the same
location and the Searcher wins with probability 7/30 if they
are in L1.

The second is if the objects are in different locations with
x ≥ 4/5, then the Searcher wins according to the probabilities
in Table 6.
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Table 5. Performance of the optimal Hider strategy for h ∈
[9/5, 11/6)

Depths dug at time Max. number of
5/6 in Stage 1 N1 N2 pure strategies beaten

(5/6, 0, 0, 0) 0 7 7
(1/2, 1/3, 0, 0) 3 4 7
(1/2, 1/6, 1/6, 0) 2 5 7
(2/6, 1/6, 1/6, 1/6) 3 4 7

Table 6. Performance of the optimal Searcher strategy for h ∈
[9/5, 11/6) when objects are in different locations at x ≥ 3/4, y ≤ x

Hider strategy (x, y, 0, 0) (y, x, 0, 0) (x, 0, y, 0) (x, 0, 0, y)

Minimum 1 1/3 · 1/5 1 2/3 + 1/3 · 1/5
probability
Searcher wins

So the total probability that the Searcher wins is (1 + 1/3 ·
1/5 + 1 + 2/3 + 1/3 · 1/5)/12 = 7/30.

Next, if the objects are in different locations with x ∈
[3/5, 4/5], the Searcher wins according to the probabilities
in Table 7.

In this case, the probability of a Searcher win is strictly
greater than 7/30.

Lastly, suppose the objects’ depths satisfy x, y ≤ 3/5. In
this case, the Searcher wins according to the probabilities in
Table 8.

So the total probability the Searcher wins is 2(1 + 1/15 +
1/3)/12 = 7/30. �

4. MORE GENERAL RESULTS

In this section, we give some more general results for the
game in the case of arbitrary n. The first result says that for
k = 2, if h ≤ n/2, the value of the game is asymptotically
equal to h/n as n → ∞. A similar result is presented in
Section 3.6.6 of [19], though our theorem uses a different
Searcher strategy and our proof approach is different, being
rather more geometrical in flavor. We believe that this could
be a useful approach in future work on analyzing the game
asymptotically.

THEOREM 6: Suppose k = 2 and h ≥ n/2. Then the
value V (n, h) of the game is

V (n, h) = h/n + ε(n),

where ε(n) → 0 as n → ∞.

PROOF: Consider the Hider strategy of placing both
objects at depth 1 in a randomly chosen location. Clearly

Table 7. Performance of the optimal Searcher strategy for
h ∈ [9/5, 11/6) when objects are in different locations at x ∈
[3/5, 4/5], y ≤ x

Hider strategy (x, y, 0, 0) (y, x, 0, 0) (x, 0, y, 0) (y, 0, x, 0) (0, y, x, 0)

Minimum 1 1 11/15 1/15 1/3
probability
Searcher wins

Table 8. Performance of the optimal Searcher strategy for h ∈
[9/5, 11/6) when objects are in different locations at x, y ≤ 3/5

(x, y, 0, 0) or (x, 0, y, 0) or (0, x, y, 0) or
Hider strategy (y, x, 0, 0) (y, 0, x, 0) (0, y, x, 0)

Minimum 1 1/15 1/3
probability
Searcher wins

the Searcher cannot win with probability greater than 
h� /n,
so V ≤ 
h� /n.

Now consider the Searcher strategy which digs up to depth
1 in each location in a random order until the first object is
found at depth y (if found at all), after which he digs to depth
1 − y in as many as possible of the remaining locations in
a random order. We show that this strategy wins against any
Hider strategy with probability at least h/n − 2/n.

First suppose the two objects are hidden in the same loca-
tion. Then, the Searcher will be sure to find them both if
he searches that location before running out of energy. This
happens with probability 
h� /n.

Now suppose the objects are in two different locations. We
may as well assume the objects are at depths y and 1 − y for
some y ≤ 1/2, as any other strategy is dominated. Suppose
the object at depth y is at the i th location in the Searcher’s
random ordering and the object at depth 1 − y is at the jth
location.

First suppose i < j . Then, the Searcher wins if

i − 1 + y + (1 − y)(j − i) ≤ hor

iy + j(1 − y) ≤ h + 1 − y.

Similarly, if i > j then the Searcher wins if

iy + j(1 − y) ≤ h + y.

Hence the Searcher will certainly win if i and j satisfy

iy + j(1 − y) ≤ h. (1)

To calculate the probability p that the Searcher wins amounts
to finding the proportion of non-negative integer coordinates
(i, j) with i, j ≤ n satisfying (1). This is approximately equal
to the ratio of the area A of the polygon P in the positive quad-
rant of the (i, j)-plane bounded by the inequalities i ≤ n,
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j ≤ n and (1), and n2. More precisely, it is easy to see that
p ≥ (A − 2n)/n2 = A/n2 − 2/n, so it is sufficient to show
that A ≥ nh.

We split the analysis into the case that h ≤ (1 − y)n and
h > (1−y)n. In the former case, the polygon P is a trapezium
and the area A is given by

A = n

2

(
h

1 − y
+ h − ny

1 − y

)

= n

(
h − ny/2

1 − y

)

≥ n

(
h − hy

1 − y

)
(since h ≥ n/2)

= nh,

as desired.
In the case that h > (1 − y)n, the polygon P is a penta-

gon and we calculate A by deducting from n2 the area of the
triangle formed by taking the complement of P :

A = n2 − 1

2

(
n − h − ny

1 − y

) (
n − h − n(1 − y)

y

)

= n2 − 1

2

(
(n − h)2

y(1 − y)

)

≥ n2 − 2n(n − h)2(minimized at y = 1/2)

= hn + (n − 2h)(h − n)

≥ hn(since1/2 ≤ h ≤ 1),

as desired.
Hence we have

h/n − 2/n ≤ V ≤ 
h� /n,

and the theorem follows. �

Our other result in this section gives the exact value of the
game for arbitrary n and k in the special case that h < 1+1/k.
Before stating the result, we define strategies for the players
that will turn out to be optimal.

DEFINITION 7: A uniform allocation strategy for the
Hider is a placement of ki objects at depths 1/k, 2/k, . . . , ki/k

in each location i, for some choice of nonnegative integers
k1, . . . , kn summing to k. The random allocation strategy
for the Hider is a uniformly random choice between all
possible uniform allocation strategies.

A uniform distribution strategy for the Searcher is a strat-
egy that digs in Li until finding ki objects (or running out of
energy) for some choice of non-negative integers k1, . . . , kn

summing to k. The random distribution strategy for the

Searcher is a uniformly random choice between all possible
random distribution strategies.

These strategies are generalizations of the optimal strate-
gies presented in Section 3 for n = 2, k = 2, and h < 3/2,
and the following proposition generalizes the solution of that
case. It also generalizes 3.6.2 from [19].

PROPOSITION 8: Suppose h < 1 + 1/k. The uniform
allocation strategy is optimal for the Hider and the uniform
distribution strategy is optimal for the Searcher. The value V

of the game is given by

V = 1(
n + k − 1

k

) .

PROOF: Let N be the number of uniform allocation strate-
gies, which is the same as the number of uniform distribution
strategies. It is clear that the Searcher cannot check more
than one of the Hider’s uniform allocation strategies, so using
the uniform allocation strategy the Hider can ensure that the
payoff is no more than 1/N . On the other hand, however
the objects are distributed, the Searcher will correctly guess
the number of objects that are present in each location with
probability 1/N , so he can ensure the payoff is at least 1/N .
Hence the value is 1/N .

It remains to show that N = ( n+k−1
k

), that is the number
of ways of choosing n non-negative integers k1, . . . , kn that
sum to k is ( n+k−1

k
). This is the problem of finding the num-

ber of weak compositions of k into exactly n parts, which is
well-known to be equal to ( n+k−1

k
). �

5. CONCLUSION AND VARIANTS

Our solution to the open problem posed in [13] shows that
optimal strategies can be complex and do not seem to follow
any easily recognizable pattern. We expect that to find solu-
tions to the game with 2 objects hidden in 5 or more locations
will not give any further insight into the structure of the game,
and we believe a better avenue for future research is to look
at limit games, as in the current work of the first author [11].

We note that in all four lemmas, the Hider’s optimal strat-
egy has the property described in the conjecture for caching
games made in [13] that after the first object is found, the
remaining object is hidden optimally in the subgame. How-
ever, we know from [11] that the optimal Hider strategy
does not necessarily have this property for large n so that
the conjecture is untrue in general. The conjecture has not
been disproved in a variation of the game called the extremal
game in which the Hider must dig a total depth of exactly 1.
As the Hider’s optimal strategy has this property for all solved
cases of the original game, the solution of the extremal game
must be the same in these cases.
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Another direction that future research could go in would be
to look at a variation of the game where the Searcher cannot
adapt his strategy but must specify in advance how deep he
wishes to dig in each location. Some elementary analysis of
this version of the game can be found in [3] and [4], but we
believe a lot more could be done in this area.

Finally, we mention two other possible extensions to the
game, which were suggested by the Associate Editor. In both
these extensions, it is possible that the Hider’s optimal strat-
egy has the structure conjectured in [13], and we leave these
possibilities as questions for future research.

The first extension is a version in which the Searcher is
restricted to searching the locations sequentially, so that once
he has dug in some location, he is not permitted to return to
it. In many of the known solutions of the game the Searcher’s
behavior follows this requirement anyway, but in general the
added restriction may decrease the value of the game, and
a pattern may be more easily detectable. However it is not
clear whether this version of the game would be any easier
to analyze than the original version.

The second extension we mention is a discretized version
of the game, for example when the Hider is restricted to plac-
ing the objects at depths 1/2 or 1. For n = 2 the solution
remains the same, but in general this restriction on the Hider
will increase the value of the game, and hopefully simplify the
analysis due to the Hider’s strategy space being finite. If this
problem is more tractable, it could be extended to a version in
which the Hider can place objects at depths 1/k, 2/k, · · · , k/k

for some fixed parameter k. Letting k tend to ∞ could give
some insight into the original problem.
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