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Improved bound on the worst case complexity of Policy Iteration

Romain Hollanders, Balázs Gerencsér, Jean-Charles Delvenne and Raphaël M. Jungers∗

Abstract

Solving Markov Decision Processes (MDPs) is a recurrent task in engineering. Even though
it is known that solutions for minimizing the infinite horizon expected reward can be found in
polynomial time using Linear Programming techniques, iterative methods like the Policy Iteration
algorithm (PI) remain usually the most efficient in practice. This method is guaranteed to converge
in a finite number of steps. Unfortunately, it is known that it may require an exponential number
of steps in the size of the problem to converge. On the other hand, many open questions remain
considering the actual worst case complexity. In this work, we provide the first improvement over
the fifteen years old upper bound from Mansour & Singh (1999) by showing that PI requires at
most k

k−1
· kn

n
+ o

(
k
n

n

)
iterations to converge, where n is the number of states of the MDP and k

is the maximum number of actions per state. Perhaps more importantly, we also show that this
bound is optimal for an important relaxation of the problem.

1 Introduction

Markov Decision Processes (MDPs) have been found to be a powerful modeling tool for the decision
problems that arise daily in various domains of engineering such as control [Ber07], finance [BR11],
communication networks [Alt02], queuing systems [Mey08], PageRank optimization [CJB14], and many
more (see [Whi93] for a more exhaustive list). MDPs are described from a set of n states in which a
system can be. When being in a state, the controller of the system must choose an available action in
that state, each of which induces a reward and moves the system to another state according to given
transition probabilities. In this work, we assume that the number of actions per state is bounded by
a constant k. A policy refers to the stationary choice of one action in every state. Choosing a policy
implies fixing a dynamics that corresponds to a Markov chain. Given any policy (there are at most kn

of them), we can associate a value to each state of the MDP that corresponds to the infinite-horizon
expected reward of an agent starting in that state. By solving an MDP, we mean providing an optimal
policy that maximizes the value of every state. Depending on the application, a total-, discounted- or
average-reward criterion may be best suited to define the value function. Note that in every case, an
optimal policy always exists. See e.g. [Ber07] and [Put94] for a comprehensive and in-depth study of
MDPs.

One practically efficient way of finding the optimal policy for an MDP is to use the Policy Iteration
algorithm (PI). Starting from an initial policy π0, i = 0, this simple iterative scheme repeatedly
computes the value of πi at every state and greedily modifies this policy using its evaluation to obtain
the next iterate πi+1. The modification always ensures that the value of πi+1 improves on that of πi at
every state. The process is then repeated until convergence to the optimal policy π∗ in a finite number
of steps (obviously at most kn steps—the maximum number of policies). We refer to the ordered set
of explored policies as the PI-sequence. A more precise statement of the algorithm as well as some
important properties are described in Section 2.

Every iteration of the algorithm can be performed in polynomial time and its number of steps has been
shown to be strongly polynomial in some important particular cases such as discounted-reward MDPs

∗This work was supported by an ARC grant from the French Community of Belgium and by the IAP network ’Dysco’
funded by the office of the Prime Minister of Belgium. The scientific responsiblity rests with the authors. J.-C. D. is
with CORE and NAXYS. R. M. J. is an F.R.S./FNRS Research Associate.
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with a fixed discount rate [Tse90, Ye11] or deterministic MDPs [PY13] (the bounds in these results
were later improved in [HMZ13] and [Sch13]). However, in the general case the number of iterations of
PI can be exponentially large. Based on the work of Friedmann on Parity Games [Fri09], PI has been
shown to require at least Ω(2n/7) steps to converge in the worst case for the total- and average-reward
criteria [Fea10] and for the discounted-reward criterion [HDJ12]. Friedmann’s result was also a major
milestone for the study of the Simplex algorithm for Linear Programming as it lead to exponential
lower bounds for some critical pivoting rules [Fri11,FHZ11]. On the other hand, the best known upper
bound for PI to date was due to Mansour & Singh with a 13 · knn steps bound [MS99]. In Section 4, we

provide the first improvement in fifteen years over Mansour & Singh’s bound, namely k
k−1 · k

n

n + o
(
kn

n

)
.

PI-sequences need to verify several combinatorial conditions that have been identified over the years
[MS99,Mad98, SW01,HK99]. However to obtain our bound, we only exploit a subset of these condi-
tions. In Section 3, we define the notion of Pseudo-PI-sequence that describes any sequence of policies
satisfying this subset of conditions. We then prove in Section 4 that the above upper bound holds
for both PI- and Pseudo-PI-sequences. As it turns out, our bound is tight for Pseudo-PI-sequences.
Indeed, in Section 5 we provide a construction of a Pseudo-PI-sequence of length k

k−1 · k
n

n + o
(
kn

n

)
. We

believe that this construction is important in that it shows that additional properties of PI-Sequences
must be exploited if a tighter bound is to be obtained, see Sect 6.

2 Problem statement

Definition 1 (Markov Decision Process). Let S = {1, . . . , n} be a set of n states and As be a set of
k actions available for state s ∈ S. To each choice of these actions corresponds a transition probability

distribution for the next state to visit as well as a reward. For simplicity, we use a common numbering
for the actions, that is, As , A = {1, . . . , k} for all s ∈ S. With this notation, for every pair
(s, a) ∈ S × A, the transition probability and reward functions are uniquely defined. Let us call a
policy π ∈ {1, . . . , k}n the stationary choice of one action for every state. Every policy induces a given
transition probability matrix P π corresponding to some Markov chain and a reward vector rπ. We
may ask how rewarding a policy π is in the long run. This is represented by its value vector vπ ∈ R

n

whose sth entry corresponds to the long term reward obtained from starting in state s and following the
policy π thereafter. It can be computed by solving a system whose definition depends on the problem
studied. For instance for the standard infinite-horizon average reward criterion where the aim is to
maximize the average reward at each step, vπ is obtained by:

vπ = lim sup
N→∞

1

N

N−1∑

i=0

(P π)i rπ.

However, in this work, the bounds that we derive do not depend on the chosen reward criterion. By
solving an MDP, we mean finding the optimal policy π∗ such that for any other policy π, vπ

∗ ≥ vπ,
that is, vπ

∗

(s) ≥ vπ(s) for all states s. The existence of such a policy is guaranteed [Ber07].

Definition 2 (Domination). Given two policies π and π′, if vπ
′

(s) ≥ vπ(s) for all states s ∈ S, we say
that π′ dominates π and we write π′ � π. If moreover vπ

′

(s) > vπ(s) for at least one state, then the
domination is strict and we write π′ ≻ π.

Definition 3 (Switching). Let U be a collection of state-action pairs (s, a). We say that U is well-

defined if it contains every state s ∈ S at most once. In that case, we define π′ = π ⊕ U to be the
policy obtained from π by switching the action π(s) to a for each (s, a)-pair in U .

Definition 4 (Improvement set). We define the improvement set of a policy π as:

T π =
{
(s, a) | π ⊕ {(s, a)} ≻ π

}
,

and the set of improvement states Sπ of π as the set of states that appear in T π.
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Proposition 1 (Proposition 1.3.4 in [Ber07], Volume 2). Let π be a policy and U 6= ∅ be any well-

defined subset of its improvement set T π. Then π ⊕ U ≻ π.

Proposition 2 (Proposition 1.3.4 in [Ber07], Volume 2). For a given policy π, if T π = ∅, then π is

optimal.

Based on Propositions 1 and 2 we may define the Policy Iteration algorithm to find the optimal policy.

Initialization: π0, i = 0
while T πi 6= ∅ do

Select a non-empty and well-defined Ui ⊆ T πi

πi+1 = πi ⊕ Ui

i← i+ 1

end

return πi

Algorithm 1: Policy Iteration

Definition 5 (Policy Iteration). Algorithm 2 describes Policy Iteration (PI). The standard way of
choosing Ui ⊆ T πi is the greedy update rule, namely choose any Ui with maximal cardinality |Sπi |.
We refer to the corresponding algorithm as Greedy PI, which is the focus of our work.

Definition 6 (Comparable). We say that two policies π and π′ are comparable if either π � π′ or
π � π′. We call two policies neighbors if they differ in only one state. Neighbors are always comparable
(Lemma 3 in [MS99]).

Definition 7 (Partial order). For a given MDP, we consider the partial order PO of the policies defined
by the domination relation. A set of policies π(1), . . . , π(k) is called a sequence if π(1) � · · · � π(k).

Definition 8 (PI-sequence). We refer to the sequence of policies π0, . . . , πm−1 explored by greedy PI
as a PI-sequence of length m.

We aim to solve the following problem.

Problem 1. Find the longest possible PI-sequence.

Lemma 1 (Lemma 4 in [MS99]). For any two policies π, π′ such that π′(s) = π(s) for all improvement

states s ∈ Sπ, we have π′ � π.

The next property indicates how the improvement set of a policy is constrained by the dominated
policies and by their own improvement sets.

Proposition 3. For any two policies π ≺ π′, there exists an improvement state s ∈ Sπ such that

π(s) 6= π′(s) and (s, π(s)) /∈ T π′

.

Proof. Suppose on the contrary that it is not the case. Then for all states s ∈ Sπ, either π(s) = π′(s)
or (s, π(s)) ∈ T π′

. Let U ,
{
(s, π(s)) : s ∈ Sπ ∩ Sπ′

and π(s) 6= π′(s)
}
, then we have U ⊆ T π′

.

Therefore, Proposition 1 tells us that π′′ , π′ ⊕ U � π′.

Now, let us consider any s ∈ Sπ. If π′(s) = π(s), then for any a ∈ A, we have (s, a) /∈ U and π′′(s) =
π(s). On the other hand, if π′(s) 6= π(s), then s ∈ Sπ′

, hence (s, π(s)) ∈ U and π′′(s) = π(s) again.
Therefore π′′(s) = π(s) for all s ∈ Sπ and from Lemma 1, π′′ � π (≺ π′) which is a contradiction.

Note that for k = 2, the statement of Proposition 3 can be simplified and implies that for any two
policies π ≺ π′, it holds that Sπ 6⊆ Sπ′

.

When performing a PI step, we jump from the current policy to some policy that can be quite different
(in terms of number of different entries). However, we now show that there always exists a path of
small steps in the partial order connecting the two, that is, from neighbor to neighbor.

3



Proposition 4. Let π and π′ be two policies such that π′ = π ⊕ U for some well-defined U ⊆ T π of

cardinality d. Then there exist at least d policies π(1), . . . , π(d) such that π ≺ π(1) � · · · � π(d) = π′

and such that π(i) and π(i+1) are neighbors for all 1 ≤ i < d.

Proof. If d = 1, simply take π(d) = π′. Suppose that the result is true for d − 1 ≥ 1 and let us show
it for d. From Proposition 3, there exists a state s ∈ Sπ such that (s, π(s)) /∈ T π′

, that is, such that
π′ ⊕ (s, π(s)) 6≻ π′. Since neighbors are always comparable, it means that π′′ , π′ ⊕ (s, π(s)) � π′. By
definition of π′, we have (s, π′(s)) ∈ U and U ′ , U \ (s, π′(s)) ⊆ U ⊆ T π. We can then recursively
apply the statement of Proposition 4 with:

π′ 7−→ π′′ = π′ ⊕ (s, π(s)),

U 7−→ U ′ = U \ (s, π′(s)),

since π′′ = π ⊕ U ′ and |U ′| = d − 1. In that case, π(d−1) = π′′, and we can choose π(d) = π′ which is
indeed a neighbor of π(d−1).

Definition 9 (Subsequence and supersequence). Let O be a sequence. We call subsequence of O
any ordered subset of elements of O. We call supersequence of O any sequence that contains O as a
subsequence.

The following property is perhaps the most important consequence of Proposition 4.

Corollary 1 (Jumping). Let πi be a policy of a PI-sequence. Then the partial order of policies contains

a supersequence of the PI-sequence with at least |Sπi | different policies between πi and πi+1, that is,

|Sπi | policies π such that πi ≺ π ≺ πi+1. When we step from πi to πi+1, we say that we jump |Sπi |
policies of the supersequence.

Proof. The result is a direct consequence of Proposition 4. Recall that with Greedy PI, |Ui| always
equals |Sπi |.

3 A relaxation of the problem

We now introduce an object that is similar to a PI-sequence in that it describes a sequence of policies
embedded into a partial order. However, we will forget about some of the structure that originates
from MDPs and only require Proposition 3 and Corollary 1 to be ensured by the sequence and the
partial order.

Definition 10 (Pseudo-PI-sequence). We call pseudo-PI-sequence of size m a triple (Π, O,T ) where:

• Π = π0, π1, . . . , πm−1 is a sequence of policies. We define the abstract ordering ≺ on the elements
of the sequence Π by the ordering of their indices.

• O is a sequence of policies of {0, 1}n that is a supersequence of Π.

• T is a collection of abstract improvement sets T π for every policy π appearing in O.

We require the claim from Proposition 3 to hold for O and we require Π to satisfy Corollary 1 as a
subsequence of O.

Definition 10 leads to a relaxation of Problem 1. Note that there is a natural way of constructing
a pseudo-PI-sequence from any PI-sequence. Of course, Proposition 3 and Corollary 1, that are the
key results towards our upper bound in Theorem 1, still hold for pseudo-PI-sequences by design.
Furthermore, as we will show in Theorem 2, our upper bound is tight for the relaxation.

Relaxation 1. Find the longest possible pseudo-PI-sequence.
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In the rest of this paper, we only consider pseudo-PI-sequences and we now derive some of their
properties. The following lemma is a direct consequence of Proposition 3.

Lemma 2. Let (Π, O,T ) be a pseudo-PI-sequence. Then for any two policies π ≺ π′ of O and any

U ⊆ T π′

, we have π 6= π′ ⊕ U .

Proof. Let s ∈ Sπ such that π′(s) 6= π(s) and (s, π(s)) /∈ T π′

whose existence is guaranteed by
Proposition 3. It is impossible to from switch π′(s) to π(s) hence the result.

When k = 2, it is easy to see using Proposition 3 that two policies with exactly the same improvement
states cannot exist. When k > 2, this is no longer the case. However, using Lemma 1, Mansour and
Singh showed that there cannot be more than kd policies with the same d improvement states in a
PI-sequence (see Corollary 13 in [MS99]). In the following proposition, we use Proposition 3 to improve
this bound to (k − 1)d.

Proposition 5. Given a pseudo-PI-sequence (Π, O,T ) and a set of states S ⊆ S of cardinality d, it

holds that O contains at most (k − 1)d policies π with Sπ = S .

Proof. Given the supersequence O of the pseudo-PI-sequence, we consider its subsequence π(1) � · · · �
π(K) such that Sπ(i)

= S , {s1, . . . , sd} for all 1 ≤ i ≤ K. We show that if the subsequence satisfies
Proposition 3, then K ≤ (k− 1)d. To this end, we first claim that the improvement sets of the policies
of the subsequence can be assumed to be all well-defined. Indeed, for any policy of the subsequence
π(i), we can simplify its improvement set T π(i)

by keeping only a single (s, a) pair for every s ∈ Sπ(i)
.

This does not modify Sπ(i)
(i.e., π(i) remains in the subsequence), nor does it imply the violation of

Proposition 3. Therefore, given a policy π(i) of the subsequence and a state s ∈ S , we can assume that
there is exactly one action a such that (s, a) ∈ T π(i)

, which we refer to as T π(i)
(s).

We represent an action i ∈ A as a k-dimensional base vector fa(i) , ei of V = R
k, where ei(j) = 1 if

i = j, 0 otherwise. Similarly, we represent policies as base vectors of the space W = V ⊗d of dimension
kd through the application:

fp : π 7−→ fa(π(s1))⊗ · · · ⊗ fa(π(sd)).

Finally, we represent pairs of policies and their improvement sets in a similar way in W through the
application:

fc : (π, T
π) 7−→

[

fa(π(s1))− fa(T
π(s1))

]

⊗ · · · ⊗
[

fa(π(sd))− fa(T
π(sd))

]

,

= fp(π) +
∑

U ⊆ Tπ

U 6= ∅

(−1)|U | · fp(π ⊕ U).

We claim that the vectors fc
(
π(i), T π(i))

are linearly independent. Assume on the contrary that we
have:

K∑

i=1

λi fc

(

π(i), T π(i)
)

= 0, (1)

with not all λi being 0. Choose the first index i with non-zero λi. The corresponding term gives a
non-zero coefficient to the base vector fp

(
π(i)

)
. But from Lemma 2, for all j > i and all U ⊆ T π(j)

,

π(i) 6= π(j) ⊕ U . Thus the base vector fp
(
π(i)

)
never appears later in the series in (1) which can

therefore not be null.

Additionally, the coordinates of fa(π(si)) − fa(T
π(si)) ∈ V sum to 0 (in the standard base) for all

1 ≤ i ≤ d which means they lie in a subspace V0 of V of dimension k − 1. As a result,

fc

(

π(i), T π(i)
)

∈W0 = V ⊗d
0 .

The dimension of W0 is (k− 1)d implying this is the maximum number of linearly independent vectors

fc
(
π(i), T π(i))

. This translates to the desired upper bound.
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Of course, the above result also holds for usual PI-sequences.

4 Main result: a better upper bound on PI

Theorem 1. The number of iterations of Policy Iteration is bounded above by k
k−1 · k

n

n + o
(
kn

n

)
.

Proof. The proof proceeds in two steps. First, we consider “small” improvement sets and show that
there are at most o

(
kn

n

)
of them. Then we consider “large” improvement sets and show that PI explores

at most k
k−1 · k

n

n + o
(
kn

n

)
of them because they jump many policies on the way.

Small improvement sets. We consider the small improvement sets T π such that |Sπ| ≤ k−1
k ·n−f(n)

with:

f(n) ,
√

n log n.

From Proposition 5, policies with the same set of improvement states S of cardinality d can appear at
most (k − 1)d times in a (pseudo-)PI-sequence, hence the number of small improvement sets can be
expressed as follows:

⌊ k−1
k

·n−f(n)⌋
∑

d=0

(
n
d

)

(k − 1)d = kn
⌊k−1

k
·n−f(n)⌋
∑

d=0

(
n
d

)(
k − 1

k

)d(1

k

)n−d

,

= kn · P
[

X ≤ k − 1

k
· n− f(n)

]

,

where X ∼ Bin
(
n, k−1

k

)
follows a binomial distribution. Using Hoeffding’s inequality [Hoe63], we have:

P

[

X ≤ n ·
(
k − 1

k
− f(n)

n

)]

≤ e
−2·

(

f(n)
n

)2
·n

=
1

n2
.

Therefore we have:

⌊ k−1
k

·n−f(n)⌋
∑

d=0

(
n
d

)

(k − 1)d ≤ kn · 1

n2
= o

(
kn

n

)

.

Large improvement sets. We now consider the improvement sets T π with the set of improvement
states satisfying |Sπ| > k−1

k · n − f(n). We show that these sets jump many policies on the way
and hence we cannot have many of them in the (pseudo-)PI-sequence. Suppose that we have K such
improvement sets in the sequence. Then, from Corollary 1, we jump at least K ·

(
k−1
k · n − f(n)

)

distinct policies. Since we cannot jump more that kn policies, we have the following condition on K:

K ≤ kn

k−1
k n− f(n)

=
k

k − 1
· k

n

n
· 1

1− k−1
k

√
logn
n

.

Hence K ≤ k
k−1 · kn

n + o
(
kn

n

)
.

5 The bound is tight for the relaxation

The following theorem shows that the upper bound from Theorem 1 is tight for Relaxation 1.

Theorem 2. There exists a pseudo-PI-sequence of size k
k−1 · k

n

n + o
(
kn

n

)
.
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π7 =

π8 =

π9 =

π10 =

π11 =

π12 =

π13 =

π14 =

≻
≻

≻
≻

≻
≻

≻
≻

≻
≻

≻
≻

≻
≻

≻
≻

≻
≻

≻
≻

≻
≻

≻
≻

≻
≻

T 3

T 2

T 1

T 0

Figure 1: An example of a pseudo-PI-Sequence of size k
k−1 · kn

n +

o
(
kn

n

)
with its supersequence O for n = k = 3. Each gray box

corresponds to a policy of the supersequence. We represent the
improvement sets only through the prospective improving action
for each state (action 3 for state s if π(s) 6= 3 or nothing, according
to the construction). The red policies are the ones from the sequence
Π from Definition 10. It can be checked that if some policy πi is in
T d, then d policies of the supersequence are jumped from πi to πi+1

and it can be observed that the supersequence contains kn elements
and satisfies the claim of Proposition 3.
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Proof. We first build a sequence containing all the kn policies that will play the role of the supersequence
O for the pseudo-PI-sequence. Preliminarily, given any policy π of O, we define its (well-defined)
improvement set T π such that (s, a) ∈ T π iff π(s) 6= k and a = k. Here action k can be thought of as
some special action. Let T d be the set of all policies π such that |T π| = d. By definition, T d contains
all policies π such that π(s) 6= k for exactly d different states s, hence

(
n
d

)
· (k− 1)d elements. We now

order all kn policies as a sequence by decreasing order of cardinality of their improvement sets, hence
the policies in T d-sets with a large d come first in the sequence. The (total) ordering inside a given
T d-set can be arbitrarily chosen. Given this ordering, notice that for any π ≺ π′, if Sπ ⊆ Sπ′

, then
Sπ = Sπ′

.

The sequence O obtained with the above construction satisfies the claim of Proposition 3. Indeed, let
us choose any two policies of the sequence π ≺ π′. First assume that Sπ \ Sπ′ 6= ∅ and let t ∈ Sπ \ Sπ′

.
Then by construction, π(t) 6= k = π′(t) and (t, π(t)) /∈ T π′

since t /∈ Sπ′

, hence Proposition 3 is true in
that case. If now Sπ \ Sπ′

= ∅, then the ordering of the policies imposes that Sπ = Sπ′

, as observed
above. In that case, by construction π(s) 6= k for all s ∈ Sπ and π(s) = π′(s) = k for all s /∈ Sπ. Since
π 6= π′, there must exist some state t ∈ Sπ such that π(t) 6= π′(t). Furthermore by definition of T π′

,
(t, π(t)) /∈ T π′

because π(t) 6= k, and the claim of Proposition 3 is true again.

At this point, we have built a supersequence for our PI-sequence that satisfies the claim of Proposition 3.
Let us now select a subsequence Π of O while ensuring Corollary 1 as follows: we start from the first
policy of the supersequence π0, i = 0. Then at each step i, we jump |T πi | elements in the sequence to
select πi+1. With this greedy procedure, we clearly ensure Corollary 1 and we pick at least 1

d+1 |T d|
policies from each T d-set, for a total number of hypothetical PI-steps of at least:

n∑

d=0

1

d+ 1
|T d|,

=

n∑

d=0

1

d+ 1

(
n
d

)

(k − 1)d,

=
1

n+ 1
·

n∑

d=0

(
n+ 1
d+ 1

)

· (k − 1)d · 1n−d,

=
1

k − 1
· 1

n+ 1
·
[

n+1∑

d=0

(
n+ 1
d

)

· (k − 1)d · 1(n+1)−d

︸ ︷︷ ︸

=kn+1

− 1

]

,

=
k

k − 1
· k

n

n
+ o

(
kn

n

)

,

which corresponds to our claim and matches the upper bound from Theorem 1. An example of a
pseudo-PI-sequence constructed from the above procedure with n = k = 3 is given in Figure 1.

Of course, the lower bound from Theorem 2 only holds for pseudo-PI-sequences which are much less
constrained than usual PI-sequences. Indeed, it can be observed that the pseudo-PI-sequence con-
structed above cannot correspond to a real PI-run since for instance its supersequence does not satisfy
Proposition 1. Therefore, obtaining better bounds than the one from Theorem 1 will require a more
advanced analysis as discussed in the next section.

6 Alternative approaches

Theorem 2 revealed that future improvements of our bound will require to take into account more of
the combinatorial structure of PI-sequences. In this section, we describe two advanced approaches that
could lead to new results.
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The idea of the first approach is to represent the partial order of the policies of an MDP as an
oriented graph whose nodes—the policies—are embedded in an n-dimensional grid and whose edges—
that translate the domination relation—only connect neighboring policies (that is, that differ in only
one state). In this framework, the structure of the partial order is best described by the Acyclic
Unique Sink Orientation of a Grid1 (Grid AUSOs), an object introduced by Gärtner et al [GMR05]
as a generalization of Acyclic Unique Sink Orientations of Cubes [SW01] when k > 2. Grid AUSOs
accurately characterize the structure of the partial order of any MDP and essentially all necessary
conditions we know on PI-sequences originate from this framework. More precisely, it can be described
as follows: take a Cartesian grid of dimension n, the number of states of the MDP. A policy can be
represented by its action at each state as a vector in {1, ..., k}n and it thereby corresponds to a vertex
of the grid. For every neighboring policies π, π′, we draw a directed edge from π to π′ if π ≺ π′ (recall
that neighboring policies are always comparable). Thereby, we obtain a directed graph on the grid that
is guaranteed to be acyclic and unique sink, i.e. any sub-grid of dimension d ≤ n contains a unique
vertex of maximum in-degree d [GMR05].

With this structure, PI-steps can be viewed as jumps in the grid as follows: from a policy πi of the
PI-sequence, the out-going links at the corresponding vertex span a sub-grid. In general, the next
vertex πi+1 chosen by PI can be any vertex of this sub-grid, but in the greedy version, some antipodal
vertex to πi is chosen. This algorithm is also known as the Bottom-Antipodal method in the AUSO
framework. Note that it is possible to design Cube AUSOs for which PI takes Ω

(√
2
n)

steps [SS05]
but to the best of our knowledge, this lower bound cannot be adapted for MDPs.

For k = 2, another promising approach was proposed by Hansen & Zwick [Han12] through a relaxation
of the AUSO structure. Their idea is to record the policies visited by PI in a binary matrix Π ∈
{0, 1}m×n whose columns correspond to the states of the MDP and whose (i + 1)th row corresponds
to the policy πi of a PI-sequence. They then formulate the following combinatorial condition on this
matrix: for every rows i, j of Π, i < j, there must exist a column k such that:

Πi,k 6= Πi+1,k = Πj,k = Πj+1,k. (2)

In case j+1 > m, we use the convention that Πm+1,k = Πm,k. Furthermore, the last two rows (labeled
m− 1 and m) are required to be distinct. Intuitively, at each step i < m, at least one change is made
to the policy (otherwise we have convergence). Then, at any later step j, one of the changes made at
step i must still be there and accepted for the next step. An upper bound on the number of rows of
such matrices would immediately translate in a bound on the length of PI-sequences.

0 0 0

1 1 1

0 0 1

0 1 1

0 1 0

0 0 0 0

1 1 1 1

0 0 0 1

0 1 1 1

0 0 1 0

0 1 1 0

0 1 0 0

1 1 0 0

Table 1: Examples of extremal matrices satisfying condition (2) for 3 and 4 columns.

Simulations hint towards the Fibonacci sequence as a possible upper bound for this relaxed problem:
for n ≤ 6, extremal instances achieve m = Fn+2, the (n + 2)nd Fibonacci number. If true, this bound
would be a significant improvement to ours in the case where k = 2. Note that it is possible to build
matrices with m = Ω

(√
2
n)

rows using similar constructions as for AUSOs. Improving these lower
bounds is an interesting challenge in itself.

1One could strengthen even a bit further by requiring the Holt-Klee condition as well [HK99,GMR05].
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7 Summary

Our contributions can be summarized as follows. First in Theorem 1, we show that Policy Iteration
cannot take more than k

k−1 · k
n

n +o
(
kn

n

)
steps to converge, independently of the chosen reward criterion

for the MDP. We thereby improve Mansour and Singh’s fifteen years old bound. Then in Theorem 2,
we show that our bound is optimal for some natural relaxation of the problem. Finally in Section 6, we
survey two advanced combinatorial approaches that still could lead to an improvement to our bound.
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