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CLASSIFICATION OF RATIONAL UNICUSPIDAL CURVES WITH

TWO NEWTON PAIRS

JÓZSEF BODNÁR

Abstract. Based on Tiankai Liu’s PhD thesis [10], we give a complete classifica-
tion of local topological types of singularities with two Newton pairs on rational
unicuspidal complex projective plane curves.

1. Intorduction

1.1. Introduction. We give a complete list of possible local topological types of
plane curve singularities of rational unicuspidal complex projective curves whose only
singularity has exactly two Newton pairs. An analogous list for rational unicuspidal
curves with one Newton (or Puiseux) pair was presented in [5].
In [7], a conjecture was formulated by J. Fernández de Bobadilla, I. Luengo, A.

Melle-Hernández and A. Némethi on the local topological types of rational cuspidal
curves. Moreover, the conjecture was checked explicitly for all cuspidal curves whose
complement has logarithmic Kodaira dimension κ ≤ 1 ([7, Theorem 1]) and also
for several curves with κ = 2 ([7, Theorem 2]), in particular, for all known rational
unicuspidal curves; see also the end of §2.2 and Remark 2.2.6 for further details.
In [1], M. Borodzik and Ch. Livingston proved the conjecture for rational uni-

cuspidal curves in the general case ([1, Theorem 1.1]), thus obtaining a necessary
combinatorial condition on the numerical invariants of local plane curve singularities
occuring on rational unicuspidal curves.
Using this condition, in 2014 Tiankai Liu in his PhD thesis [10, Theorem 1.1] gave

a full list of possible local types with two Newton pairs and asked which types on this
list are indeed realizable by rational curves.
Actually, all but two types on his list are realizable, as it can be shown by results

and constructions already present in the literature (Kashiwara [9], Miyanishi and
Sugie [13], Fenske [4], Tono [15, 16], Orevkov [14]).

1.2. Acknowledgement. The author would like to thank András Némethi for fruit-
ful discussions and Maciej Borodzik for introducing Liu’s work and emphasizing the
significance of these observations.

2. Preliminaries

2.1. Notation and definitions. Let h ∈ C[x, y, z] be an irreducible homogeneous
polynomial of degree d. Its zero set C = {h = 0} ⊂ CP 2 is called a complex projective
curve. A point P ∈ C is called singular if the derivative of the defining polynomial
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vanishes at that point, i.e. ∂h
∂x
|P = ∂h

∂y
|P = ∂h

∂z
|P = 0. C is called unicuspidal if

it has only one singular point and at that point the local plane curve singularity is
locally irreducible. C is called rational if its normalization is homeomorphic to S2 (in
the case of rational cuspidal curves, that is, rational curves having locally irreducible
singularities only, C itself is already homeomorphic to S2).
To characterize the local embedded topological type of a plane curve singularity,

several invariants can be used, which are equivalent to each other. We are referring
to [2, 3, 18] for further information. Also, [7, §2.1] is a brief introduction to this topic.
We recall the main facts in the following paragraphs.
Let f : (C2, 0) → (C, 0) be a germ of a local holomorphic function which is not

smooth (i.e. its derivative vanishes at 0), irreducible in C{x, y}. Then it has a local
parametrization, i.e. there exists x(t), y(t) ∈ C{t} such that f(x(t), y(t)) ≡ 0 and
t 7→ (x(t), y(t)) is a bijection for |t| < ε small enough. Up to local homeomorphism,
we can assume that the parametrization has the form

(2.1.1) x(t) = ta, y(t) = tb1 + · · ·+ tbr

with a < b1 < · · · < br, a > gcd(a, b1) > gcd(a, b1, b2) > · · · > gcd(a, b1, b2, . . . , br) =
1. If r = 2, we say that the singularity has two Newton pairs. More precisely, we say
that a local plane curve singularity {f(x, y) = 0} has two Newton pairs (p1, q1)(p2, q2)
if after a local homeomorphism the singularity can be parametrized by

x(t) = tp1p2, y(t) = tq1p2 + tq1p2+q2.

In this case we simply say that the singularity is of type (p1, q1)(p2, q2), where gcd(p1, q1) =
gcd(p2, q2) = 1, p1, p2 ≥ 2 and, by convention, p1 < q1. Sometimes we will allow
p1 = 1, in such case we say that the Newton pair ‘degenerates’ to one Puiseux pair
(p2, p2q1 + q2).
For any locally irreducible plane curve singularity f(x, y) = 0 with parametrization

x(t), y(t) as above, one can take the set of all possible local intersection multiplicities,
i.e. the set

Γ = {ordtF (x(t), y(t)) : f ∤ F ∈ C{x, y}} ⊂ Z≥0,

which is easily seen to be an additive semigroup. Moreover, it is a cofinite set, that
is, |Z≥0 \ Γ| = δ and max{Z≥0 \ Γ} = 2δ − 1, where δ is the so called delta invariant
of the singularity.
We define the semigroup counting function R by

R(n) = #Γ ∩ [0, n],

i.e. R(n) is the number of semigroup elements less than or equal to n.

2.2. Basic facts and further notation. The property checked in [7] for all known
rational unicuspidal curves and finally proved in [1] is the following:

Theorem 2.2.1. [1, Theorem 1.1] Let R be the semigroup counting function of the
only singular point of a rational unicuspidal curve of degree d in CP 2. Then the
following condition must hold:

(2.2.2) R(jd) = (j + 1)(j + 2)/2

for every j = 0, 1, . . . , d− 3.
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In the rest of this subsection, we recall some results regarding the numerical invari-
ants of plane curves. We rely mostly on [6, 7].
In the case of a local singularity of type (p1, q1)(p2, q2), the delta-invariant can be

expressed as

δ = (p1q1p
2

2 + p2q2 − p1p2 − q1p2 − q2 + 1)/2.

Also, the additive semigroup Γ is generated (over Z≥0) by the following three elements
g0, g1, g2:

(2.2.3) g0 = p1p2, g1 = q1p2, g2 = p1p2q1 + q2.

There are several invariants guiding the classification of projective plane curves.
One can take the strict transform C under the local embedded minimal good resolution
X → CP 2 of the singularities (only one singularity in our case) of C. (That is, we
blow up CP 2 several times until we resolve the singularities and obtain a normal
crossing configuration: the exceptional divisors and the strict transform of the curve,
which is smooth, intersect each other transversally and no three of them goes through

the same point.) We denote by C
2
the self-intersection of this strict transform C in

X .
For a unicuspidal rational curve with two Newton pairs:

(2.2.4) C
2
= d2 − p2q2 − p1q1p

2

2.

This, using the degree genus formula for rational unicuspidal curves (that is, (d−
1)(d− 2) = 2δ), turns into the following simpler expression:

(2.2.5) C
2
= 3d− 1− p1p2 − q1p2 − q2.

Denote by κ the logarithmic Kodaira dimension of CP 2\C (see [8, 12]). This turns
out to be an extremely important invariant of a plane curve. Based on [7, §1, (a),
(b), (c)], recall the following. By the work [17] of Tsunoda, κ 6= 0, therefore, the
possibilities are κ ∈ {−∞, 1, 2}. Notice that in the case of unicuspidal curves, by

the results of Yoshihara [19], κ = −∞ is equivalent with C
2
≥ −1. Recall that all

rational curves with κ = −∞ are classified by Kashiwara in [9]; see also [13]. Also,
rational unicuspidal curves with κ = 1 are classified by Tono in [15, 16]. This gives
us a guiding principle where to look for the description of a unicuspidal curve with
given numerical invariants.
Further facts and useful observations can be found in [6, 7].

Remark 2.2.6. We wish to emphasize that since in [7] the property (2.2.2) was
checked for all rational cuspidal curves with κ ≤ 1, all the possible local types of cusps
on such curves are explicitly listed in [7]. Moreover, the only known possible local
types with two Newton pairs on a rational unicuspidal curve with κ = 2 are those
occuring on Orevkov’s curves from [14] ((vii) and (viii) in Theorem 3.1.1 below). For
those, (2.2.2) was also checked in [7, Theorem 2 (c)]. In particular, all the local types
from Theorem 3.1.1 are already explicitly listed in [7] with the appropriate references
to their original constructions.
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3. The classification

3.1. List of possible types. Based on the list in [10, Theorem 1.1], we give the
following complete list of singularity types. Set F0 = 0, F1 = 1, Fk+1 = Fk+Fk−1, k ≥
1 for the Fibonacci numbers.

Theorem 3.1.1. Let C be a rational unicuspidal curve of degree d whose singularity
can be characterized by two Newton pairs. Then its type (p1, q1)(p2, q2) is present in
the list below. Conversely, for any member (p1, q1)(p2, q2) of this list, there exists a
rational unicuspidal curve C with this type of singularity.

(i) (lF 2
2k−1

+F 2
2k−3

, lF 2
2k+1

+F 2
2k−1

+2)(F 2
2k−1

, lF 2
2k−1

+F 2
2k−3

), d = F2k−1F2k+1(lF
2
2k−1

+
F 2
2k−3

), k ≥ 2, l ≥ 0. (k = 2, l = 0 degenerates to one Puiseux type.)
(ii) (lF 2

2k−1
+ F 2

2k−3
, lF 2

2k+1
+ F 2

2k−1
+ 2)(F2k−1, lF2k−1 + F2k−5), d = F2k+1(lF

2
2k−1

+
F 2
2k−3

), k ≥ 3, l ≥ 0.
(iii) (n− 1, n)(m,nm− 1), d = nm, n ≥ 3, m ≥ 2.
(iv) (n, 4n− 1)(m,nm− 1), d = 2nm, n,m ≥ 2.
(v) (n− 1, n)(n, (n+ 1)2), d = n2 + 1, n ≥ 3.
(vi) (n, 4n+ 1)(4n+ 1, (2n+ 1)2), d = 8n2 + 4n+ 1, n ≥ 2.
(vii) (F4k/3, F4k+4/3)(3, 1), d = F4k+2, k ≥ 2.
(viii) (F4k/3, F4k+4/3)(6, 1), d = 2F4k+2, k ≥ 2.

Proof. First we show that being in the above list is necessary for the realizability.
Assume that (p1, q1)(p2, q2) is the local cusp type of a unicuspidal rational curve of
degree d. Then by [1, Theorem 1.1] (2.2.2) must hold. In this case, by [10, Theorem
1.1], the Newton pair either equals to (2, 7)(4, 17) with d = 17 or to (2, 3)(6, 31) with
d = 20, or it is present in the above list. (2, 7)(4, 17) is excluded in [6, §6.10] by the
spectrum semicontinuity (SS) criterion (SS fails at l = 12 with the notations therein).
The other pair (2, 3)(6, 31) can be excluded similarly, now SS fails at l = 13.
Now we show that any element of the above list is realizable.

In case (i) and (ii) one computes that C
2
= 0 and −1, respectively. Therefore, in

both cases, κ = −∞. In [7], based on [9] (cf. also [13]), a list of numerical invariants
was presented for these curves. One finds that curves from (i) and (ii) are exactly
those listed in [7, §6.2.1, §6.2.2 with N = 1], respectively.
The existence of the case (iii), as also Liu notices, follows from [4, Theorem 1.1,

1a] (C
2
= m, κ = −∞), cf. also [7, §4, (9)].

The existence of (iv) is proved in [15, Theorem 1.1, (iv)] (set k1 = 1, d1 = nm, k2 =
n − 1, d2 = m, k3 = m − 1 to match the two notations). These are of Abhyankar–
Moh type (cf. again [7, §4]), that is, the tangent line to its singular point has no
other intersection with the curve; as it is easily seen by comparing the semigroup
generators (2.2.3) with the degree of the curves and then using Bézout’s theorem. We

have C
2
= m and κ = −∞.

For the existence of (v) (with C
2
= −n + 1) and (vi) (with C

2
= −n), see [16,

Theorem 2, (i), Type I, s = 2 and (ii), Type II] (cf. also [7, §7.1]). In these cases,
κ = 1.
The existence of (vii) and (viii) follows from [14, Theorem C, b), c)], respectively

(cf. [7, §9.1, §9.2]). In these cases, one has C
2
= −2 and κ = 2. (Notice that Orevkov
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uses a characteristic sequence rather than the Newton pairs; for the definition and
comparison, see [14, §3]).
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E-mail address : bodnar.jozef@renyi.mta.hu

http://arxiv.org/abs/1304.1062
http://dspace.mit.edu/handle/1721.1/90190?show=full

	1. Intorduction
	1.1. Introduction
	1.2. Acknowledgement

	2. Preliminaries
	2.1. Notation and definitions
	2.2. Basic facts and further notation

	3. The classification
	3.1. List of possible types

	References

