On the equations and classification of toric quiver varieties

M. Domokos and D. Joó*
Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, 1053 Budapest, Hungary
Email: domokos.matyas@renyi.mta.hu joo.daniel@renyi.mta.hu

Abstract

Toric quiver varieties (moduli spaces of quiver representations) are studied. Given a quiver and a weight there is an associated quasiprojective toric variety together with a canonical embedding into projective space. It is shown that for a quiver with no oriented cycles the homogeneous ideal of this embedded projective variety is generated by elements of degree at most 3. In each fixed dimension d up to isomorphism there are only finitely many d dimensional toric quiver varieties. A procedure for their classification is outlined.

2010 MSC: 14M25 (Primary) 14L24 (Secondary) 16G20 (Secondary) 52B20 (Secondary)
Keywords: binomial ideal, moduli space of quiver representations, toric varieties

1 Introduction

Geometric invariant theory was applied by King [18 to introduce certain moduli spaces of representations of quivers. In the special case when the dimension vector takes value 1 on each vertex of the quiver (thin representations), these moduli spaces are quasi-projective toric varieties; following [2] we call them toric quiver varieties. Toric quiver varieties were studied by Hille [13], [14, [15, Altmann and Hille [2], Altmann and van Straten (4). Further motivation is provided by Craw and Smith [9, who showed that every projective toric variety is the fine moduli space for stable thin representations of an appropriate quiver with relations. Another application was introduced very recently by Carroll, Chindris and Lin [7]. From a different perspective, the projective toric quiver varieties are nothing but the toric varieties associated to flow polytopes. Taking this point of departure, Lenz [20] investigated toric ideals associated to flow polytopes. These are the homogeneous ideals of the projective toric variety associated to a flow polytope, canonically embedded into projective space.

Given a quiver (a finite directed graph) and a weight (an integer valued function on the set of vertices) there is an associated normal lattice polyhedron yielding a quasiprojective toric variety with a canonical embedding into projective space. This variety is projective if and only if the quiver has no oriented cycles. We show in Theorem 9.3 that the homogeneous ideal of this embedded projective variety is generated by elements of degree at most 3 . This is deduced from a recent result of Yamaguchi, Ogawa and Takemura [25], for which we give a simplified proof.

It follows from work of Altmann and van Straten (4) and Altmann, Nill, Schwentner and Wiercinska [3] that for each positive integer d up to isomorphism there are only finitely many

[^0]toric quiver varieties (although up to integral-affine equivalence there are infinitely many d dimensional quiver polyhedra). We make this notable observation explicit and provide a selfcontained treatment yielding some refinements. Theorem4.12 asserts that any toric quiver variety is the product of prime (cf. Definition 4.11) toric quiver varieties, and this deomposition can be read off from the combinatorial structure of the quiver. Moreover, by Theorem 4.22 any prime (cf. Definition 4.11) d-dimensional $(d>1)$ projective toric quiver variety can be obtained from a bipartite quiver with $5(d-1)$ vertices and $6(d-1)$ arrows, whose skeleton (cf. Definition 4.13) is 3 -regular.

A toric variety associated to a lattice polyhedron is covered by affine open toric subvarieties corresponding to the vertices of the polyhedron. In the case of quiver polyhedra the affine toric varieties arising that way are exactly the affine toric quiver varieties by our Theorem 6.2 and Theorem 6.3, According to Theorem 6.3 any toric quiver variety can be obtained as the union in a projective toric quiver variety of the affine open subsets corresponding to a set of vertices of the quiver polytope.

The paper is organized as follows. In Section 2 we review flow polytopes, quiver polytopes, quiver polyhedra, and their interrelations. In Section 3 we recall moduli spaces of representations of quivers, including a very explicit realization of a toric quiver variety in Proposition 3.3. In Section 4 we collect reduction steps for quiver-weight pairs that preserve the associated quiver polyhedron, and can be used to replace a quiver by another one which is simpler or smaller in certain sense. These are used to derive the results concerning the classification of toric quiver varieties. As an illustration the classification of 2-dimensional toric quiver varieties is recovered in Section [5. Section 6 clarifies the interrelation of affine versus projective toric quiver varieties. Section 8 contains some generalities on presentations of semigroup algebras, from which we obtain Corollary 8.3 that provides the technical framework for the proof in Section 9 of Theorem 0.3 about the equations for the natural embedding of a toric quiver variety into projective space. For sake of completeness of the picture we show in Section 10 how the main result of [25] can be derived from the special case Proposition 9.1 used in the proof of Theorem 9.3. We also point out in Theorem 9.6 that the ideal of relations among the minimal generators of the coordinate ring of a d-dimensional affine toric quiver variety is generated in degree at most $d-1$, and this bound is sharp.

2 Flow polytopes and their toric varieties

By a polyhedron we mean the intersection of finitely many closed half-spaces in \mathbb{R}^{n}, and by a polytope we mean a bounded polyhedron, or equivalently, the convex hull of a finite subset in \mathbb{R}^{n} (this conforms the usage of these terms in [8]). A quiver is a finite directed graph Q with vertex set Q_{0} and arrow set Q_{1}. Multiple arrows, oriented cycles, loops are all allowed. For an arrow $a \in Q_{1}$ denote by a^{-}its starting vertex and by a^{+}its terminating vertex. Given an integral vector $\theta \in \mathbb{Z}^{Q_{0}}$ and non-negative integral vectors $1, \mathbf{u} \in \mathbb{N}_{0}^{Q_{1}}$ consider the polytope

$$
\nabla=\nabla(Q, \theta, \mathbf{l}, \mathbf{u})=\left\{x \in \mathbb{R}^{Q_{1}} \mid \mathbf{l} \leq x \leq \mathbf{u}, \quad \forall v \in Q_{0}: \quad \theta(v)=\sum_{a^{+}=v} x(a)-\sum_{a^{-}=v} x(a)\right\} .
$$

This is called a flow polytope. According to the generalized Birkhoff-von Neumann Theorem ∇ is a lattice polytope in $\mathbb{R}^{Q_{1}}$, that is, its vertices belong to the lattice $\mathbb{Z}^{Q_{1}} \subset \mathbb{R}^{Q_{1}}$ (see for example Theorem 13.11 in [23]). Denote by X_{∇} the projective toric variety associated to ∇ (cf. Definition 2.3 .14 in $[8]$). The polytope ∇ is normal (see Theorem 13.14 in [23]). It follows that the abstract variety X_{∇} can be identified with the Zariski-closure of the image of the map

$$
\begin{equation*}
\left(\mathbb{C}^{\times}\right)^{Q_{1}} \rightarrow \mathbb{P}^{d-1}, \quad t \mapsto\left(t^{m_{1}}: \cdots: t^{m_{d}}\right) \tag{1}
\end{equation*}
$$

where $\left\{m_{1}, \ldots, m_{d}\right\}=\nabla \cap \mathbb{Z}^{Q_{1}}$, and for t in the torus $\left(\mathbb{C}^{\times}\right)^{Q_{1}}$ and $m \in \mathbb{Z}^{Q_{1}}$ we write $t^{m}:=$ $\prod_{a \in Q_{1}} t(a)^{m(a)}$. From now on X_{∇} will stand for this particular embedding in projective space of our variety, and we denote by $I\left(X_{\nabla}\right)$ the corresponding vanishing ideal, so $I\left(X_{\nabla}\right)$ is a homogeneous ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$ generated by binomials. Normality of ∇ implies that X_{∇} is projectively normal, that is, its affine cone in \mathbb{C}^{d} is normal. We shall also use the notation

$$
\nabla(Q, \theta)=\left\{x \in \mathbb{R}^{Q_{1}} \mid \mathbf{0} \leq x, \quad \forall v \in Q_{0}: \quad \theta(v)=\sum_{a^{+}=v} x(a)-\sum_{a^{-}=v} x(a)\right\}
$$

We shall call this a quiver polyhedron. When Q has no oriented cycles, then for u large enough we have $\nabla(Q, \theta)=\nabla(Q, \theta, \mathbf{0}, \mathbf{u})$, so $\nabla(Q, \theta)$ is a polytope; these polytopes will be called quiver polytopes.

Definition 2.1 The lattice polyhedra $\nabla_{i} \subset V_{i}$ with lattice $M_{i} \subset V_{i}(i=1,2)$ are integral-affinely equivalent if there exists an affine linear isomorphism $\varphi: \operatorname{AffSpan}\left(\nabla_{1}\right) \rightarrow \operatorname{AffSpan}\left(\nabla_{2}\right)$ of affine subspaces with the following properties:
(i) φ maps $\operatorname{AffSpan}\left(\nabla_{1}\right) \cap M_{1}$ onto $\operatorname{AffSpan}\left(\nabla_{2}\right) \cap M_{2}$;
(ii) φ maps ∇_{1} onto ∇_{2}.

The phrase 'integral-affinely equivalent' was chosen in accordance with [6] (though in 6] full dimensional lattice polytopes are considered). Obviously, if ∇_{1} and ∇_{2} are integral-affinely equivalent lattice polytopes, then the associated projective toric varieties $X_{\nabla_{1}}$ and $X_{\nabla_{2}}$ are isomorphic (and in fact they can be identified via their embeddings into projective space given by the ∇_{i}). As we shall point out in Proposition 2.2 below, up to integral-affine equivalence, the class of flow polytopes coincides with the class of quiver polytopes, so the class of quiver polyhedra is the most general among the above classes.

Proposition 2.2 For any flow polytope $\nabla(Q, \theta, \mathbf{l}, \mathbf{u})$ there exists a quiver Q^{\prime} with no oriented cycles and a weight $\theta^{\prime} \in \mathbb{Z}^{Q_{1}^{\prime}}$ such that the polytopes $\nabla(Q, \theta, \mathbf{l}, \mathbf{u})$ and $\nabla\left(Q^{\prime}, \theta^{\prime}\right)$ are integral-affinely equivalent.

Proof. Note that $x \in \mathbb{R}^{Q_{1}}$ belongs to $\nabla(Q, \theta, \mathbf{l}, \mathbf{u})$ if and only if $x-\mathbf{l}$ belongs to $\nabla\left(Q, \theta^{\prime}, \mathbf{0}, \mathbf{u}-\mathbf{l}\right)$ where θ^{\prime} is the weight given by $\theta^{\prime}(v)=\theta(v)-\sum_{a^{+}=v} \mathbf{l}(a)+\sum_{a^{-}=v} \mathbf{l}(a)$. Consequently $X_{\nabla(Q, \theta, \mathbf{l}, \mathbf{u})}=$ $X_{\nabla\left(Q, \theta^{\prime}, \mathbf{0}, \mathbf{u}-\mathbf{l}\right)}$. Therefore it is sufficient to deal with the flow polytopes $\nabla(Q, \theta, \mathbf{0}, \mathbf{u})$. Define a new quiver Q^{\prime} as follows: add to the vertex set of Q two new vertices v_{a}, w_{a} for each $a \in Q_{1}$, and replace the arrow $a \in Q_{1}$ by three arrows a_{1}, a_{2}, a_{3}, where a_{1} goes from a^{-}to v_{a}, a_{2} goes from w_{a} to v_{a}, and a_{3} goes from w_{a} to a^{+}. Let $\theta^{\prime} \in \mathbb{Z}^{Q_{0}^{\prime}}$ be the weight with $\theta^{\prime}\left(v_{a}\right)=\mathbf{u}(a)=-\theta\left(w_{a}\right)$ for all $a \in Q_{1}$ and $\theta^{\prime}(v)=\theta(v)$ for all $v \in Q_{0}$. Consider the linear map $\varphi: \mathbb{R}^{Q_{1}} \rightarrow \mathbb{R}^{Q_{1}^{\prime}}$, $x \mapsto y$, where $y\left(a_{1}\right):=x(a), y\left(a_{3}\right):=x(a)$, and $y\left(a_{2}\right)=\mathbf{u}(a)-x(a)$ for all $a \in Q_{1}$. It is straightforward to check that φ is an affine linear transformation that restricts to an isomorphism $\operatorname{AffSpan}(\nabla(Q, \theta, \mathbf{0}, \mathbf{u})) \rightarrow \operatorname{AffSpan}\left(\nabla\left(Q^{\prime}, \theta^{\prime}\right)\right)$ with the properties (i) and (ii) in Definition 2.1. \square

3 Moduli spaces of quiver representations

A representation R of Q assigns a finite dimensional \mathbb{C}-vector space $R(v)$ to each vertex $v \in Q_{0}$ and a linear map $R(a): R\left(a^{-}\right) \rightarrow R\left(a^{+}\right)$to each arrow $a \in Q_{1}$. A morphism between representations R and R^{\prime} consists of a collection of linear maps $L(v): R(v) \mapsto R^{\prime}(v)$ satisfying $R^{\prime}(a) \circ L\left(a^{-}\right)=$
$L\left(a^{+}\right) \circ R(a)$ for all $a \in Q_{1}$. The dimension vector of R is $\left(\operatorname{dim}_{\mathbb{C}}(R(v)) \mid v \in Q_{0}\right) \in \mathbb{N}^{Q_{0}}$. For a fixed dimension vector $\alpha \in \mathbb{N}^{Q_{0}}$,

$$
\operatorname{Rep}(Q, \alpha):=\bigoplus_{a \in Q_{1}} \operatorname{hom}_{\mathbb{C}}\left(\mathbb{C}^{\alpha\left(a^{-}\right)}, \mathbb{C}^{\alpha\left(a^{+}\right)}\right)
$$

is the space of α-dimensional representations of Q. The product of general linear groups $G L(\alpha):=$ $\prod_{v \in Q_{0}} G L_{\alpha(v)}(\mathbb{C})$ acts linearly on $\operatorname{Rep}(Q, \alpha)$ via

$$
g \cdot R:=\left(g\left(a^{+}\right) R(a) g\left(a^{-}\right)^{-1} \mid a \in Q_{1}\right) \quad(g \in G L(\alpha), R \in \operatorname{Rep}(Q, \alpha))
$$

The $G L(\alpha)$-orbits in $\operatorname{Rep}(Q, \alpha)$ are in a natural bijection with the isomorphism classes of α dimensional representations of Q. Given a weight $\theta \in \mathbb{Z}^{Q_{0}}$, a representation R of Q is called θ-semi-stable if $\sum_{v \in Q_{0}} \theta(v) \operatorname{dim}_{\mathbb{C}}(R(v))=0$ and $\sum_{v \in Q_{0}} \theta(v) \operatorname{dim}_{\mathbb{C}}\left(R^{\prime}(v)\right) \geq 0$ for all subrepresentations R^{\prime} of R. The points in $\operatorname{Rep}(Q, \alpha)$ corresponding to θ-semi-stable representations constitute a Zariski open subset $\operatorname{Rep}(Q, \alpha)^{\theta-s s}$ in the representation space, and in [18] Geometric Invariant Theory (cf. [22]) is applied to define a variety $\mathcal{M}(Q, \alpha, \theta)$ and a morphism

$$
\begin{equation*}
\pi: \operatorname{Rep}(Q, \alpha)^{\theta-s s} \rightarrow \mathcal{M}(Q, \alpha, \theta) \tag{2}
\end{equation*}
$$

which is a coarse moduli space for families of θ-semistable α-dimensional representations of Q up to S-equivalence. A polynomial function f on $\operatorname{Rep}(Q, \alpha)$ is a relative invariant of weight θ if $f(g \cdot R)=\left(\prod_{v \in Q_{0}} \operatorname{det}(g(v))^{\theta(v)}\right) f(R)$ holds for all $g \in G L(\alpha)$ and $R \in \operatorname{Rep}(Q, \alpha)$. The relative invariants of weight θ constitute a subspace $\mathcal{O}(\operatorname{Rep}(Q, \alpha))_{\theta}$ in the coordinate ring $\mathcal{O}(\operatorname{Rep}(Q, \alpha))$ of the affine space $\operatorname{Rep}(Q, \alpha)$. In fact $\mathcal{O}(\operatorname{Rep}(Q, \alpha))_{\theta}$ is a finitely generated module over the algebra $\mathcal{O}(\operatorname{Rep}(Q, \alpha))^{G L(\alpha)}$ of polynomial $G L(\alpha)$-invariants on $\operatorname{Rep}(Q, \alpha)$ (generators of this latter algebra are described in [19]). Now a quasiprojective variety $\mathcal{M}(Q, \alpha, \theta)$ is defined as the projective spectrum

$$
\mathcal{M}(Q, \alpha, \theta)=\operatorname{Proj}\left(\bigoplus_{n=0}^{\infty} \mathcal{O}(\operatorname{Rep}(Q, \alpha))_{n \theta}\right)
$$

of the graded algebra $\bigoplus_{n=0}^{\infty} \mathcal{O}(\operatorname{Rep}(Q, \alpha))_{n \theta}$. A notable special case is that of the zero weight. Then the moduli space $\mathcal{M}(Q, \alpha, 0)$ is the affine variety whose coordinate ring is the subalgebra of $G L(\alpha)$-invariants in $\mathcal{O}(\operatorname{Rep}(Q, \alpha))$. This was studied in [19] before the introduction of the case of general weights in [18]. Its points are in a natural bijection with the isomorphism classes of semisimple representations of Q with dimension vector α. For a quiver with no oriented cycles, $\mathcal{M}(Q, \alpha, 0)$ is just a point, and it is more interesting for quivers containing oriented cycles.

Let us turn to the special case when $\alpha(v)=1$ for all $v \in Q_{0}$; we simply write $\operatorname{Rep}(Q)$ and $\mathcal{M}(Q, \theta)$ instead of $\operatorname{Rep}(Q, \alpha)$ and $\mathcal{M}(Q, \alpha, \theta)$. When $\operatorname{Rep}(Q)^{\theta-s s}$ is non-empty, $\mathcal{M}(Q, \theta)$ is a quasiprojective toric variety with torus $\pi\left(\left\{x \in \operatorname{Rep}(Q) \mid x(a) \neq 0 \forall a \in Q_{1}\right\}\right)=\pi\left(\left(\mathbb{C}^{\times}\right)^{Q_{1}}\right)$. On the other hand it is well known (see Proposition 3.2 below) that $\nabla(Q, \theta)$ is a lattice polyhedron in the sense of Definition 7.1.3 in [8]. Denote by $X_{\nabla(Q, \theta)}$ the toric variety belonging to the normal fan of $\nabla(Q, \theta)$, see for example Theorem 7.1.6 in [8].

Proposition 3.1 We have

$$
\mathcal{M}(Q, \theta) \cong X_{\nabla(Q, \theta)}
$$

Proof. For quivers with no oriented cycles this is explained in [2] using a description of the fan of $\mathcal{M}(Q, \theta)$ in [14. An alternative explanation is the following: the lattice points in $\nabla(Q, n \theta)$ correspond bijectively to a \mathbb{C}-basis in $\mathcal{O}(\operatorname{Rep}(Q))_{n \theta}$, namely assign to $m \in \nabla(Q, n \theta) \cap \mathbb{Z}^{Q_{1}}$ the function $R \mapsto R^{m}:=\prod_{a \in Q_{1}} R(a)^{m(a)}$. Now $X_{\nabla(Q, \theta)}$ is the projective spectrum of $\bigoplus_{n=0}^{\infty} \mathcal{O}(\operatorname{Rep}(Q))_{n \theta}$ (see Proposition 7.1.13 in [8]), just like $\mathcal{M}(Q, \theta)$.

A more explicit description of $\mathcal{M}(Q, \theta)$ is possible thanks to normality of quiver polyhedra:
Proposition 3.2 (i) Denote by Q^{1}, \ldots, Q^{t} the maximal subquivers of Q that contain no oriented cycles. Then $\nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$ has a Minkowski sum decomposition

$$
\begin{equation*}
\nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}=\nabla(Q, 0) \cap \mathbb{Z}^{Q_{1}}+\bigcup_{i=1}^{t} \nabla\left(Q^{i}, \theta\right) \cap \mathbb{Z}^{Q_{1}} \tag{3}
\end{equation*}
$$

(ii) The quiver polyhedron $\nabla(Q, \theta)$ is a normal lattice polyhedron.

Proof. (i) By the support of $x \in \mathbb{R}^{Q_{1}}$ we mean the set $\left\{a \in Q_{1} \mid x(a) \neq 0\right\} \subseteq Q_{1}$. It is obvious that $\nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$ contains the set on the right hand side of (3). To show the reverse inclusion take an $x \in \nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$. If its support contains no oriented cycles, then $x \in \nabla\left(Q^{i}, \theta\right)$ for some i. Otherwise take a minimal oriented cycle $C \subseteq Q_{1}$ in the support of x. Denote by $\varepsilon_{C} \in \mathbb{R}^{Q_{1}}$ the characteristic function of C, and denote by λ the minimal coordinate of x along the cycle C. Then $\lambda \varepsilon_{C} \in \nabla(Q, 0)$ and $y:=x-\lambda \varepsilon_{C} \in \nabla(Q, \theta)$. Moreover, y has strictly smaller support than x. By induction on the size of the support we are done.
(ii) The same argument as in (i) yields $\nabla(Q, \theta)=\nabla(Q, 0)+\bigcup_{i=1}^{t} \nabla\left(Q^{i}, \theta\right)$. So $\nabla(Q, 0)$ is the recession cone of $\nabla(Q, \theta)$, and the set of vertices of $\nabla(Q, \theta)$ is contained in the union of the vertex sets of $\nabla\left(Q^{i}, \theta\right)$. As we pointed out before, the vertices of $\nabla\left(Q^{i}, \theta\right)$ belong to $\mathbb{Z}^{Q_{1}}$ by Theorem 13.11 in [23], whereas the cone $\nabla(Q, 0)$ is obviously rational and strongly convex. This shows that $\nabla(Q, \theta)$ is a lattice polyhedron in the sense of Definition 7.1.3 in [8]. For normality we need to show that for all positive integers k we have $\nabla(Q, k \theta) \cap \mathbb{Z}^{Q_{1}}=k\left(\nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}\right)$ (the Minkowski sum of k copies of $\nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$), see Definition 7.1.8 in [8]. Flow polytopes are normal by Theorem 13.14 in [23], hence the $\nabla\left(Q^{i}, \theta\right)$ are normal for $i=1, \ldots, t$. So by (i) we have $\nabla(Q, k \theta) \cap \mathbb{Z}^{Q_{1}}=\nabla(Q, 0) \cap \mathbb{Z}^{Q_{1}}+\bigcup_{i=1}^{t}\left(\nabla\left(Q^{i}, k \theta\right) \cap \mathbb{Z}^{Q_{1}}\right)=\nabla(Q, 0) \cap \mathbb{Z}^{Q_{1}}+\bigcup_{i=1}^{t} k\left(\nabla\left(Q^{i}, \theta\right) \cap\right.$ $\left.\mathbb{Z}^{Q_{1}}\right) \subseteq k\left(\nabla(Q, 0)+\bigcup_{i=1}^{t} \nabla\left(Q^{i}, \theta\right) \cap \mathbb{Z}^{Q 1}\right)$.

Let C_{1}, \ldots, C_{r} be the minimal oriented cycles (called also primitive cycles) in Q. Then their characteristic functions $\varepsilon_{C_{1}}, \ldots, \varepsilon_{C_{r}}$ constitute a Hilbert basis in the monoid $\nabla(Q, 0) \cap \mathbb{Z}^{Q_{1}}$. Enumerate the elements in $\left\{m, \varepsilon_{C_{j}}+m \mid m \in \bigcup_{i=1}^{t} \nabla\left(Q^{i}, \theta\right), j=1, \ldots, r\right\}$ as $m_{0}, m_{1}, \ldots, m_{d}$. For a lattice point $m \in \nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$ denote by $x^{m}: \operatorname{Rep}(Q) \rightarrow \mathbb{C}$ the function $x \mapsto \prod_{a \in Q_{1}} R(a)^{m(a)}$. Consider the map

$$
\begin{equation*}
\rho: \operatorname{Rep}(Q)^{\theta-s s} \rightarrow \mathbb{P}^{d}, \quad x \mapsto\left(x^{m_{0}}: \cdots: x^{m_{d}}\right) . \tag{4}
\end{equation*}
$$

Proposition 3.3 $\mathcal{M}(Q, \theta)$ can be identified with the locally closed subset $\operatorname{Im}(\rho)$ in \mathbb{P}^{d}.
Proof. The morphism ρ is $G L(1, \ldots, 1)$-invariant, hence it factors through the quotient morphism (2), so there exists a morphism $\mu: \mathcal{M}(Q, \theta) \rightarrow \operatorname{Im}(\rho)$ with $\mu \circ \pi=\rho$. One can deduce from Proposition 3.2 by the Proj construction of $\mathcal{M}(Q, \theta)$ that μ is an isomorphism.

This shows also that there is a projective morphism $\mathcal{M}(Q, \theta) \rightarrow \mathcal{M}(Q, 0)$. In particular, $\mathcal{M}(Q, \theta)$ is a projective variety if and only if Q has no oriented cycles, i.e. if $\nabla(Q, \theta)$ is a polytope.

4 Contractable arrows

Throughout this section Q stands for a quiver and $\theta \in \mathbb{Z}^{Q_{0}}$ for a weight such that $\nabla(Q, \theta)$ is non-empty. For an undirected graph Γ we set $\chi(\Gamma):=\left|\Gamma_{1}\right|-\left|\Gamma_{0}\right|+\chi_{0}(\Gamma)$, where Γ_{0} is the set
of vertices, Γ_{1} is the set of edges in Γ, and $\chi_{0}(\Gamma)$ is the number of connected components of Γ. Define $\chi(Q):=\chi(\Gamma)$ and $\chi_{0}(Q):=\chi_{0}(\Gamma)$ where Γ is the underlying graph of Q, and we say that Q is connected if Γ is connected, i.e. if $\chi_{0}(Q)=1$. Denote by $\mathcal{F}: \mathbb{R}^{Q_{1}} \rightarrow \mathbb{R}^{Q_{0}}$ the map given by

$$
\begin{equation*}
\mathcal{F}(x)(v)=\sum_{a^{+}=v} x(a)-\sum_{a^{-}=v} x(a) \quad\left(v \in Q_{0}\right) \tag{5}
\end{equation*}
$$

By definition we have $\nabla(Q, \theta)=\mathcal{F}^{-1}(\theta) \cap \mathbb{R}_{\geq 0}^{Q_{1}}$. It is well known that the codimension in $\mathbb{R}^{Q_{0}}$ of the image of \mathcal{F} equals $\chi_{0}(Q)$, hence $\operatorname{dim}_{\mathbb{R}}\left(\mathcal{F}^{-1}(\theta)\right)=\chi(Q)$ for any $\theta \in \mathcal{F}\left(\mathbb{R}^{Q_{1}}\right)$, implying that $\operatorname{dim}(\nabla(Q, \theta)) \leq \chi(Q)$, where by the dimension of a polyhedron we mean the dimension of its affine span.

We say that we contract an arrow $a \in Q_{1}$ which is not a loop when we pass to the pair $(\hat{Q}, \hat{\theta})$, where \hat{Q} is obtained from Q by removing a and glueing its endpoints a^{-}, a^{+}to a single vertex $v \in \hat{Q}_{0}$, and setting $\hat{\theta}(v):=\theta\left(a^{-}\right)+\theta\left(a^{+}\right)$whereas $\hat{\theta}(w)=\theta(w)$ for all vertices $w \in \hat{Q}_{0} \backslash\{v\}=$ $Q_{0} \backslash\left\{a^{-}, a^{+}\right\}$.

Definition 4.1 Let Q be a quiver, $\theta \in \mathbb{Z}^{Q_{0}}$ a weight such that $\nabla(Q, \theta)$ is non-empty.
(i) An arrow $a \in Q_{1}$ is said to be removable if $\nabla(Q, \theta)$ is integral-affinely equivalent to $\nabla\left(Q^{\prime}, \theta\right)$, where Q^{\prime} is obtained from Q by removing the arrow $a: Q_{0}^{\prime}=Q_{0}$ and $Q_{1}^{\prime}=Q_{1} \backslash\{a\}$.
(ii) An arrow $a \in Q_{1}$ is said to be contractable if $\nabla(Q, \theta)$ is integral-affinely equivalent to $\nabla(\hat{Q}, \hat{\theta})$, where $(\hat{Q}, \hat{\theta})$ is obtained from (Q, θ) by contracting the arrow a.
(iii) The pair (Q, θ) is called tight if there is no removable or contractable arrow in Q_{1}.

An immediate corollary of Definition 4.1 is the following statement:
Proposition 4.2 Any quiver polyhedron $\nabla(Q, \theta)$ is integral-affinely equivalent to some $\nabla\left(Q^{\prime}, \theta^{\prime}\right)$, where $\left(Q^{\prime}, \theta^{\prime}\right)$ is tight. Moreover, $\left(Q^{\prime}, \theta^{\prime}\right)$ is obtained from (Q, θ) by successively removing or contracting arrows.

Remark 4.3 A pair (Q, θ) is tight if and only if all its connected components are θ-tight in the sense of Definition 12 of [4]; this follows from Lemma 7, Corollary 8, and Lemma 13 in [4]. These results imply also Corollary 4.5 below, for which we give a direct derivation from Definition 4.1,

Lemma 4.4 (i) The arrow a is removable if and only if $x(a)=0$ for all $x \in \nabla(Q, \theta)$.
(ii) The arrow a is contractable if and only if in the affine space $\mathcal{F}^{-1}(\theta)$ the halfspace $\{x \in$ $\left.\mathcal{F}^{-1}(\theta) \mid x(a) \geq 0\right\}$ contains the polyhedron $\left\{x \in \mathcal{F}^{-1}(\theta) \mid x(b) \geq 0 \quad \forall b \in Q_{1} \backslash\{a\}\right\}$.

Proof. (i) is trivial. To prove (ii) denote by $\hat{Q}, \hat{\theta}$ the quiver and weight obtained by contracting a. Since the set of arrows of \hat{Q} can be identified with $\hat{Q}_{1}=Q_{1} \backslash\{a\}$, we have the projection map $\pi: \mathcal{F}^{-1}(\theta) \rightarrow \mathcal{F}^{\prime-1}(\hat{\theta})$ obtained by forgetting the coordinate $x(a)$. The equation

$$
x(a)=\theta\left(a^{+}\right)-\sum_{b \in Q_{1} \backslash\{a\}, b^{+}=a^{+}} x(b)+\sum_{b \in Q_{1} \backslash\{a\}, b^{-}=a^{+}} x(b)
$$

shows that π is injective, hence it gives an affine linear isomorphism $\mathcal{F}^{-1}(\theta) \cap \mathbb{Z}^{Q_{1}}$ and $\mathcal{F}^{\prime-1}(\hat{\theta}) \cap$ $\mathbb{Z}^{\hat{Q}_{1}}$, and maps injectively the lattice polyhedron $\nabla(Q, \theta)$ onto an integral-affinely equivalent lattice polyhedron contained in $\nabla(\hat{Q}, \hat{\theta})$. Thus a is contractable if and only if on the affine space $\mathcal{F}^{-1}(\theta)$ the inequality $x(a) \geq 0$ is a consequence of the inequalities $x(b) \geq 0\left(b \in Q_{1} \backslash\{a\}\right)$.

For an arrow $a \in Q_{1}$ set $\nabla(Q, \theta)_{x(a)=0}:=\{x \in \nabla(Q, \theta) \mid x(a)=0\}$.
Corollary 4.5 (i) The pair (Q, θ) is tight if and only if the assignment $a \mapsto \nabla(Q, \theta)_{x(a)=0}$ gives a bijection between Q_{1} and the facets (codimension 1 faces) of $\nabla(Q, \theta)$.
(ii) If (Q, θ) is tight, then $\operatorname{dim}(\nabla(Q, \theta))=\chi(Q)$.

Proof. Lemma 4.4 shows that (Q, θ) is tight if and only if $\operatorname{AffSpan}(\nabla(Q, \theta))=\mathcal{F}^{-1}(\theta)$ and $\{x(a)=0\} \cap \mathcal{F}^{-1}(\theta)\left(a \in Q_{1}\right)$ are distinct supporting hyperplanes of $\nabla(Q, \theta)$ in its affine span.

The following simple sufficient condition for contractibility of an arrow turns out to be sufficient for our purposes. For a subset $S \subseteq Q_{0}$ set $\theta(S):=\sum_{v \in S} \theta(v)$. By (5) for $x \in \mathcal{F}^{-1}(\theta)$ we have

$$
\begin{equation*}
\theta(S)=\sum_{a \in Q_{1}, a^{+} \in S} x(a)-\sum_{a \in Q_{1}, a^{-} \in S} x(a)=\sum_{a^{+} \in S, a^{-} \notin S} x(a)-\sum_{a^{-} \in S, a^{+} \notin S} x(a) . \tag{6}
\end{equation*}
$$

Proposition 4.6 Suppose that $S \subset Q_{0}$ has the property that there is at most one arrow a with $a^{+} \in S, a^{-} \notin S$ and at most one arrow b with $b^{+} \notin S$ and $b^{-} \in S$. Then a (if exists) is contractable when $\theta(S) \geq 0$ and b (if exists) is contractable when $\theta(S) \leq 0$.

Proof. By (6) we have $\theta(S)=x(a)-x(b)$, hence by Lemma $4.4 a$ or b is contractable, depending on the sign of $\theta(S)$.

By the valency of a vertex $v \in Q_{0}$ we mean $\left|\left\{a \in Q_{1} \mid a^{-}=v\right\}\right|+\left|\left\{a \in Q_{1} \mid a^{+}=v\right\}\right|$.
Corollary 4.7 (i) Suppose that the vertex $v \in Q_{0}$ has valency 2 , and $a, b \in Q_{1}$ are arrows such that $a^{+}=b^{-}=v$. Then the arrow a is contractable when $\theta(v) \geq 0$ and b is contractable when $\theta(v) \leq 0$.
(ii) Suppose that for some $c \in Q_{1}, c^{-}$and c^{+}have valency 2 , and $a, b \in Q_{1} \backslash\{c\}$ with $a^{-}=c^{-}$and $b^{+}=c^{+}$. Then a is contractable when $\theta\left(c^{-}\right)+\theta\left(c^{+}\right) \leq 0$ and b is contractable when $\theta\left(c^{-}\right)+\theta\left(c^{+}\right) \geq 0$.

Proof. Apply Proposition 4.6 with $S=\{v\}$ to get (i) and with $S=\left\{c^{-}, c^{+}\right\}$to get (ii).
Proposition 4.8 Suppose that there are exactly two arrows $a, b \in Q_{1}$ attached to some vertex v, and either $a^{+}=b^{+}=v$ or $a^{-}=b^{-}=v$. Let $Q^{\prime}, \theta^{\prime}$ be the quiver and weight obtained after replacing

by

by

That is, replace the arrows a, b by \hat{a} and \hat{b} obtained by reversing them, and consider the weight $\theta^{\prime} \in \mathbb{Z}^{Q_{1}^{\prime}}$ given by $\theta^{\prime}(v)=-\theta(v), \theta^{\prime}(u)=\theta(u)+\theta(v)$ when $u \neq v$ is an endpoint of a or b, and $\theta^{\prime}(w)=\theta(w)$ for all other $w \in Q_{0}^{\prime}=Q_{0}$. Then the polyhedra $\nabla(Q, \theta)$ and $\nabla\left(Q^{\prime}, \theta^{\prime}\right)$ are integral-affinely equivalent.

Proof. It is straightforward to check that the map $\varphi: \mathbb{R}^{Q_{1}} \rightarrow \mathbb{R}^{Q_{1}^{\prime}}$ given by $\varphi(x)(\hat{a})=x(b)$, $\varphi(x)(\hat{b})=x(a)$, and $\varphi(x)(c)=x(c)$ for all $c \in Q_{1}^{\prime} \backslash\{\hat{a}, \hat{b}\}=Q_{1} \backslash\{a, b\}$ restricts to an isomorphism between $\operatorname{AffSpan}(\nabla(Q, \theta))$ and $\operatorname{AffSpan}\left(\nabla\left(Q^{\prime}, \theta^{\prime}\right)\right)$ satisfying (i) and (ii) in Definition 2.1.

Remark 4.9 Proposition 4.8 can be interpreted in terms of reflection transformations: it was shown in Sections 2 and 3 in [17] (see also Theorem 23 in [24]) that reflection transformations on representations of quivers induce isomorphisms of algebras of semi-invariants. Now under our assumptions a reflection transformation at vertex v fixes the dimension vector $(1, \ldots, 1)$.

Proposition 4.10 Suppose that Q is the union of its full subquivers Q^{\prime}, $Q^{\prime \prime}$ which are either disjoint or have a single common vertex v. Identify $\mathbb{R}^{Q_{1}^{\prime}} \oplus \mathbb{R}^{Q_{1}^{\prime \prime}}=\mathbb{R}^{Q_{1}}$ in the obvious way, and let $\theta^{\prime} \in \mathbb{Z}^{Q_{0}^{\prime}} \subset \mathbb{Z}^{Q_{0}}, \theta^{\prime \prime} \in \mathbb{Z}^{Q_{0}^{\prime \prime}} \subset \mathbb{Z}^{Q_{0}}$ be the unique weights with $\theta=\theta^{\prime}+\theta^{\prime \prime}$ and $\theta^{\prime}(v)=$ $-\sum_{w \in Q_{0}^{\prime} \backslash\{v\}} \theta(w), \theta^{\prime \prime}(v)=-\sum_{w \in Q_{0}^{\prime \prime} \backslash\{v\}} \theta(w)$ when $Q_{0}^{\prime} \cap Q_{0}^{\prime \prime}=\{v\}$.
(i) Then the quiver polyhedron $\nabla(Q, \theta)$ is the product of the polyhedra $\nabla\left(Q^{\prime}, \theta^{\prime}\right)$ and $\nabla\left(Q^{\prime \prime}, \theta^{\prime \prime}\right)$.
(ii) We have $\mathcal{M}(Q, \theta) \cong \mathcal{M}\left(Q^{\prime}, \theta^{\prime}\right) \times \mathcal{M}\left(Q^{\prime \prime}, \theta^{\prime \prime}\right)$.

Proof. (i) A point $x \in \mathbb{R}^{Q_{1}}$ uniquely decomposes as $x=x^{\prime}+x^{\prime \prime}$, where $x^{\prime}(a)=0$ for all $a \notin Q_{1}^{\prime}$ and $x^{\prime \prime}(a)=0$ for all $a \notin Q_{1}^{\prime \prime}$. It is obvious by definition of quiver polyhedra that $x \in \nabla(Q, \theta)$ if and only if $x^{\prime} \in \nabla\left(Q^{\prime}, \theta^{\prime}\right)$ and $x^{\prime \prime} \in \nabla\left(Q^{\prime \prime}, \theta^{\prime \prime}\right)$.
(ii) was observed already in [13] and follows from (i) by Proposition 3.1.

Definition 4.11 (i) We call a connected undirected graph Γ (with at least one edge) prime if it is not the union of full proper subgraphs $\Gamma^{\prime}, \Gamma^{\prime \prime}$ having only one common vertex (i.e. it is 2 -vertex-connected). A quiver Q will be called prime if its underlying graph is prime.
(ii) We call a toric variety prime if it is not the product of lower dimensional toric varieties.

Obviously any toric variety is the product of prime toric varieties, and this product decomposition is unique up to the order of the factors (see for example Theorem 2.2 in [12]). It is not immediate from the definition, but we shall show in Theorem 4.12 (iii) that the prime factors of a toric quiver variety are quiver varieties as well.

Note that a toric quiver variety associated to a non-prime quiver may well be prime, and conversely, a toric quiver variety associated to a prime quiver can be non-prime, as it is shown by the following example:

The quiver in the picture is prime but the moduli space corresponding to this weight is $\mathbb{P}^{1} \times \mathbb{P}^{1}$. However, as shown by Theorem 4.12 below, when the tightness of some (Q, θ) is assumed, decomposing Q into its unique maximal prime components gives us the unique decomposition of $\mathcal{M}(Q, \theta)$ as a product of prime toric varieties.

Theorem 4.12 (i) Let $Q^{i}(i=1, \ldots, k)$ be the maximal prime full subquivers of Q, and denote by $\theta^{i} \in \mathbb{Z}^{Q_{0}^{i}}$ the unique weights satisfying $\sum_{i=1}^{k} \theta^{i}(v)=\theta(v)$ for all $v \in Q_{0}$ and $\sum_{v \in Q_{0}^{i}} \theta^{i}(v)=0$ for all i. Then $\mathcal{M}(Q, \theta) \cong \prod_{i=1}^{k} \mathcal{M}\left(Q^{i}, \theta^{i}\right)$. Moreover, if (Q, θ) is tight, then the $\left(Q^{i}, \theta^{i}\right)$ are all tight.
(ii) If (Q, θ) is tight then $\mathcal{M}(Q, \theta)$ is prime if and only if Q is prime.
(iii) Any toric quiver variety is the product of prime toric quiver varieties.

Proof. The isomorphism $\mathcal{M}(Q, \theta) \cong \prod_{i=1}^{k} \mathcal{M}\left(Q^{i}, \theta^{i}\right)$ follows from Proposition 4.10. The second statement in (i) follows from this isomorphism and Corollary 4.5.

Next we turn to the proof of (ii), so suppose that (Q, θ) is tight. If Q is not prime, then $\chi\left(Q^{i}\right)>0$ for all i, hence $\mathcal{M}(Q, \theta)$ is not prime by (i). To show the reverse implication assume on the contrary that Q is prime, and $\mathcal{M}(Q, \theta) \cong X^{\prime} \times X^{\prime \prime}$ where $X^{\prime}, X^{\prime \prime}$ are positive dimensional toric varieties. Note that then Q_{1} does not contain loops. Let $\left\{\varepsilon_{a} \mid a \in Q_{1}\right\}$ be a \mathbb{Z}-basis of $\mathbb{Z}^{Q_{1}}$, and for each vertex $v \in Q_{0}$ let us define $C_{v}:=\sum_{a^{+}=v} \varepsilon_{a}-\sum_{a^{-}=v} \varepsilon_{a}$. Following the description of the toric fan Σ of $\mathcal{M}(Q, \theta)$ in 14 we can identify the lattice of one-parameter subgroups N of $\mathcal{M}(Q, \theta)$ with $\mathbb{Z}^{Q_{1}} /\left\langle C_{v} \mid v \in Q_{0}\right\rangle$, and the ray generators of the fan with the cosets of the ε_{a}. Denoting by Σ^{\prime} and $\Sigma^{\prime \prime}$ the fans of X^{\prime} and $X^{\prime \prime}$ respectively, we have $\Sigma=\Sigma^{\prime} \times \Sigma^{\prime \prime}=\left\{\sigma^{\prime} \times \sigma^{\prime \prime} \mid \sigma^{\prime} \in \Sigma^{\prime}, \sigma^{\prime \prime} \in \Sigma^{\prime \prime}\right\}$ (see [8] Proposition 3.1.14). Denote by $\pi^{\prime}: N \rightarrow N^{\prime}, \pi^{\prime \prime}: N \rightarrow N^{\prime \prime}$ the natural projections to the sets of one-parameter subgroups of the tori in X^{\prime} and $X^{\prime \prime}$. For each ray generator ε_{a} we have either $\pi^{\prime}\left(\varepsilon_{a}\right)=0$ or $\pi^{\prime \prime}\left(\varepsilon_{a}\right)=0$. Since (Q, θ) is tight we obtain a partition of Q_{1} into two disjoint non-empty sets of arrows: $Q_{1}^{\prime}=\left\{a \in Q_{1} \mid \pi^{\prime \prime}(a)=0\right\}$ and $Q_{1}^{\prime \prime}=\left\{a \in Q_{1} \mid \pi^{\prime}(a)=0\right\}$. Since Q is prime, it is connected, hence there exists a vertex w incident to arrows both from Q_{1}^{\prime} and $Q_{1}^{\prime \prime}$. Let Π^{\prime} and $\Pi^{\prime \prime}$ denote the projections from $\mathbb{Z}^{Q_{1}}$ to $\mathbb{Z}^{Q_{1}^{\prime}}$ and $\mathbb{Z}^{Q_{1}^{\prime \prime}}$. By choice of w we have $\Pi^{\prime}\left(C_{w}\right) \neq 0$ and $\Pi^{\prime \prime}\left(C_{w}\right) \neq 0$. Writing φ for the natural map from $\mathbb{Z}^{Q_{1}}$ to $N \cong \mathbb{Z}^{Q_{1}} /\left\langle C_{v} \mid v \in Q_{0}\right\rangle$ we have $\varphi \circ \Pi^{\prime}=\pi^{\prime} \circ \varphi$ and $\varphi \circ \Pi^{\prime \prime}=\pi^{\prime \prime} \circ \varphi$, so $\operatorname{ker}(\varphi)=\left\langle C_{v} \mid v \in Q_{0}\right\rangle$ is closed under Π^{\prime} and $\Pi^{\prime \prime}$. Taking into account that $\sum_{v \in Q_{0}} C_{v}=0$ we deduce that $\Pi^{\prime}\left(C_{w}\right)=\sum_{v \in Q_{0} \backslash\{w\}} \lambda_{v} C_{v}$ for some $\lambda_{v} \in \mathbb{Z}$. Set $S^{\prime}:=\left\{v \in Q_{0} \mid \lambda_{v} \neq 0\right\}$. Since each arrow appears in exactly two of the C_{v}, it follows that S^{\prime} contains all vertices connected to w by an arrow in Q_{1}^{\prime}, hence S^{\prime} is non-empty. Moreover, the set of arrows having exactly one endpoint in S^{\prime} are exactly those arrows in Q_{1}^{\prime} that are adjacent to w. Thus $S^{\prime \prime}:=Q_{0} \backslash\left(S^{\prime} \cup\{w\}\right)$ contains all vertices that are connected to w by an arrow from $Q_{1}^{\prime \prime}$, hence $S^{\prime \prime}$ is non-empty. Furthermore, there are no arrows in Q_{1} connecting a vertex from S^{\prime} to a vertex in $S^{\prime \prime}$. It follows that Q is the union of its full subquivers spanned by the vertex sets $S^{\prime} \cup\{w\}$ and $S^{\prime \prime} \cup\{w\}$, having only one common vertex w and no common arrow. This contradicts the assumption that Q was prime.

Statement (iii) follows from (i), (ii) and Proposition 4.2,
Note that if $\chi(\Gamma) \geq 2$ and Γ is prime, then Γ contains no loops (i.e. an edge with identical endpoints), every vertex of Γ has valency at least 2 , and Γ has at least two vertices with valency at least 3 .

Definition 4.13 For $d=2,3, \ldots$ denote by \mathcal{L}_{d} the set of prime graphs Γ with $\chi(\Gamma)=d$ in which all vertices have valency at least 3 . Let \mathcal{R}_{d} stand for the set of quivers Q with no oriented cycles obtained from a graph $\Gamma \in \mathcal{L}_{d}$ by orienting some of the edges somehow and putting a sink on the remaining edges (that is, we replace an edge by a path of length 2 in which both edges are pointing towards the new vertex in the middle). We shall call Γ the skeleton $\mathcal{S}(Q)$ of Q; note that $\chi(Q)=\chi(\mathcal{S}(Q))$.

Starting from Q, its skeleton $\Gamma=\mathcal{S}(Q)$ can be recovered as follows: Γ_{0} is the subset of Q_{0} consisting of the valency 3 vertices. For each path in the underlying graph of Q that connects two vertices in Γ_{0} and whose inner vertices have valency 2 we put an edge. Clearly, a quiver Q with $\chi(Q)=d \geq 2$ belongs to \mathcal{R}_{d} if and only if the following conditions hold:
(i) Q is prime.
(ii) There is no arrow of Q connecting valency 2 vertices.
(iii) Every valency 2 vertex of Q is a sink.

Furthermore, set $\mathcal{R}:=\bigsqcup_{d=1}^{\infty} \mathcal{R}_{d}$ where \mathcal{R}_{1} is the 1-element set consisting of the Kronecker quiver

Remark 4.14 A purely combinatorial characterization of tightness is given in Lemma 13 of 44. Namely, (Q, θ) is tight if and only if any connected component of Q is θ-stable, and any connected component of $Q \backslash\{a\}$ for any $a \in Q_{1}$ is θ-stable (see Section 6 for the notion of θ stability). In the same Lemma it is also shown that if (Q, θ) is tight, then $\left(Q, \delta_{Q}\right)$ is tight, where $\delta_{Q}:=\sum_{a \in Q_{1}}\left(\varepsilon_{a^{+}}-\varepsilon_{a^{-}}\right)$is the so-called canonical weight (here ε_{v} stands for the characteristic function of $v \in Q_{0}$). It is easy to deduce that for a connected quiver Q the pair (Q, δ_{Q}) is tight if and only if there is no partition $Q_{0}=S \amalg S^{\prime}$ such that there is at most one arrow from S to S^{\prime} and there is at most one arrow from S^{\prime} to S.

Proposition 4.15 For any $d \geq 2, \Gamma \in \mathcal{L}_{d}$ and $Q \in \mathcal{R}_{d}$ we have the inequalities

$$
\left|\Gamma_{0}\right| \leq 2 d-2, \quad\left|\Gamma_{1}\right| \leq 3 d-3, \quad\left|Q_{0}\right| \leq 5(d-1), \quad\left|Q_{1}\right| \leq 6(d-1)
$$

In particular, \mathcal{L}_{d} and \mathcal{R}_{d} are finite for each positive integer d.
Proof. Take $\Gamma \in \mathcal{L}_{d}$ where $d \geq 2$. Then Γ contains no loops, and denoting by e the number of edges and by v the number of vertices of Γ, we have the inequality $2 e \geq 3 v$, since each vertex is adjacent to at least three edges. On the other hand $e=v-1+d$. We conclude that $v \leq 2 d-2$ and hence $e \leq 3 d-3$. For $Q \in \mathcal{R}_{d}$ with $\mathcal{S}(Q)=\Gamma$ we have that $\left|Q_{0}\right| \leq v+e$ and $\left|Q_{1}\right| \leq 2 e$.

Theorem 4.16 (i) Any d-dimensional prime toric quiver variety $\mathcal{M}(Q, \theta)$ can be realized by a tight pair (Q, θ) where $Q \in \mathcal{R}_{d}$ (consequently $\left|Q_{0}\right| \leq 5(d-1)$ and $\left|Q_{1}\right| \leq 6(d-1)$ when $d \geq 2$).
(ii) For each positive integer d up to isomorphism there are only finitely many d-dimensional toric quiver varieties.

Proof. It follows from Propositions 4.2, Corollary 4.7 and Proposition 4.8 that any d-dimensional prime toric quiver variety can be realized by a tight pair (Q, θ) where $Q \in \mathcal{R}_{d}$; the bounds on vertex and arrow sets of the quiver follow by Proposition 4.15. It remains to show (ii). For a given quiver Q we say that the weights θ and θ^{\prime} are equivalent if $\operatorname{Rep}(Q)^{\theta-s s}=\operatorname{Rep}(Q)^{\theta^{\prime}-s s}$; this implies that $\mathcal{M}(Q, \theta)=\mathcal{M}\left(Q, \theta^{\prime}\right)$. For a given representation R of Q, the set of weights θ for which R is θ-semistable is determined by the set of dimension vectors of subrepresentations of R. Since there are finitely many possibilities for the dimension vectors of a subrepresentation of a representation with dimension vector $(1, \ldots, 1)$, up to equivalence there are only finitely many different weights, hence there are finitely many possible moduli spaces for a fixed Q.

Remark 4.17 Part (i) of Theorem 4.16 can be directly obtained from the results in [3] and [4]. From the proof of Theorem 7 in [3] it follows that the bound on the number of vertices and edges hold whenever the canonical weight is tight for a quiver. While in [3] it is assumed that Q has no oriented cycles, their argument for the bound applies to the general case as well. Moreover Lemma 13 in [4] shows that every toric quiver variety can be realized by a pair (Q, θ) where Q is tight with the canonical weight. These two results imply part (i) of Theorem 4.16,

Remark 4.18 We mention that for a fixed quiver Q it is possible to give an algorithm to produce a representative for each of the finitely many equivalence classes of weights. The change of the moduli spaces of a given quiver when we vary the weight is studied in [13, [14, where the inequalities determining the chamber system were given. To find an explicit weight in each chamber one can use the Fourier-Motzkin algorithm.

Theorem 4.16 is sharp, and the reductions on the quiver are optimal, in the sense that in general one can not hope for reductions that would yield smaller quivers:

Proposition 4.19 For each natural number $d \geq 2$ there exists a d-dimensional toric quiver variety $\mathcal{M}(Q, \theta)$ with $\left|Q_{1}\right|=6(d-1),\left|Q_{0}\right|=5(d-1)$, such that for any other quiver and weight $Q^{\prime}, \theta^{\prime}$ with $\mathcal{M}(Q, \theta) \cong \mathcal{M}\left(Q^{\prime}, \theta^{\prime}\right)$ (isomorphism of toric varieties) we have that $\left|Q_{1}^{\prime}\right| \geq\left|Q_{1}\right|$ and $\left|Q_{0}^{\prime}\right| \geq\left|Q_{0}\right|$.

Proof. The number of inequalities defining $\nabla(Q, \theta)$ in its affine span is obviously bounded by the number of arrows of Q, so the number of facets of a quiver polyhedron $\nabla(Q, \theta)$ is bounded by $\left|Q_{1}\right|$. On the other hand the number of facets is an invariant of the corresponding toric variety, as it equals the number of rays in the toric fan of $\mathcal{M}(Q, \theta)$. Therefore by Corollary 4.5 it is sufficient to show the existence of a tight (Q, θ) with $\left|Q_{1}\right|=6(d-1)$ and $\left|Q_{0}\right|=5(d-1)$. Such a pair (Q, θ) is provided in Example 4.20

Example 4.20 For $d \geq 3$ consider the graph below with $2(d-1)$ vertices. Removing any two edges from this graph we obtain a connected graph. Now let Q be the quiver obtained by putting a sink on each of the edges (so the graph below is the skeleton of Q). Then $\left(Q, \delta_{Q}\right)$ is tight by Remark 4.14 (δ_{Q} takes value 2 on each sink and value -3 on each source).

Relaxing the condition on tightness it is possible to come up with a shorter list of quivers whose moduli spaces exhaust all possible toric quiver varieties. A key role is played by the following statement:

Proposition 4.21 Suppose that Q has no oriented cycles and $a \in Q_{1}$ is an arrow such that contracting it we get a quiver (i.e. the quiver \hat{Q} described in Definition 4.1) that has no oriented cycles. Then for a sufficiently large integer d we have that a is contractable for the pair $(Q, \theta+$ $\left.d\left(\varepsilon_{a^{+}}-\varepsilon_{a^{-}}\right)\right)$, where $\varepsilon_{v} \in \mathbb{Z}^{Q_{0}}$ stands for the characteristic function of $v \in Q_{0}$.

Proof. Set $\psi_{d}=\theta+d\left(\varepsilon_{a^{+}}-\varepsilon_{a^{-}}\right)$, and note that $\hat{\psi}_{d}=\hat{\theta}$ for all d. Considering the embeddings $\pi: \mathcal{F}^{-1}\left(\psi_{d}\right) \rightarrow \mathcal{F}^{\prime-1}(\hat{\theta})$ described in the proof of Lemma 4.4, we have that for any d, any $y \in \mathcal{F}^{-1}\left(\psi_{d}\right)$ and $b \in Q_{1} \backslash\{a\}$,

$$
\min \{x(b) \mid x \in \nabla(\hat{Q}, \hat{\theta})\} \leq y(b) \leq \max \{x(b) \mid x \in \nabla(\hat{Q}, \hat{\theta})\}
$$

Since we assumed that \hat{Q} has no oriented cycles, the minimum and the maximum in the inequality above are finite. Now considering the arrows incident to a^{-}we obtain that for any $x \in \mathcal{F}^{-1}\left(\psi_{d}\right)$ we have $x(a)=d-\theta\left(a^{-}\right)+\sum_{b^{+}=a^{-}} x(b)-\sum_{b^{-}=a^{-}, b \neq a} x(b)$. Thus for $d \geq \theta\left(a^{-}\right)-\min \left\{\sum_{b^{+}=a^{-}} x(b)-\right.$ $\left.\sum_{b^{-}=a^{-}, b \neq a} x(b) \mid x \in \mathcal{F}^{\prime-1}(\hat{\theta})\right\}$ the arrow a is contractable for $\left(Q, \psi_{d}\right)$ by Lemma 4.4.

For $d \geq 2$ introduce a partial ordering \geq on \mathcal{L}_{d} : we set $\Gamma \geq \Gamma^{\prime}$ if Γ^{\prime} is obtained from Γ by contracting an edge, and take the transitive closure of this relation. Now for each positive integer $d \geq 2$ denote by $\mathcal{L}_{d}^{\prime} \subseteq \mathcal{L}_{d}$ the set of undirected graphs $\Gamma \in \mathcal{L}_{d}$ that are maximal with respect to the relation \geq, and set $\mathcal{L}_{1}^{\prime}:=\mathcal{L}_{1}$. It is easy to see that for $d \geq 2, \mathcal{L}_{d}^{\prime}$ consists of 3 -regular graphs (i.e. graphs in which all vertices have valency 3). Now denote by \mathcal{R}_{d}^{\prime} the quivers which are obtained by putting a sink on each edge from a graph from \mathcal{L}_{d}^{\prime}.

Theorem 4.22 For $d \geq 2$ any prime d-dimensional projective toric quiver variety is isomorphic to $\mathcal{M}(Q, \theta)$ where $Q \in \mathcal{R}_{d}^{\prime}$.

Proof. This is an immediate consequence of Theorem 4.16 and Proposition 4.21.
Example $4.23 \mathcal{L}_{3}^{\prime}$ consists of two graphs:

Now put a sink on each edge of the above graphs. The first of the two resulting quivers is not tight for the canonical weight. After tightening we obtain the following two quivers among whose moduli spaces all 3 -dimensional prime projective toric quiver varieties occur:

5 The 2-dimensional case

As an illustration of the general classification scheme explained in Section (4) we quickly reproduce the classification of 2-dimensional toric quiver varieties (this result is known, see Theorem 5.2 in [13] and Example 6.14 in [11):

Proposition 5.1 (i) A 2-dimensional toric quiver variety is isomorphic to one of the following: The projective plane \mathbb{P}^{2}, the blow up of \mathbb{P}^{2} in one, two, or three points in general position, or $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
(ii) The above varieties are realized (in the order of their listing) by the following quiver-weight pairs:

Proof. \mathcal{R}_{1} consists only of the Kronecker quiver. The only weights yielding a non-empty moduli space are $(-1,1)$ and its positive integer multiples, hence the corresponding moduli space is \mathbb{P}^{1}. Thus $\mathbb{P}^{1} \times \mathbb{P}^{1}$, the product of two projective lines occurs as a 2-dimensional toric quiver variety, say for the disjoint union of two copies of -1 . 1 .
\mathcal{L}_{2} consists of the graph with two vertices and three edges connecting them (say by Proposition 4.15). Thus \mathcal{R}_{2}^{\prime} consists of the following quiver:

Figure 1: The polytope $\nabla(A, \theta)$

Choosing a spanning tree T in Q, the $x(a)$ with $a \in Q_{1} \backslash T_{1}$ can be used as free coordinates in $\operatorname{AffSpan}(\nabla(Q, \theta))$. For example, take in the quiver A the spanning tree with thick arrows in the following figure:

Clearly $\nabla(A, \theta)$ is integral-affinely equivalent to the polytope in $\mathbb{R}^{2}=\{(x, y) \mid x, y \in \mathbb{R}\}$ shown on Figure 1. Depending on the order of $-\theta_{1}, \theta_{3},-\theta_{1}-\theta_{4}, \theta_{2}$, its normal fan is one of the following:

It is well known that the corresponding toric varieties are the projective plane $\mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}$ and the projective plane blown up in one, two, or three points in general position, so (i) is proved. Taking into account the explicit inequalities in Figure 1, we see that for the pairs (A, θ) given in (ii), the variety $X_{\nabla(A, \theta)}=\mathcal{M}(A, \theta)$ has the desired isomorphism type.

Remark 5.2 (i) Since the toric fan of the blow up of \mathbb{P}^{2} in three generic points has 6 rays, to realize it as a toric quiver variety we need a quiver with at least 6 arrows and hence with at least 5 vertices (see Proposition 4.19).
(ii) Comparing Proposition 5.1] with Section 3.3 in [3] we conclude that for each isomorphism class of a 2-dimensional toric quiver variety there is a quiver Q such that $\mathcal{M}\left(Q, \delta_{Q}\right)$ belongs to the given isomorphism class (recall that δ_{Q} is the so-called canonical weight), in particular in dimension 2 every projective toric quiver variety is Gorenstein Fano.. This is explained by the following two facts: (1) in dimension 2 , a complete fan is determined by the set of rays; (2) if (Q, θ) is tight, then $\left(Q, \delta_{Q}\right)$ is tight. Now (1) and (2) imply that if (Q, θ) is tight and $\chi(Q)=2$, then $\mathcal{M}(Q, \theta) \cong \mathcal{M}\left(Q, \delta_{Q}\right)$.
(iii) The above does not hold in dimension three or higher. Consider for example the quiverweight pairs:

The weight on the left is the canonical weight δ_{Q} for this quiver, and it is easy to check that $\left(Q, \delta_{Q}\right)$ is tight and $\mathcal{M}\left(Q, \delta_{Q}\right)$ is a Gorenstein Fano variety with one singular point. The weight on the right is also tight for this quiver, however it gives a smooth moduli space which can not be isomorphic to $\mathcal{M}\left(Q, \delta_{Q}\right)$, consequently it also can not be Gorenstein Fano since the rays in its fan are the same as those in the fan of $\mathcal{M}\left(Q, \delta_{Q}\right)$.
(iv) It is also notable in dimension 2 that each toric moduli space can be realized by precisely one quiver from \mathcal{R}_{d}. This does not hold in higher dimensions. For example consider the following quivers:

These quivers are both tight with their canonical weights, and give isomorpic moduli, since they are both obtained after tightening:

6 Affine quotients

We need a result concerning representation spaces that we discuss for general dimension vectors. Consider the following situation. Let T be a (not necessarily full) subquiver of Q which is the disjoint union of trees $T=\coprod_{i=1}^{r} T^{i}$ (where by a tree we mean a quiver whose underlying graph
is a tree). Let α be a dimension vector taking the same value d_{i} on the vertices of each T^{i} $(i=1, \ldots, r)$. Let $\theta \in \mathbb{Z}^{Q_{0}}$ be a weight such that there exist positive integers $n_{a}\left(a \in T_{1}\right)$ with $\theta(v)=\sum_{a \in T_{1}: a^{+}=v} n_{a}-\sum_{a \in T_{1}: a^{-}=v} n_{a}$. The representation space $\operatorname{Rep}(Q, \alpha)$ contains the Zariski dense open subset

$$
U_{T}:=\left\{R \in \operatorname{Rep}(Q, \alpha) \mid \forall a \in T_{1}: \operatorname{det}(R(a)) \neq 0\right\} .
$$

Note that U_{T} is a principal affine open subset in $\operatorname{Rep}(Q, \alpha)$ given by the non-vanishing of the relative invariant $f: R \mapsto \prod_{a \in T_{1}} \operatorname{det}^{n_{a}}(R(a))$ of weight θ, hence U_{T} is contained in $\operatorname{Rep}(Q, \alpha)^{\theta-s s}$. Moreover, U_{T} is π-saturated with respect to the quotient morphism $\pi: \operatorname{Rep}(Q, \alpha)^{\theta-s s} \rightarrow$ $\mathcal{M}(Q, \alpha, \theta)$, hence π maps U_{T} onto an open subset $\pi\left(U_{T}\right) \cong U_{T} / / G L(\alpha)$ of $\mathcal{M}(Q, \alpha, \theta)$ (here for an affine $G L(\alpha)$-variety X we denote by $X / / G L(\alpha)$ the affine quotient, that is, the variety with coordinate ring the ring of invariants $\mathcal{O}(X)^{G L(\alpha)}$), see [22]. Denote by \hat{Q} the quiver obtained from Q by contracting each connected component T^{i} of T to a single vertex $t_{i}(i=1, \ldots, r)$. So $\hat{Q}_{0}=Q_{0} \backslash T_{0} \amalg\left\{t_{1}, \ldots, t_{r}\right\}$ and its arrow set can be identified with $Q_{1} \backslash T_{1}$, but if an end vertex of an arrow belongs to T^{i} in Q then viewed as an arrow in \hat{Q} the correspoding end vertex is t_{i} (in particular, an arrow in $Q_{1} \backslash T_{1}$ connecting two vertices of T^{i} becomes a loop at vertex t_{i}). Denote by $\hat{\alpha}$ the dimension vector obtained by contracting α accordingly, so $\hat{\alpha}\left(t_{i}\right)=d_{i}$ for $i=1, \ldots, r$ and $\hat{\alpha}(v)=\alpha(v)$ for $v \in \hat{Q}_{0} \backslash\left\{t_{1}, \ldots, t_{r}\right\}$. Sometimes we shall identify $G L(\hat{\alpha})$ with the subgroup of $G L(\alpha)$ consisting of the elements $g \in G L(\alpha)$ with the property that $g(v)=g(w)$ whenever v, w belong to the same component T^{i} of T. We have a $G L(\hat{\alpha})$-equivariant embedding

$$
\begin{equation*}
\iota: \operatorname{Rep}(\hat{Q}, \hat{\alpha}) \rightarrow \operatorname{Rep}(Q, \alpha) \tag{7}
\end{equation*}
$$

defined by $\iota(x)(a)=x(a)$ for $a \in \hat{Q}_{1}$ and $\iota(x)(a)$ the identity matrix for $a \in Q_{1} \backslash \hat{Q}_{1}$. Clearly $\operatorname{Im}(\iota) \subseteq \operatorname{Rep}(Q, \alpha)^{\theta-s s}$.

Proposition 6.1 (i) $U_{T} \cong G L(\alpha) \times_{G L(\hat{\alpha})} \operatorname{Rep}(\hat{Q}, \hat{\alpha})$ as affine $G L(\alpha)$-varieties.
(ii) The map ι induces an isomorphism $\bar{\iota}: \mathcal{M}(\hat{Q}, \hat{\alpha}, 0) \xrightarrow{\cong} \pi\left(U_{T}\right) \subseteq \mathcal{M}(Q, \alpha, \theta)$.

Proof. (i) Set $p:=\iota(0) \in \operatorname{Rep}(Q, \alpha)$. Clearly $G L(\hat{\alpha})$ is the stabilizer of p in $G L(\alpha)$ acting on $\operatorname{Rep}(Q, \alpha)$, hence the $G L(\alpha)$-orbit O of p is isomorphic to $G L(\alpha) / G L(\hat{\alpha})$ via the map sending the coset $g G L(\hat{\alpha})$ to $g \cdot p$. On the other hand O is the subset consisting of all those points $R \in \operatorname{Rep}(Q, \alpha)$ for which $\operatorname{det}(R(a)) \neq 0$ for $a \in T_{1}$ and $R(a)=0$ for all $a \notin T_{1}$. This can be shown by induction on the number of arrows of T, using the assumption that T is the disjoint union of trees. Recall also that the arrow set of \hat{Q} is identified with a subset $Q_{1} \backslash T_{1}$. This yields an obvious identification $U_{T}=\operatorname{Rep}(\hat{Q}, \hat{\alpha}) \times O$. Projection $\varphi: U_{T} \rightarrow O$ onto the second component is $G L(\alpha)$-equivariant by construction. Moreover, the fibre $\varphi^{-1}(p)=\iota(\operatorname{Rep}(\hat{Q}, \hat{\alpha})) \cong \operatorname{Rep}(\hat{Q}, \hat{\alpha})$ as a $\operatorname{Stab}_{G L(\alpha)}(p)=G L(\hat{\alpha})$-varieties. It is well known that this implies the isomorphism $U_{T} \cong$ $G L(\alpha) \times_{G L(\hat{\alpha})} \operatorname{Rep}(\hat{Q}, \hat{\alpha})$, see for example Lemma 5.17 in [5].
(ii) It follows from (i) that $U_{T} / / G L(\alpha) \cong \operatorname{Rep}(\hat{Q}, \hat{\alpha}) / / G L(\hat{\alpha})=\mathcal{M}(\hat{Q}, \hat{\alpha}, 0)$ by standard properties of associated fiber products. Furthermore, taking into account the proof of (i) we see $U_{T} / / G L(\alpha)=\pi\left(\varphi^{-1}(p)\right)=\pi(\iota(\operatorname{Rep}(\hat{Q}, \hat{\alpha}))$ where π is the quotient morphism (2).

Let us apply Proposition 6.1 in the toric case. It is well known that for a lattice point m in a lattice polyhedron ∇ there is an affine open toric subvariety U_{m} of X_{∇}, and X_{∇} is covered by these affine open subsets as m ranges over the set of vertices of ∇ (see Section 2.3 in [8]). For a toric quiver variety realized as $\operatorname{Im}(\rho)$ as in (4) and Proposition 3.3, this can be seen explicitly as follows: $U_{m_{i}}$ is the complement in $\operatorname{Im}(\rho)$ of the affine hyperplane $\left\{\left(x_{0}: \cdots: x_{d}\right) \mid x_{i}=0\right\} \subseteq \mathbb{P}^{d}$,
and for a general lattice point m in the quiver polyhedron, U_{m} is the intersection of finitely many $U_{m_{i}}$.

A subset S of Q_{0} is successor closed if for any $a \in Q_{1}$ with $a^{-} \in S$ we have $a^{+} \in S$. A subquiver Q^{\prime} of Q is θ-stable if $\theta\left(Q_{0}^{\prime}\right)=0$ and for any non-empty $S \subsetneq Q_{0}^{\prime}$ which is successor closed in Q^{\prime} we have that $\theta(S)>0$. The support of $x \in \mathbb{Z}^{Q_{1}}$ is the quiver with vertex set $\operatorname{supp}(x)_{0}:=Q_{0}$ and arrow set $\operatorname{supp}(x)_{1}:=\left\{a \in Q_{1} \mid x(a) \neq 0\right\}$. Now $m \in \nabla(Q, \theta)$ is a vertex if and only if the connected components of $\operatorname{supp}(m)$ are θ-stable subtrees of Q. On the other hand for each subquiver T of Q that is the disjoint union of θ-stable subtrees and satisfies $T_{0}=Q_{0}$ there is precisely one vertex $m \in \nabla(Q, \theta)$ such that $\operatorname{supp}(m)=T$ (see for example Corollary 8 in [4]). Given a vertex m of the polyhedron $\nabla(Q, \theta)$ denote by $\left(Q^{m}, \theta^{m}\right)$ the quiver and weight obtained by successively contracting the arrows in $\operatorname{supp}(m)$. Clearly θ^{m} is the zero weight. The following statement can be viewed as a stronger version for the toric case of the results [1] on the local quiver settings of a moduli space of quiver representations: the étale morphisms used for general dimension vectors in [1] can be replaced by isomorphisms in the toric case.

Theorem 6.2 For any vertex m of the quiver polyhedron $\nabla(Q, \theta)$ the affine open toric subvariety U_{m} in $\mathcal{M}(Q, \theta)$ is isomorphic to $\mathcal{M}\left(Q^{m}, 0\right)$. Moreover, $\iota: \operatorname{Rep}\left(Q^{m}\right) \rightarrow \operatorname{Rep}(Q)$ defined as in (7) induces an isomorphism $\bar{\iota}: \mathcal{M}\left(Q^{m}, 0\right) \xrightarrow{\cong} U_{m} \subseteq \mathcal{M}(Q, \theta)$.

Proof. This is a special case of Proposition 6.1 (ii).
Conversely, any affine toric quiver variety $\mathcal{M}\left(Q^{\prime}, 0\right)$ can be obtained as $U_{m} \subseteq \mathcal{M}(Q, \theta)$ for some projective toric quiver variety $\mathcal{M}(Q, \theta)$ and a vertex m of the quiver polytope $\nabla(Q, \theta)$. In fact we have a more general result, which is a refinement for the toric case of Theorem 2.2 in [10]:

Theorem 6.3 For any quiver polyhedron $\nabla(Q, \theta)$ with k vertices there exists a bipartite quiver \tilde{Q}, a weight $\theta^{\prime} \in \mathbb{Z}^{\tilde{Q}_{1}}$, and a set m_{1}, \ldots, m_{k} of vertices of the quiver polytope $\nabla\left(\tilde{Q}, \theta^{\prime}\right)$ such that the quasiprojective toric variety $\mathcal{M}(Q, \theta)$ is isomorphic to the open subvariety $\bigcup_{i=1}^{k} U_{m_{i}}$ of the projective toric quiver variety $\mathcal{M}\left(\tilde{Q}, \theta^{\prime}\right)$.

Proof. Double the quiver Q to get a bipartite quiver \tilde{Q} as follows: to each $v \underset{\sim}{\in} \in Q_{0}$ there corresponds a source v_{-}and a sink v_{+}in \tilde{Q}, for each $a \in Q_{1}$ there is an arrow in \tilde{Q} denoted by the same symbol a, such that if $a \in Q_{1}$ goes from v to w, then $a \in \tilde{Q}_{1}$ goes from v_{-}to w_{+}, and for each $v \in Q_{0}$ there is a new arrow $e_{v} \in \tilde{Q}_{1}$ from v_{-}to v_{+}. Denote by $\tilde{\theta} \in \mathbb{Z}^{\tilde{Q}_{0}}$ the weight $\tilde{\theta}\left(v_{-}\right)=0$, $\tilde{\theta}\left(v_{+}\right)=\theta(v)$, and set $\kappa \in \mathbb{Z}^{\tilde{Q}_{0}}$ with $\kappa\left(v_{-}\right)=-1$ and $\kappa\left(v_{+}\right)=1$ for all $v \in Q_{0}$.

Suppose that T is a θ-stable subtree in Q. Denote by \tilde{T} the subquiver of \tilde{Q} consisting of the arrows with the same label as the arrows of T, in addition to the arrows e_{v} for each $v \in T_{0}$. It is clear that \tilde{T} is a subtree of \tilde{Q}. We claim that \tilde{T} is $(\tilde{\theta}+d \kappa)$-stable for sufficiently large d. Obviously $(\tilde{\theta}+d \kappa)\left(\tilde{T}_{0}\right)=0$. Let \tilde{S} be a proper successor closed subset of \tilde{T}_{0} in \tilde{Q}. Denote by $S \subset T_{0}$ consisting of $v \in T_{0}$ with $v_{+} \in \tilde{S}$ (note that $v_{-} \in S$ implies $v_{+} \in S$, since $e_{v} \in \tilde{T}$). We have the equality $(\tilde{\theta}+d \kappa)(\tilde{S})=\theta(S)+\sum_{v^{+} \in \tilde{S}, v_{-} \notin \tilde{S}}(\theta(v)+d)$. If the second summand is the empty sum (i.e. $v_{+} \in \tilde{S}$ implies $v_{-} \in \tilde{S}$), then S is successor closed, hence $\theta(S)>0$ by assumption. Otherwise the sum is positive for sufficiently large d. This proves the claim. It follows that if d is sufficiently large, then for any vertex m of $\nabla(Q, \theta)$, setting $T:=\operatorname{supp}(m)$, there exists a vertex \tilde{m} of $\nabla(\tilde{Q}, \tilde{\theta}+d \kappa)$ with $\operatorname{supp}(\tilde{m})=\tilde{T}$.

Denote by $\mu: \operatorname{Rep}(Q) \rightarrow \operatorname{Rep}(\tilde{Q})$ the map defined by $\mu(x)\left(e_{v}\right)=1$ for each $v \in Q_{0}$, and $\mu(x)(a)=x(a)$ for all $a \in \tilde{Q}_{1}$. This is equivariant, where we identify $\left(\mathbb{C}^{\times}\right)^{Q_{0}}$ with the stabilizer of $\mu(0)$ in $\left(\mathbb{C}^{\times}\right)^{\tilde{Q}_{0}}$. The above considerations show that $\mu\left(\operatorname{Rep}(Q)^{\theta-s s}\right) \subseteq \operatorname{Rep}(Q)^{(\tilde{\theta}+d \kappa)-s s}$,
whence μ induces a morphism $\bar{\mu}: \mathcal{M}(Q, \theta) \rightarrow \mathcal{M}(\tilde{Q}, \tilde{\theta}+d \kappa)$. Restrict $\bar{\mu}$ to the affine open subset $U_{m} \subseteq \mathcal{M}(Q, \theta)$, and compose $\left.\bar{\mu}\right|_{U_{m}}$ with the isomorphism $\bar{\iota}: \mathcal{M}\left(Q^{m}, 0\right) \rightarrow U_{m} \subseteq \mathcal{M}(Q, \theta)$ from Theorem 6.2. By construction we see that $\left.\bar{\mu}\right|_{U^{m}} \circ \bar{\iota}$ is the isomorphism $\mathcal{M}\left(Q^{m}, 0\right) \rightarrow U_{\tilde{m}}$ of Theorem6.2. It follows that $\left.\bar{\mu}\right|_{U_{m}}: U_{m} \rightarrow U_{\tilde{m}}$ is an isomorphism. As m ranges over the vertices of $\nabla(Q, \theta)$, these isomorphisms glue together to the isomorphism $\bar{\mu}: \mathcal{M}(Q, \theta) \rightarrow \bigcup_{\tilde{m}} U_{\tilde{m}} \subseteq \mathcal{M}(\tilde{Q}, \tilde{\theta})$.

We note that similarly to Theorem 2.2 in [10], it is possible to embed $\mathcal{M}(Q, \theta)$ as an open subvariety into a projective variety $\mathcal{M}\left(\tilde{Q}, \theta^{\prime}\right)$, such that for any vertex m^{\prime} of $\nabla\left(\tilde{Q}, \theta^{\prime}\right)$ the affine open subvariety $U_{m^{\prime}} \subseteq \mathcal{M}\left(\tilde{Q}, \theta^{\prime}\right)$ is isomorphic to $U_{m} \subseteq \mathcal{M}(Q, \theta)$ for some vertex m of $\nabla(Q, \theta)$ (but of course typically $\nabla\left(\tilde{Q}, \theta^{\prime}\right)$ has more vertices than $\nabla(Q, \theta)$). In particular, a smooth variety $\mathcal{M}(Q, \theta)$ can be embedded into a smooth projective toric quiver variety $\nabla\left(\tilde{Q}, \theta^{\prime}\right)$, where \tilde{Q} is bipartite.

7 Classifying affine toric quiver varieties

In this section we deal with the zero weight. It is well known and easy to see (say by Remark 4.14) that Q is 0 -stable if and only if Q is strongly connected, that is, for any ordered pair $v, w \in Q_{0}$ there is an oriented path in Q from v to w.

Proposition 7.1 Let Q be a prime quiver with $\chi(Q) \geq 2$, such that $(Q, 0)$ is tight.
(i) For any $v \in Q_{0}$ we have $\left|\left\{a \in Q_{1} \mid a^{-}=v\right\}\right| \geq 2$ and $\left|\left\{a \in Q_{1} \mid a^{+}=v\right\}\right| \geq 2$.
(ii) We have $\left|Q_{0}\right| \leq \chi(Q)-1$ (and consequently $\left|Q_{1}\right|=\left|Q_{0}\right|+\chi(Q)-1 \leq 2(\chi(Q)-1)$.

Proof. (i) Suppose $v \in Q_{0}$ and $a \in Q_{1}$ is the only arrow with $a^{-}=v$. Then the equations (5) imply that for any $x \in \nabla(Q, 0)$ we have $x(a)=\sum_{b^{+}=v} x(b)$, so by Lemma 4.4 the arrow a is contractable. The case when a is the only arrow with $a^{+}=v$ is similar.
(ii) By (i) the valency of any vertex is at least 4 , hence similar considerations as in the proof of Proposition 4.15 yield the desired bound on $\left|Q_{0}\right|$.

Denote by $\mathcal{R}_{d}^{\prime \prime}$ the set of prime quivers Q with $\chi(Q)=d$ and $(Q, 0)$ tight. Then $\mathcal{R}_{1}^{\prime \prime}$ consists of the one-vertex quiver with a single loop, $\mathcal{R}_{2}^{\prime \prime}$ is empty, $\mathcal{R}_{3}^{\prime \prime}$ consists of the quiver with 2 vertices and $2-2$ arrows in both directons. $\mathcal{R}_{4}^{\prime \prime}$ consists of three quivers:

Example 7.2 Consider the quiver Q with d vertices and $2 d$ arrows $a_{1}, \ldots, a_{d}, b_{1}, \ldots, b_{d}$, where $a_{1} \ldots a_{d}$ is a primitive cycle and b_{i} is the obtained by reversing a_{i} for $i=1, \ldots, d$. Then $\chi(Q)=$ $d+1$, and after the removal of any of the arrows of Q we are left with a strongly connected quiver. So $(Q, 0)$ is tight, showing that the bound in Proposition 7.1 (ii) is sharp. The coordinate ring $\mathcal{O}(\mathcal{M}(Q, 0))$ is the subalgebra of $\mathcal{O}(\operatorname{Rep}(Q))$ generated by $\left\{x\left(a_{i}\right) x\left(b_{i}\right), x\left(a_{1}\right) \cdots x\left(a_{d}\right), x\left(b_{1}\right) \cdots x\left(b_{d}\right) \mid\right.$ $i=1, \ldots, d\}$, so it is the factor ring of the $(d+2)$-variable polynomial ring $\mathbb{C}\left[t_{1}, \ldots, t_{d+2}\right]$ modulo the ideal generated by $t_{1} \cdots t_{d}-t_{d+1} t_{d+2}$.

8 Presentations of semigroup algebras

Let Q be a quiver with no oriented cycles, $\theta \in \mathbb{Z}^{Q_{0}}$ a weight. For $a \in Q_{1}$ denote by $x(a): R \mapsto$ $R(a)$ the corresponding coordinate function on $\operatorname{Rep}(Q)$, and for a lattice point $m \in \nabla(Q, \theta)$ set $x^{m}:=\prod_{a \in Q_{1}} x(a)^{m(a)}$. The homogeneous coordinate ring $\mathcal{A}(Q, \theta)$ of $\mathcal{M}(Q, \theta)$ is the subalgebra of $\mathcal{O}(\operatorname{Rep}(Q))$ generated by x^{m} where m ranges over $\nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$. In Section 9 we shall study the ideal of relations among the generators x^{m}. This leads us to the context of presentations of polytopal semigroup algebras (cf. section 2.2 in [6]), since $\mathcal{A}(Q, \theta)$ is naturally identified with the semigroup algebra $\mathbb{C}[S(Q, \theta)]$, where

$$
S(Q, \theta):=\coprod_{k=0}^{\infty} \nabla(Q, k \theta) \cap \mathbb{Z}^{Q_{1}}
$$

This is a submonoid of $\mathbb{Z}^{Q_{1}}$. By normality of the polytope $\nabla(Q, \theta)$ it is the same as the submonoid of $\mathbb{N}_{0}^{Q_{1}}$ generated by $\nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$.

First we formulate a statement (Lemma 8.2, a version of it was introduced in [16]) in a slightly more general situation than what is needed here. Let S be any finitely generated commutative monoid (written additively) with non-zero generators s_{1}, \ldots, s_{d}, and denote by $\mathbb{Z}[S]$ the corresponding semigroup algebra over \mathbb{Z} : its elements are formal integral linear combinations of the symbols $\left\{x^{s} \mid s \in S\right\}$, with multiplication given by $x^{s} \cdot x^{s^{\prime}}=x^{s+s^{\prime}}$. Write $R:=\mathbb{Z}\left[t_{1}, \ldots, t_{d}\right]$ for the d-variable polynomial ring over the integers, and $\phi: R \rightarrow \mathbb{Z}[S]$ the ring surjection $t_{i} \mapsto x^{s_{i}}$. Set $I:=\operatorname{ker}(\phi)$. It is well known and easy to see that

$$
\begin{equation*}
I=\operatorname{ker}(\phi)=\operatorname{Span}_{\mathbb{Z}}\left\{t^{a}-t^{b} \mid \sum_{i=1}^{d} a_{i} s_{i}=\sum_{j=1}^{d} b_{j} s_{j} \in S\right\} \tag{8}
\end{equation*}
$$

where for $a=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}_{0}^{d}$ we write $t^{a}=t_{1}^{a_{1}} \ldots t_{d}^{a_{d}}$.
Introduce a binary relation on the set of monomials in R : we write $t^{a} \sim t^{b}$ if $t^{a}-t^{b} \in R_{+} I$, where R_{+}is the ideal in R consisting of the polynomials with zero constant term. Obviously \sim is an equivalence relation. Let Λ be a complete set of representatives of the equivalence classes. We have $\Lambda=\coprod_{s \in S} \Lambda_{s}$, where for $s \in S$ set $\Lambda_{s}:=\left\{t^{a} \in \Lambda \mid \sum a_{i} s_{i}=s\right\}$. For the $s \in S$ with $\left|\Lambda_{s}\right|>1$, set $\mathcal{G}_{s}:=\left\{t^{a_{1}}-t^{a_{i}} \mid i=2, \ldots, p\right\}$, where $t^{a_{1}}, \ldots, t^{a_{p}}$ is an arbitrarily chosen ordering of the elements of Λ_{s}.

Lemma 8.1 Suppose that $S=\coprod_{k=0}^{\infty} S_{k}$ is graded (i.e. $S_{k} S_{l} \subseteq S_{k+l}$) and $S_{0}=\{0\}$ (i.e. the generators s_{1}, \ldots, s_{d} have positive degree). Then $\coprod_{s \in S:\left|\Lambda_{s}\right|>1} \mathcal{G}_{s}$ is a minimal homogeneous generating system of the ideal I, where the grading on $\mathbb{Z}\left[t_{1}, \ldots, t_{d}\right]$ is defined by setting the degree of t_{i} to be equal to the degree of s_{i}. In particular, I is minimally generated by $\sum_{s \in S}\left(\left|\Lambda_{s}\right|-1\right)$ elements.

Proof. It is easy to see that a \mathbb{Z}-module direct complement of $R_{+} I$ in R is $\sum_{t^{a} \in \Lambda} \mathbb{Z} t^{a}$. Thus the statement follows by the graded Nakayama Lemma.

Next for a cancellative commutative monoid S we give a more explicit description of the relation \sim (a special case occurs in [16]). For some elements $s, v \in S$ we say that s divides v and write $s \mid v$ if there exists an element $w \in S$ with $v=s+w$. For any $s \in S$ introduce a binary relation \sim_{s} on the subset of $\left\{s_{1}, \ldots, s_{d}\right\}$ consisting of the generators s_{i} with $s_{i} \mid s$ as follows:

$$
\begin{align*}
& s_{i} \sim_{s} s_{j} \text { if } i=j \text { or there exist } u_{1}, \ldots, u_{k} \in\left\{s_{1}, \ldots, s_{d}\right\} \tag{9}\\
& \quad \text { with } u_{1}=s_{i}, u_{k}=s_{j}, u_{l} u_{l+1} \mid s \text { for } l=1, \ldots, k-1
\end{align*}
$$

Obviously \sim_{s} is an equivalence relation, and $s_{i} \sim_{s} s_{j}$ implies $s_{i} \sim_{t} s_{j}$ for any $s \mid t \in S$.
Lemma 8.2 Let S be a cancellative commutative monoid generated by s_{1}, \ldots, s_{d}. Take $t^{a}-t^{b} \in I$, so $s:=\sum_{i=1}^{d} a_{i} s_{i}=\sum_{j=1}^{d} b_{j} s_{j} \in S$. Then the following are equivalent:
(i) $t^{a}-t^{b} \in R_{+} I$;
(ii) For some $t_{i} \mid t^{a}$ and $t_{j} \mid t^{b}$ we have $s_{i} \sim_{s} s_{j}$;
(iii) For all $t_{i} \mid t^{a}$ and $t_{j} \mid t^{b}$ we have $s_{i} \sim_{s} s_{j}$.

Proof. (iii) trivially implies (ii). Moreover, if t_{i}, t_{j} are two different variables occuring in t^{a} with $\sum a_{i} s_{i}=s$, then $s_{i} s_{j} \mid s$, hence taking $k=2$ and $u_{1}=s_{1}, u_{2}=s_{2}$ in (9) we see that $s_{i} \sim_{s} s_{j}$. This shows that (ii) implies (iii).

To show that (ii) implies (i) assume that for some $t_{i} \mid t^{a}$ and $t_{j} \mid t^{b}$ we have $s_{i} \sim_{s} s_{j}$. If $s_{i}=s_{j}$, then t^{a} and t^{b} have a common variable, say t_{1}, so $t^{a}=t_{1} t^{a^{\prime}}$ and $t^{b}=t_{1} t^{t^{\prime}}$ for some $a^{\prime}, b^{\prime} \in \mathbb{N}_{0}^{d}$. We have

$$
x^{s_{1}} \phi\left(t^{a^{\prime}}-t^{b^{\prime}}\right)=\phi\left(t_{1}\left(t^{a^{\prime}}-t^{b^{\prime}}\right)\right)=\phi\left(t^{a}-t^{b}\right)=0
$$

hence $x^{s_{1}} \phi\left(t^{a^{\prime}}\right)=x^{s_{1}} \phi\left(t^{b^{\prime}}\right)$. Since S is cancellative, we conclude $\phi\left(t^{a^{\prime}}\right)=\phi\left(t^{b^{\prime}}\right)$, thus $t^{a^{\prime}}-t^{b^{\prime}} \in I$, implying in turn that $t^{a}-t^{b}=t_{1}\left(t^{a^{\prime}}-t^{b^{\prime}}\right) \in R_{+} I$. If $s_{i} \neq s_{j}$, then there exist $z_{1}, \ldots, z_{k} \in$ $\left\{t_{1}, \ldots, t_{d}\right\}$ such that $u_{l} \in S$ with $\phi\left(z_{l}\right)=x^{u_{l}}$ satisfy (9). Then there exist monomials (possibly empty) w_{0}, \ldots, w_{k} in the variables t_{1}, \ldots, t_{d} such that

$$
z_{1} w_{0}=t^{a}, \quad \phi\left(z_{l} z_{l+1} w_{l}\right)=x^{s} \quad(l=1, \ldots, k-1), \quad z_{k} w_{k}=t^{b} .
$$

It follows that

$$
\begin{equation*}
t^{a}-t^{b}=z_{1}\left(w_{0}-z_{2} w_{1}\right)+\sum_{l=2}^{k-1} z_{l}\left(z_{l-1} w_{l-1}-z_{l+1} w_{l}\right)+z_{k}\left(z_{k-1} w_{k-1}-w_{k}\right) \tag{10}
\end{equation*}
$$

Note that $\phi\left(z_{1} w_{0}-z_{1} z_{2} w_{1}\right)=x^{s}-x^{s}=0$. Hence $z_{1}\left(w_{0}-z_{2} w_{1}\right) \in I$. Since S is cancellative, we conclude that $z_{1}\left(w_{0}-z_{2} w_{1}\right) \in R_{+} I$. Similarly all the other summands on the right hand side of (10) belong to $R_{+} I$, hence $t^{a}-t^{b} \in R_{+} I$.

Finally we show that (i) implies (ii). Suppose that $t^{a}-t^{b} \in R_{+} I$. By (8) we have

$$
\begin{equation*}
t^{a}-t^{b}=\sum_{l=1}^{k} t_{i_{l}}\left(t^{a_{l}}-t^{b_{l}}\right) \text { where } t^{a_{l}}-t^{b_{l}} \in I \text { and } i_{l} \in\{1, \ldots, d\} \tag{11}
\end{equation*}
$$

After a possible renumbering we may assume that

$$
\begin{equation*}
t_{i_{1}} t^{a_{1}}=t^{a}, t_{i_{l}} t^{b_{l}}=t_{i_{l+1}}{ }^{a_{l+1}} \text { for } l=1, \ldots, k-1, \text { and } t_{i_{k}} t^{b_{k}}=t^{b} . \tag{12}
\end{equation*}
$$

Observe that if $t_{i_{l}}=t_{i_{l+1}}$ for some $l \in\{1, \ldots, k-1\}$, then necessarily $t^{b_{l}}=t^{a_{l+1}}$, hence $t_{i_{l}}\left(t^{a_{l}}-\right.$ $\left.t^{b_{l}}\right)+t_{i_{l+1}}\left(t^{a_{l+1}}-t^{b_{l+1}}\right)=t_{i_{l}}\left(t^{a_{l}}-t^{b_{l+1}}\right)$. Thus in (11) we may replace the sum of the l th and $(l+1)$ st terms by a single summand $t_{i_{l}}\left(t^{a_{l}}-t^{b_{l+1}}\right)$. In other words, we may achieve that in (11) we have $t_{i_{l}} \neq t_{i_{l+1}}$ for each $l=1, \ldots, k-1$, in addition to (121). If $k=1$, then t^{a} and t^{b} have a common variable and (ii) obviously holds. From now on assume that $k \geq 2$. From $t_{i_{l}} t^{a_{l}}=t_{i_{l+1}} t^{b_{l}}$ and the fact that $t_{i_{l}}$ and $t_{i_{l+1}}$ are different variables in $\mathbb{Z}\left[t_{1}, \ldots, t_{d}\right]$ we deduce that $t^{a_{l}}=t_{i_{l+1}} t^{c_{l}}$ for some $c_{l} \in \mathbb{N}_{0}^{d}$, implying that $x^{s}=\phi\left(t_{i_{l}} t^{a_{l}}\right)=\phi\left(t_{i_{l}} t_{i_{l+1}} t^{c_{l}}\right)=\phi\left(t_{i_{l}}\right) \phi\left(t_{i_{l+1}}\right) \phi\left(t^{c_{l}}\right)$. Thus $u_{l}:=s_{i_{l}}$ satisfy (9) and hence $s_{i_{1}} \sim_{s} s_{i_{k}}$.

Corollary 8.3 Suppose that $S=\coprod_{k=0}^{\infty} S_{k}$ is a finitely generated graded cancellative commutative monoid generated by $S_{1}=\left\{s_{1}, \ldots, s_{d}\right\}$. The kernel of $\phi: \mathbb{Z}\left[t_{1}, \ldots, t_{d}\right] \rightarrow \mathbb{Z}[S], t_{i} \mapsto x^{s_{i}}$ is generated by homogeneous elements of degree at most r (with respect to the standard grading on $\mathbb{Z}\left[t_{a}, \ldots, t_{d}\right]$) if and only if for all $k>r$ and $s \in S_{k}$, the elements in S_{1} that divide s in the monoid S form a single equivalence class with respect to \sim_{s}.

Proof. This is an immediate consequence of Lemma 8.1 and Lemma 8.2.

9 Equations of toric quiver varieties

Corollary 8.3 applies for the monoid $S(Q, \theta)$, where the grading is given by $S(Q, \theta)_{k}=\nabla(Q, k \theta) \cap$ $\mathbb{Z}^{Q_{1}}$. Recall that we may identify the complex semigroup algebra $\mathbb{C}[S(Q, \theta)]$ and the homogeneous coordinate ring $\mathcal{A}(Q, \theta)$ by identifying the basis element x^{m} in the semigroup algebra to the element of $\mathcal{A}(Q, \theta)$ denoted by the same symbol x^{m}. Introduce a variable t_{m} for each $m \in$ $\nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$, take the polynomial ring

$$
F:=\mathbb{C}\left[t_{m} \mid m \in \nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}\right]
$$

and consider the surjection

$$
\begin{equation*}
\varphi: F \rightarrow \mathcal{A}(Q, \theta), \quad t_{m} \mapsto x^{m} \tag{13}
\end{equation*}
$$

The kernel $\operatorname{ker}(\varphi)$ is a homogeneous ideal in the polynomial ring F (endowed with the standard grading) called the ideal of relations among the x^{m}, for which Corollary 8.3 applies. Note also that in the monoid $S(Q, \theta)$ we have that $m \mid n$ for some m, n if and only if $m \leq n$, where the partial ordering \leq on $\mathbb{Z}^{Q_{1}}$ is defined by setting $m \leq n$ if $m(a) \leq n(a)$ for all $a \in Q_{1}$. The following statement is a special case of the main result (Theorem 2.1) of [25]:

Proposition 9.1 Let $Q=K(n, n)$ be the complete bipartite quiver with n sources and n sinks, with a single arrow from each source to each sink. Let θ be the weight with $\theta(v)=-1$ for each source and $\theta(v)=1$ for each sink, and $\varphi: F \rightarrow \mathcal{A}(Q, \theta)$ given in (13). Then the ideal $\operatorname{ker}(\varphi)$ is generated by elements of degree at most 3 .

For sake of completeness we present a proof. The argument below is based on the key idea of [25], but we use a different language and obtain a very short derivation of the result. For this quiver and weight generators of $\mathcal{A}(Q, \theta)$ correspond to perfect matchings of the underlying graph of $K(n, n)$. Recall that a perfect matching of $K(n, n)$ is a set of arrows $\left\{a_{1}, \ldots, a_{n}\right\}$ such that for each source v there is a unique i such that $a_{i}^{-}=v$ and for each $\operatorname{sink} w$ there is a unique j such that $a_{j}^{+}=w$. Now $\nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$ in this case consists of the characteristic functions of perfect matchings of $K(n, n)$. By a near perfect matching we mean an incomplete matching that covers all but 2 vertices (1 sink and 1 source). Abusing language we shall freely identify a (near) perfect matching and its characteristic function (an element of $\mathbb{N}_{0}^{Q_{1}}$). First we show the following lemma:

Lemma 9.2 Let θ be the weight for $Q=K(n, n)$ as above, and $m_{1}+\cdots+m_{k}=q_{1}+\cdots+q_{k}$ for some $k \geq 4$ and $m_{i}, q_{j} \in \nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$. Furthermore let us assume that for some $0 \leq l \leq n-2$ there is a near perfect matching p such that $p \leq m_{1}+m_{2}$ and p contains l arrows from q_{1}. Then there is a $j \geq 3$ and $m_{1}^{\prime}, m_{2}^{\prime}, m_{j}^{\prime} \in \nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$ and a near perfect matching p^{\prime} such that $m_{1}+m_{2}+m_{j}=m_{1}^{\prime}+m_{2}^{\prime}+m_{j}^{\prime}, p^{\prime} \leq m_{1}^{\prime}+m_{2}^{\prime}$ and p^{\prime} contains $l+1$ arrows from q_{1}.

Proof. Let v_{1}, \ldots, v_{n} be the sources and w_{1}, \ldots, w_{n} the sinks of Q, and let us assume that p covers all vertices but v_{1} and w_{1}. Let a be the arrow incident to v_{1} in q_{1}. If a is contained in $m_{1}+m_{2}$ then pick an arbitrary $j \geq 3$, otherwise take j to be such that m_{j} contains a. We can obtain a near perfect matching $p^{\prime}<m_{1}+m_{2}+m_{j}$ that intersects q_{1} in $l+1$ arrows in the following way: if a connects v_{1} and w_{1} we add a to p and remove one arrow from it that was not contained in q_{1} (this is possible due to $l \leq n-2$); if a connects v_{1} and w_{i} for some $i \neq 1$ then we add a to p and remove the arrow from p which was incident to w_{i} (this arrow is not contained in q_{1}). Set $r:=m_{1}+m_{2}+m_{j}-p^{\prime} \in \mathbb{N}_{0}^{Q_{1}}$, and denote by S the subquiver of $K(n, n)$ with $S_{0}=Q_{0}$ and $S_{1}=\left\{c \in Q_{1} \mid r(c) \neq 0\right\}$. We have $S_{0}=S_{0}^{-} \amalg S_{0}^{+}$where S_{0}^{-}denotes the set of sources and S_{0}^{+}denotes the set of sinks. For a vertex $v \in S_{0} \operatorname{set}_{\operatorname{deg}_{r}(v)}\left(=\sum_{c \in S_{1}}|r(c)|\right.$. We have that $\operatorname{deg}_{r}(v)=3$ for exactly one source and for exactly one sink, and $\operatorname{deg}_{r}(v)=2$ for all the remaining vertices of S. Now let A be an arbitrary subset of S_{0}^{-}, and denote by B the subset of S_{0}^{+}consisting of the sinks that are connected by an arrow in S to a vertex in A. We have the inequality $\sum_{v \in A} \operatorname{deg}_{r}(v) \leq \sum_{w \in B} \operatorname{deg}_{r}(w)$. Since on both sides of this inequality the summands are 2 or 3 , and 3 can occur at most once on each side, we conclude that $|B| \geq|A|$. Applying the König-Hall Theorem (cf. Theorem 16.7 in [23]) to S we conclude that it contains a perfect matching. Denote the characteristic vector of this perfect matching by m_{j}^{\prime}. Take perfect matchings m_{1}^{\prime} and m_{2}^{\prime} of S with $m_{1}+m_{2}+m_{j}-m_{j}^{\prime}=m_{1}^{\prime}+m_{2}^{\prime}$ (note that $m_{1}^{\prime}, m_{2}^{\prime}$ exist by normality of the polytope $\nabla(Q, \theta)$, which in this case can be seen as an imediate consequence of the König-Hall Theorem). By construction we have $m_{1}+m_{2}+m_{j}=m_{1}^{\prime}+m_{2}^{\prime}+m_{j}^{\prime}, p^{\prime} \leq m_{1}^{\prime}+m_{2}^{\prime}$, and p^{\prime} has $l+1$ common arrows with q_{1}.

Proof of Proposition 9.1 By Corollary 8.3 it is sufficient to show that if $s=m_{1}+\cdots+m_{k}=$ $q_{1}+\cdots+q_{k}$ where $m_{i}, q_{j} \in \nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$ and $k \geq 4$, then the m_{i}, q_{j} all belong to the same equivalence class with respect to \sim_{s}. Note that since $k \geq 4$, the elements $m_{1}^{\prime}, m_{2}^{\prime}, m_{j}^{\prime}$ from the statement of Lemma 9.2 belong to the same equivalence class with respect to \sim_{s} as m_{1}, \ldots, m_{k}. Hence repeatedly applying Lemma 9.2 we may assume that there is a near perfect matching $p \leq m_{1}+m_{2}$ such that p and q_{1} have $n-1$ common arrows. The only arrow of q_{1} not belonging to p belongs to some m_{j}, hence after a possible renumbering of m_{3}, \ldots, m_{k} we may assume that $q_{1} \leq m_{1}+m_{2}+m_{3}$. It follows that $q_{1} \sim_{s} m_{4}$, implying in turn that the m_{i}, q_{j} all belong to the same quivalence class with respect to \sim_{s}.

Now we are in position to state and prove the main result of this section (this was stated in [20] as well, but was withdrawn later, see [21]):

Theorem 9.3 Let Q be a quiver with no oriented cycles, $\theta \in \mathbb{Z}^{Q_{1}}$ a weight, and φ the \mathbb{C}-algebra surjection given in (13). Then the ideal $\operatorname{ker}(\varphi)$ is generated by elements of degree at most 3 .

Proof. By Proposition 4.21 and the double quiver construction (cf. the proof of Theorem 6.3) it is sufficient to deal with the case when Q is bipartite and $\nabla(Q, \theta)$ is non-empty. This implies that $\theta(v) \leq 0$ for each source vertex v and $\theta(w) \geq 0$ for each sink vertex w. Note that if $\theta(v)=0$ for some vertex $v \in Q_{0}$, then omitting v and the arrows adjacent to v we get a quiver Q^{\prime} such that the lattice polytope $\nabla(Q, \theta)$ is integral-affinely equivalent to $\nabla\left(Q^{\prime},\left.\theta\right|_{Q_{0}^{\prime}}\right)$, hence we may assume that $\theta(v) \neq 0$ for each $v \in Q_{0}$. We shall apply induction on $\sum_{v \in Q_{0}}(|\theta(v)|-1)$.

The induction starts with the case when $\sum_{v \in Q_{0}}(|\theta(v)|-1)=0$, in other words, $\theta(v)=-1$ for each source v and $\theta(w)=1$ for each sink w. This forces that the number of sources equals to the number of sinks in Q. The case when Q is the complete bipartite quiver $K(n, n)$ having n sinks and n sources, and each source is connected to each sink by a single arrow is covered by Proposition 9.1 . Suppose next that Q is a subquiver of $K(n, n)$ having a relative invariant of weight θ (i.e. $K(n, n)$
has a perfect matching all of whose arrows belong to Q). The lattice polytope $\nabla(Q, \theta)$ can be identified with a subset of $\nabla(K(n, n), \theta)$: think of $m \in \mathbb{Z}^{Q_{1}}$ as $\tilde{m} \in \mathbb{Z}^{K(n, n)_{1}}$ where $\tilde{m}(a)=0$ for $a \in K(n, n)_{1} \backslash Q_{1}$ and $\tilde{m}(a)=m(a)$ for $a \in Q_{1} \subseteq K(n, n)_{1}$. The surjection $\tilde{\varphi}: \mathbb{C}\left[t_{m} \mid m \in\right.$ $\nabla(K(n, n), \theta)] \rightarrow \mathcal{A}(K(n, n), \theta)$ restricts to $\varphi: \mathbb{C}\left[t_{m} \mid m \in \nabla(Q, \theta)\right] \rightarrow \mathcal{A}(Q, \theta)$. Denote by π the surjection of polynomial rings that sends to zero the variables t_{m} with $m \notin \nabla(Q, \theta)$. Then π maps the ideal $\operatorname{ker}(\tilde{\varphi})$ onto $\operatorname{ker}(\varphi)$, consequently generators of $\operatorname{ker}(\tilde{\varphi})$ are mapped onto generators of $\operatorname{ker}(\varphi)$. Since we know already that the first ideal is generated by elements of degree at most 3 , the same holds for $\operatorname{ker}(\varphi)$. The case when Q is an arbitrary bipartite quiver with n sources and n sinks having possibly multiple arrows, and $\theta(v)=-1$ for each source v and $\theta(w)=1$ for each sink w follows from the above case by a repeated application of Proposition 9.4 below.

Assume next that $\sum_{v \in Q_{0}}(|\theta(v)|-1) \geq 1$, so there exists a vertex $w \in Q_{0}$ with $|\theta(w)|>1$. By symmetry we may assume that w is a sink, so $\theta(w)>1$. Construct a new quiver Q^{\prime} as follows: add a new vertex w^{\prime} to Q_{0}, for each arrow b with $b^{+}=w$ add an extra arrow b^{\prime} with $\left(b^{\prime}\right)^{+}=w^{\prime}$ and $\left(b^{\prime}\right)^{-}=b^{-}$, and consider the weight θ^{\prime} with $\theta^{\prime}\left(w^{\prime}\right)=1, \theta^{\prime}(w)=\theta(w)-1$, and $\theta^{\prime}(v)=\theta(v)$ for all other vertices v. By Corollary 8.3 it is sufficient to show that if

$$
m_{1}+\cdots+m_{k}=n_{1}+\cdots+n_{k}=s \in S:=S(Q, \theta)
$$

for some $k \geq 4$ and $m_{1}, \ldots, m_{k}, n_{1}, \ldots, n_{k} \in \nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$, then $m_{i} \sim_{s} n_{j}$ for some (and hence all) i, j. Set $S^{\prime}:=S\left(Q^{\prime}, \theta^{\prime}\right)$, and consider the semigroup homomorphism $\pi: S^{\prime} \rightarrow S$ given by

$$
\pi\left(m^{\prime}\right)(a)= \begin{cases}m^{\prime}(a)+m^{\prime}\left(a^{\prime}\right) & \text { if } a^{+}=w ; \\ m^{\prime}(a) & \text { if } a^{+} \neq w\end{cases}
$$

Take an arrow α with $\alpha^{+}=w$ and $s(\alpha)>0$. After a possible renumbering we may assume that $m_{1}(\alpha)>0$ and $n_{1}(\alpha)>0$. Define $m_{1}^{\prime} \in \mathbb{N}_{0}^{Q_{1}^{\prime}}$ as $m_{1}^{\prime}(\alpha)=m_{1}(\alpha)-1, m_{1}^{\prime}\left(\alpha^{\prime}\right)=1$, and $m_{1}^{\prime}(a)=m_{1}(a)$ for all other arrows $a \in Q_{1}^{\prime}$. Similarly define $n_{1}^{\prime} \in \mathbb{N}_{0}^{Q_{1}^{\prime}}$ as $n_{1}^{\prime}(\alpha)=n_{1}(\alpha)-1$, $n_{1}^{\prime}\left(\alpha^{\prime}\right)=1$, and $n_{1}^{\prime}(a)=n_{1}(a)$ for all other arrows $a \in Q_{1}^{\prime}$. Clearly $\pi\left(m_{1}^{\prime}\right)=m_{1}, \pi\left(n_{1}^{\prime}\right)=n_{1}$. Now we construct $s^{\prime} \in S^{\prime}$ with $\pi\left(s^{\prime}\right)=s, s^{\prime}-m_{1}^{\prime} \in \mathbb{N}_{0}^{Q_{1}^{\prime}}$ and $s^{\prime}-n_{1}^{\prime} \in \mathbb{N}_{0}^{Q_{1}^{\prime}}$ (thus m_{1}^{\prime} and n_{1}^{\prime} divide s^{\prime} in $\left.S^{\prime}\right)$. Note that $\sum_{a^{+}=w} s(a)=k \theta(w)$ and $\sum_{a^{+}=w} \max \left\{m_{1}(a), n_{1}(a)\right\}<\sum_{a^{+}=w}\left(m_{1}(a)+\right.$ $n_{1}(a)$) $=2 \theta(w)$ (since $m_{1}(\alpha)>0$ and $n_{1}(\alpha)>0$. The inequalities $\theta(w) \geq 2$ and $k \geq 3$ imply that $\sum_{a^{+}=w}\left(s(a)-\max \left\{m_{1}(a), n_{1}(a)\right\}\right) \geq k$. Consequently there exist non-negative integers $\left\{t(a) \mid a^{+}=w\right\}$ such that $\sum_{a^{+}=w} t(a)=\left(\sum_{a^{+}=w} s(a)\right)-k, s(a) \geq t(a) \geq \max \left\{m_{1}(a), n_{1}(a)\right\}$ for all $a \neq \alpha$ with $a^{+}=w$, and $s(\alpha)-1 \geq t(\alpha) \geq \max \left\{m_{1}(\alpha), n_{1}(\alpha)\right\}-1$. Consider $s^{\prime} \in \mathbb{Z}^{Q_{1}^{\prime}}$ given by $s^{\prime}\left(a^{\prime}\right)=s(a)-t(a)$ and $s^{\prime}(a)=t(a)$ for $a \in Q_{1}$ with $a^{+}=w$ and $s^{\prime}(b)=s(b)$ for all other $b \in Q_{1}^{\prime}$. By construction s^{\prime} has the desired properties, and so there exist $m_{i}^{\prime}, n_{j}^{\prime} \in \nabla\left(Q^{\prime}, \theta^{\prime}\right)$ with $s^{\prime}=m_{1}^{\prime}+\cdots+m_{k}^{\prime}=n_{1}^{\prime}+\cdots+n_{k}^{\prime}$. Since $\sum_{v \in Q_{0}^{\prime}}\left(\left|\theta^{\prime}(v)\right|-1\right)$ is one less than $\sum_{v \in Q_{0}}(|\theta(v)|-1)$, by the induction hypothesis we have $m_{1}^{\prime} \sim_{s^{\prime}} n_{1}^{\prime}$. It is clear that $a \sim_{t} b$ implies $\pi(a) \sim_{\pi(t)} \pi(b)$, so we deduce $m_{1} \sim_{s} n_{1}$. As we pointed out before, this shows by Corollary 8.3 that $\operatorname{ker}(\varphi)$ is generated by elements of degree at most 3 .

The above proof refered to a general recipe to derive a minimal generating system of $\operatorname{ker}(\varphi)$ from a minimal generating system for the quiver obtained by collapsing multiple arrows to a single arrow. Let us consider the following situation: let Q be a quiver with no oriented cycles, $\alpha_{1}, \alpha_{2} \in Q_{1}$ with $\alpha_{1}^{-}=\alpha_{2}^{-}$and $\alpha_{1}^{+}=\alpha_{2}^{+}$. Denote by Q^{\prime} the quiver obtained from Q by collapsing the α_{i} to a single arrow α. Take a weight $\theta \in \mathbb{Z}^{Q_{0}}=\mathbb{Z}^{Q_{0}^{\prime}}$. The map $\pi: \nabla(Q, \theta) \rightarrow \nabla\left(Q^{\prime}, \theta\right)$ mapping $m \mapsto m^{\prime}$ with $m^{\prime}(\alpha)=m\left(\alpha_{1}\right)+m\left(\alpha_{2}\right)$ and $m^{\prime}(\beta)=m(\beta)$ for all $\beta \in Q_{1}^{\prime} \backslash\{\alpha\}=$ $Q_{1} \backslash\left\{\alpha_{1}, \alpha_{2}\right\}$ induces a surjection from the monoid $S:=S(Q, \theta)$ onto the monoid $S^{\prime}:=S\left(Q^{\prime}, \theta^{\prime}\right)$.

This extends to a surjection of semigroup algebras $\pi: \mathbb{C}[S] \rightarrow \mathbb{C}\left[S^{\prime}\right]$, which are identified with $\mathcal{A}(Q, \theta)$ and $\mathcal{A}\left(Q^{\prime}, \theta\right)$, respectively. Keep the notation π for the induced \mathbb{C}-algebra surjection $\mathcal{A}(Q, \theta) \rightarrow \mathcal{A}\left(Q^{\prime}, \theta\right)$. We have the commutative diagram of \mathbb{C}-algebra surjections

$$
\begin{array}{rllc}
F=\mathbb{C}\left[t_{m} \mid m \in \nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}\right] & \xrightarrow{\varphi} & \mathcal{A}(Q, \theta) \\
& \downarrow \pi & & \downarrow \pi \\
F^{\prime}=\mathbb{C}\left[t_{m^{\prime}} \mid m^{\prime} \in \nabla\left(Q^{\prime}, \theta\right) \cap \mathbb{Z}^{Q_{1}^{\prime}}\right] & \xrightarrow{\varphi^{\prime}} & \mathcal{A}\left(Q^{\prime}, \theta\right)
\end{array}
$$

where the left vertical map (denoted also by π) sends the variable t_{m} to $t_{\pi(m)}$. For any monomial $u \in F^{\prime}$ and any $s \in S$ with $\pi\left(x^{s}\right)=\varphi^{\prime}(u) \in S^{\prime}$ we choose a monomial $\psi_{s}(u) \in F$ such that $\pi\left(\psi_{s}(u)\right)=u$ and $\varphi\left(\psi_{s}(u)\right)=x^{s}$. This is clearly possible: let $u=t_{m_{1}} \ldots t_{m_{r}}$, then we take for $\psi_{s}(u)$ an element $t_{n_{1}} \ldots t_{n_{r}}$ where $\pi\left(n_{j}\right)=m_{j}$, such that $\left(n_{1}+\cdots+n_{r}\right)\left(\alpha_{1}\right)=s\left(\alpha_{1}\right)$. Denote by $\varepsilon_{i} \in \mathbb{N}_{0}^{Q_{1}}$ the characteristic function of $\alpha_{i} \in Q_{1}(i=1,2)$.

Proposition 9.4 Let $u_{\lambda}-v_{\lambda}(\lambda \in \Lambda)$ be a set of binomial relations generating the ideal $\operatorname{ker}\left(\varphi^{\prime}\right)$. Then $\operatorname{ker}(\varphi)$ is generated by $\mathcal{G}_{1} \cup \mathcal{G}_{2}$, where

$$
\begin{aligned}
& \mathcal{G}_{1}:=\left\{\psi_{s}\left(u_{\lambda}\right)-\psi_{s}\left(v_{\lambda}\right) \mid \lambda \in \Lambda, \pi(s)=\varphi^{\prime}\left(u_{\lambda}\right)\right\} \\
& \mathcal{G}_{2}:=\left\{t_{m} t_{n}-t_{m+\varepsilon_{2}-\varepsilon_{1}} t_{n+\varepsilon_{1}-\varepsilon_{2}} \mid m, n \in \nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}, m\left(\alpha_{1}\right)>0, n\left(\alpha_{2}\right)>0\right\} .
\end{aligned}
$$

Proof. Clearly \mathcal{G}_{1} and \mathcal{G}_{2} are contained in $\operatorname{ker}(\varphi)$. Denote by I the ideal generated by them in F, so $I \subseteq \operatorname{ker}(\varphi)$. In order to show the reverse inclusion, take any binomial relation $u-v \in \operatorname{ker}(\varphi)$, then $\varphi(u)=\varphi(v)=x^{s}$ for some $s \in S$. It follows that $\pi(u)-\pi(v) \in \operatorname{ker}\left(\varphi^{\prime}\right)$, whence there exist monomials w_{i} such that $\pi(u)-\pi(v)=\sum_{i=1}^{k} w_{i}\left(u_{i}-v_{i}\right)$, where $u_{i}-v_{i} \in\left\{u_{\lambda}-v_{\lambda}, \quad v_{\lambda}-u_{\lambda} \mid \lambda \in \Lambda\right\}$, $w_{1} u_{1}=\pi(u), w_{i} v_{i}=w_{i+1} u_{i+1}$ for $i=1, \ldots, k-1$ and $w_{k} v_{k}=\pi(v)$. Moreover, for each i choose a divisor $s_{i} \mid s$ such that $\pi\left(x^{s_{i}}\right)=\varphi^{\prime}\left(u_{i}\right)$ (this is clearly possible). Then I contains the element $\sum_{i=1}^{k} \psi_{s-s_{i}}\left(w_{i}\right)\left(\psi_{s_{i}}\left(u_{i}\right)-\psi_{s_{i}}\left(v_{i}\right)\right)$, whose i th summand we shall denote by $y_{i}-z_{i}$ for notational simplicity. Then we have that $\pi\left(y_{1}\right)=\pi(u), \pi\left(z_{k}\right)=\pi(v), \pi\left(z_{i}\right)=\pi\left(y_{i+1}\right)$ for $i=1, \ldots, k-1$, and $x^{s}=\varphi\left(y_{i}\right)=\varphi\left(z_{i}\right)$. It follows by Lemma 9.5 below $u-y_{1}, v-z_{k}$, and $y_{i+1}-z_{i}$ for $i=1, \ldots, k-1$ are all contained in the ideal J generated by \mathcal{G}_{2}. Whence $u-v$ is contained in I.

Lemma 9.5 Suppose that for monomials $u, v \in F$ we have $\varphi(u)=\varphi(v) \in \mathcal{A}(Q, \theta)$ and $\pi(u)=$ $\pi(v) \in F^{\prime}$. Then $u-v$ is contained in the ideal J generated by \mathcal{G}_{2} (with the notation of Proposition 9.4).

Proof. If u and v have a common variable t, then $u-v=t\left(u^{\prime}-v^{\prime}\right)$, and u^{\prime}, v^{\prime} satisfy the conditions of the lemma. By induction on the degree we may assume that $u^{\prime}-v^{\prime}$ belongs to the ideal J. Take $m_{1} \in \nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$ such that $t_{m_{1}}$ is a variable occurring in u. There exists an $m_{2} \in \nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$ such that $t_{m_{2}}$ occurs in v, and $\pi\left(m_{1}\right)=\pi\left(m_{2}\right)$. By symmetry we may assume that $m_{1}\left(\alpha_{1}\right) \geq m_{2}\left(\alpha_{1}\right)$, and apply induction on the non-negative difference $m_{1}\left(\alpha_{1}\right)-m_{2}\left(\alpha_{1}\right)$. If $m_{1}\left(\alpha_{1}\right)-m_{2}\left(\alpha_{1}\right)=0$, then $m_{1}=m_{2}$ and we are done by the above considerations. Suppose next that $m_{1}\left(\alpha_{1}\right)-m_{2}\left(\alpha_{1}\right)>0$. By $\pi\left(m_{1}\right)=\pi\left(m_{2}\right)$ we have $m_{2}\left(\alpha_{2}\right)>0$, and the condition $\varphi(u)=\varphi(v)$ implies that there exists an $m_{3} \in \nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$ such that $t_{m_{2}} t_{m_{3}}$ divides v, and $m_{3}\left(\alpha_{1}\right)>0$. Denote by $\varepsilon_{i} \in \mathbb{N}_{0}^{Q_{1}}$ the characteristic function of α_{i}, and set $m_{2}^{\prime}:=m_{2}+\varepsilon_{1}-\varepsilon_{2}$, $m_{3}^{\prime}:=m_{3}-\varepsilon_{1}+\varepsilon_{2}$. Clearly $m_{2}^{\prime}, m_{3}^{\prime} \in \nabla(Q, \theta) \cap \mathbb{Z}^{Q_{1}}$ and $t_{m_{2}} t_{m_{3}}-t_{m_{2}^{\prime}} t_{m_{3}^{\prime}} \in J$. So modulo J we may replace v by $t_{m_{2}^{\prime}} t_{m_{3}^{\prime}} v^{\prime}$ where $v=t_{m_{2}} t_{m_{3}} v^{\prime}$. Clearly $0 \leq m_{1}\left(\alpha_{1}\right)-m_{2}^{\prime}\left(\alpha_{1}\right)<m_{1}\left(\alpha_{1}\right)-m_{2}\left(\alpha_{1}\right)$, and by induction we are finished.

In the affine case one can also introduce a grading on $\mathcal{O}(\mathcal{M}(Q, 0))$ by declaring the elements that correspond to primitve cycles of the quiver to be of degree 1 . The ideal of relations can be defined as above, but in this case it is not possible to give a degree bound independently of the dimension. This is illustrated by Example 7.2, providing an instance where a degree $d-1$ element is needed to generate the ideal of relations of a d-dimensional affine toric quiver variety. However the following theorem shows that this example is the worst possible from this respect.

Theorem 9.6 Let Q be a quiver such that $d:=\operatorname{dim}(\mathcal{M}(Q, 0))>0$. Then the ideal of relations of $\mathcal{M}(Q, 0)$ is generated by elements of degree at most $d-1$.

Proof. Up to dimension 2 the only affine toric quiver varieties are the affine spaces. Suppose from now on that $d \geq 3$. Clearly it is sufficient to deal with the case when ($Q, 0$) is tight and Q is prime. Suppose that a degree k element is needed to generate the ideal of relations of $\mathcal{M}(Q, 0)$. In Section 6 of [16] it is shown that this holds if and only if there is a pair of primitive cycles c_{1}, c_{2} in Q such that the multiset sum of their arrows can also be obtained as the multiset sum of some other k primitive cycles e_{1}, \ldots, e_{k}. Note that each e_{i} has an arrow contained in c_{1} but not in c_{2}, and has an arrow contained in c_{2} but not in c_{1}. It follows that length $\left(c_{1}\right)+\operatorname{length}\left(c_{2}\right) \geq 2 k$, implying that Q has at least k vertices. By Proposition 7.1 (ii) we conclude that $d-1=\chi(Q)-1 \geq\left|Q_{0}\right| \geq k$.

10 The general case in [25]

In this section we give a short derivation of the main result of [25] from the special case Proposition 9.1. To reformulate the result in our context consider a bipartite quiver Q with at least as many sinks as sources. By a one-sided matching of Q we mean an arrow set which has exactly one arrow incident to each source, and at most one arrow incident to each sink. By abuse of language the characteristic vector in $\mathbb{Z}^{Q_{1}}$ of a one-sided matching will also be called a one-sided matching. The convex hull of the one-sided matchings in $\mathbb{Z}^{Q_{1}}$ is a lattice polytope in $\mathbb{R}^{Q_{1}}$ which we will denote by $\operatorname{OSM}(Q)$. Clearly the lattice points of $\operatorname{OSM}(Q)$ are precisely the one-sided matchings. The normality of $\operatorname{OSM}(Q)$ is explained in section 4.2 of [25] or it can be directly shown using the König-Hall Theorem for regular graphs and an argument similar to that in the proof below. Denote by $S(O S M(Q))$ the submonoid of $\mathbb{N}_{0}^{Q_{1}}$ generated by $\operatorname{OSM}(Q) \cap \mathbb{Z}^{Q_{1}}$. This is graded, the generators have degree 1 . Consider the ideal of relations among the generators $\left\{x^{m} \mid m \in O S M(Q) \cap \mathbb{Z}^{Q_{1}}\right\}$ of the semigroup algebra $\mathbb{C}[S(O S M(Q))]$. Theorem 2.1 from [25] can be stated as follows:

Theorem 10.1 The ideal of relations of $\mathbb{C}[S(O S M(Q))]$ is generated by binomials of degree at most 3.

Proof. Consider a quiver Q^{\prime} that we obtain by adding enough new sources to Q so that it has the same number of sources and sinks, and adding an arrow from each new source to every sink. Let θ be the weight of Q^{\prime} that is -1 on each source and 1 on each sink. Now the natural projection $\pi: \mathbb{R}^{Q_{1}^{\prime}} \rightarrow \mathbb{R}^{Q_{1}}$ induces a surjective map from $\nabla\left(Q^{\prime}, \theta\right) \cap \mathbb{Z}^{Q_{1}^{\prime}}$ onto $\operatorname{OSM}(Q) \cap \mathbb{Z}^{Q_{1}}$ giving us a degree preserving surjection between the corresponding semigroup algebras. By Corollary 8.3 it is sufficient to prove that for any $k \geq 4$, any degree k element $s \in S(\operatorname{OSM}(Q))$, and any $m, n \in O S M(Q) \cap \mathbb{Z}^{Q_{1}}$ with m, n dividing s we have $m \sim_{s} n$. In order to show this we shall construct an $s^{\prime} \in \nabla\left(Q^{\prime}, k \theta\right) \cap \mathbb{Z}^{Q_{1}^{\prime}}$ and $m^{\prime}, n^{\prime} \in \nabla\left(Q^{\prime}, \theta\right) \cap \mathbb{Z}^{Q_{1}^{\prime}}$ such that $m^{\prime} \leq s^{\prime}, n^{\prime} \leq s^{\prime}$, $\pi\left(m^{\prime}\right)=m, \pi\left(n^{\prime}\right)=n$ and $\pi\left(s^{\prime}\right)=s$. By Proposition 9.1 we have $m^{\prime} \sim_{s^{\prime}} n^{\prime}$, hence the surjection
π yields $m \sim_{s} n$. The desired $s^{\prime}, m^{\prime}, n^{\prime}$ can be obtained as follows: think of s as the multiset of arrows from Q, where the multiplicity of an arrow a is $s(a)$. Pairing off the new sources $Q_{0}^{\prime} \backslash Q_{0}$ with the sinks in Q not covered by m and adding the corresponding arrows to m we get a perfect matching m^{\prime} of Q^{\prime} with $\pi\left(m^{\prime}\right)=m$. Next do the same for n, with the extra condition that if none of n and m covers a sink in Q, then in n^{\prime} it is connected with the same new source as in m^{\prime}. Let $t \in \mathbb{N}_{0}^{Q_{1}^{\prime}}$ be the multiset of arrows obtained from s by adding once each of the arrows $Q_{1}^{\prime} \backslash Q_{1}$ occuring in m^{\prime} or n^{\prime}. For a vertex $v \in Q_{1}^{\prime}$ set $\operatorname{deg}_{t}(v):=\sum_{v \in\left\{c^{-}, c^{+}\right\}}|t(c)|$. Observe that $s-m$ and $s-n$ belong to $S(O S M(Q))_{k-1}$, hence $\operatorname{deg}_{s-m}(w) \leq k-1$ and $\operatorname{deg}_{s-n}(w) \leq k-1$ for any vertex w. So if w is a sink not covered by m or n, then $\operatorname{deg}_{s}(w)$ agrees with $\operatorname{deg}_{s-m}(w)$ or $\operatorname{deg}_{s-n}(w)$, thus $\operatorname{deg}_{s}(w) \leq k-1$, and hence $\operatorname{deg}_{t}(w) \leq k$. For the remaining sinks we have $\operatorname{deg}_{t}(w)=\operatorname{deg}_{s}(w) \leq k$ as well, $\operatorname{moreover,~}^{\operatorname{deg}}{ }_{t}(v)=k$ for the sources $v \in Q_{0} \backslash Q_{0}^{\prime}$, whereas $\operatorname{deg}_{t}(v) \leq 2$ for the new sources $v \in Q_{0}^{\prime} \backslash Q_{0}$. Consequently successively adding further new arrows from $Q_{1}^{\prime} \backslash Q_{1}$ to t we obtain $s^{\prime} \geq t$ with $\operatorname{deg}_{s^{\prime}}(v)=k$ for all $v \in Q_{0}^{\prime}$. Moreover, $m^{\prime} \leq t \leq s^{\prime}$, $n^{\prime} \leq t \leq s^{\prime}$, and $\pi\left(s^{\prime}\right)=s$, so we are done.

Acknowledgement

We thank Bernd Sturmfels for bringing [25] to our attention.

References

[1] J. Adriaenssens and L. Le Bruyn, Local quivers and stable representations, Comm. Alg. 31 (2003), 1777-1797.
[2] K. Altmann and L. Hille, Strong exceptional sequences provided by quivers, Algebras and Represent. Theory 2 (1) (1999) 1-17.
[3] K. Altmann, B. Nill, S. Schwentner, and I. Wiercinska, Flow polytopes and the graph of reflexive polytopes, Discrete Math. 309 (2009), no. 16, 4992-4999.
[4] K. Altmann and D. van Straten, Smoothing of quiver varieties, Manuscripta Math. 129 (2009), no. 2, 211-230.
[5] K. Bongartz, Some geometric aspects of representation theory, Algebras and Modules I, CMS Conf. Proc. 23 (1998), 1-27, (I. Reiten, S.O. Smalø, Ø. Solberg, editors).
[6] W. Bruns and J. Gubeladze, Semigroup algebras and discrete geometry, Séminaires Congrès 6 (2002), 43-127.
[7] A.T. Carroll, C. Chindris, Z. Lin, Quiver representations of constant Jordan type and vector bundles, arXiv: 1402.2568
[8] D. Cox, J. Little, and H. Schenck, Toric Varieties, Amer. Math. Soc., 2010.
[9] A. Craw and G. G. Smith, Projective toric varieties as fine moduli spaces of quiver representations, Amer. J. Math. 130 (2008), 1509-1534.
[10] M. Domokos, On singularities of quiver moduli, Glasgow Math. J. 53 (2011), 131-139.
[11] Jiarui Fei, Moduli of representations I. Projections from quivers, arXiv:1011.6106v3.
[12] M. Hatanaka: Uniqueness of the direct decomposition of toric manifolds, arXiv: 1304.0891
[13] L. Hille, Moduli spaces of thin sincere representations of quivers, preprint, Chemnitz, 1995.
[14] L. Hille, Toric quiver varieties, pp. 311-325, Canad. Math. Soc. Conf. Proc. 24, Amer. Math. Soc., Providence, RI, 1998.
[15] L. Hille, Quivers, cones and polytopes, Linear Alg. Appl. 365 (2003), 215-237.
[16] D. Joó, Complete intersection quiver settings with one dimensional vertices, Algebr. Represent. Theory 16 (2013), 1109-1133.
[17] V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), 57-92.
[18] A. D. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford (2), 45 (1994), 515-530.
[19] L. Le Bruyn and C. Procesi, Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), 585-598.
[20] M. Lenz, Toric ideals of flow polytopes, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 889896, Discrete Math. Theor. Comput. Sci. Proc., AN, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2010.
[21] M. Lenz, Toric ideals of flow polytopes arXiv:0801.0495 Version 3.
[22] P. E. Newstead, Introduction to Moduli Problems and Orbit Spaces, Tata Institute Lecture Notes, Springer-Verlag, 1978.
[23] A. Schrijver, Combinatorial Optimization - Polyhedra and Efficiency. Number 24A in Algorithms and Combinatorics, Springer, Berlin, 2003.
[24] A. Skowroński and J. Weyman, The algebras of semi-invariants of quivers, Transformation Groups, 5 (2000), No. 4., 361-402.
[25] Takashi Yamaguchi, Mitsunori Ogawa and Akimichi Takemura, Markov degree of the Birkhoff model, arXiv:1304.1237.

[^0]: *Partially supported by OTKA NK81203 and K101515.

