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THE MINIMAL BASE SIZE FOR A p-SOLVABLE LINEAR

GROUP

ZOLTÁN HALASI AND ATTILA MARÓTI

Abstract. Let V be a finite vector space over a finite field of order q and of
characteristic p. Let G ≤ GL(V ) be a p-solvable completely reducible linear
group. Then there exists a base for G on V of size at most 2 unless q ≤ 4 in
which case there exists a base of size at most 3. The first statement extends
a recent result of Halasi and Podoski and the second statement generalizes a
theorem of Seress. An extension of a theorem of Pálfy and Wolf is also given.

Dedicated to the memory of Ákos Seress.

1. Introduction

For a finite permutation group H ≤ Sym(Ω), a subset of the finite set Ω is called
a base, if its pointwise stabilizer in H is the identity. The minimal base size of H

(on Ω) is denoted by b(H). Notice that |H | ≤ |Ω|
b(H)

.

One of the highlights of the vast literature on base sizes of permutation groups is the

celebrated paper of Á. Seress [18] in which it is proved that b(H) ≤ 4 whenever H
is a solvable primitive permutation group. Since a solvable primitive permutation
group is of affine type, this result is equivalent to saying that a solvable irreducible
linear subgroup G of GL(V ) has a base of size at most 3 (in its natural action on
V ) where V is a finite vector space.

There are a number of results on base sizes of linear groups. For example, D. Gluck
and K. Magaard [8, Corollary 3.3] have shown that a subgroup G of GL(V ) with
(|G|, |V |) = 1 admits a base of size at most 94. If in addition it is assumed that G
is supersolvable or of odd order then b(G) ≤ 2 by results of T.R. Wolf [21, Theorem
A] and S. Dolfi [4, Theorem 1.3]. Later S. Dolfi [5, Theorem 1.1] and E.P. Vdovin
[19, Theorem 1.1] generalized this result to solvable coprime linear groups. Finally,
Z. Halasi and K. Podoski [10, Theorem 1.1] improved this result significantly, by
proving that even the solvability assumption can be dropped, and b(G) ≤ 2 for any
coprime linear group G.

The research of the first author leading to these results has received funding from the European
Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 318202,
from ERC Limits of discrete structures Grant No. 617747 and from OTKA K84233. The research

of the second author was supported by a Marie Curie International Reintegration Grant within the
7th European Community Framework Programme, by an Alexander von Humboldt Fellowship for
Experienced Researchers, by the János Bolyai Research Scholarship of the Hungarian Academy of
Sciences, by OTKA K84233, and by the MTA RAMKI Lendület Cryptography Research Group.
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We note that for a solvable subgroup G of GL(V ) acting completely reducibly on
V we have b(G) ≤ 2 if the Sylow 2-subgroups of GV are Abelian (see [6, Theorem
2]) or if |G| is not divisible by 3 (see [22, Theorem 2.3]).

The following definition has been introduced by M. W. Liebeck and A. Shalev in
[14]. For a linear group G ≤ GL(V ) we say that {v1, . . . , vk} ⊆ V is a strong base
for G if any element of G fixing 〈vi〉 for every 1 ≤ i ≤ k is a scalar transformation.
The minimal size of a strong base for G is denoted by b∗(G). It is known that
b(G) ≤ b∗(G) ≤ b(G) + 1 (see [14, Lemma 3.1]). Furthermore, also b∗(G) ≤ 2 holds
for coprime linear groups by [10, Lemma 3.3 and Theorem 1.1].

The following theorem extends the above-mentioned result of Seress [18] and that
of Halasi and Podoski to p-solvable groups.

Theorem 1.1. Let V be a finite vector space over a field of order q and of char-
acteristic p. If G ≤ GL(V ) is a p-solvable group acting completely reducibly on V ,
then b∗(G) ≤ 2 unless q ≤ 4. Moreover if q ≤ 4 then b∗(G) ≤ 3.

One of the motivations of Seress [18] was a famous result of P.P. Pálfy [16, Theorem
1] and Wolf [20, Theorem 3.1] stating that a solvable primitive permutation group of
degree n has order at most 24−1/3nd where d = 1+log9(48 ·24

1/3) = 3.243 . . ., that

is to say, a solvable irreducible subgroup G of GL(V ) has size at most 24−1/3|V |
d−1

.
(This bound is attained for infinitely many groups.) In the following we extend this
result to p-solvable linear groups G.

Theorem 1.2. Let V be a finite vector space over a field of characteristic p. If
G ≤ GL(V ) is a p-solvable group acting completely reducibly on V , then |G| ≤
24−1/3|V |d−1 where d is as above.

We note that the bounds in Theorem 1.1 are best possible for all values of q.
Indeed, there are infinitely many irreducible solvable linear groupsG ≤ GL(V ) with

|G| > |V |2 for q = 2 or 3 (see [16, Theorem 1] or [20, Proposition 3.2]) and there
are even infinitely many odd order completely reducible linear groups G ≤ GL(V )
with |G| > |V | for q ≥ 5 (see [17, Theorem 3B] and the remark that follows). For
q = 4 we note that there are primitive, irreducible solvable linear subgroups H of
GL(3, 4) with b(H) = 3 and thus there are infinitely many imprimitive, irreducible
solvable linear groups G = H ≀ S ≤ GL(3r, 4) with b(G) = 3 where S is a solvable
transitive permutation group of degree r.

Theorem 1.1 has been applied in [2] to Gluck’s conjecture.

2. Preliminaries

Throughout this paper let Fq be a finite field of characteristic p and let V be an
n-dimensional vector space over Fq. Furthermore, let G ≤ GL(V ) be a linear group
acting on V in the natural way, let b(G) denote its minimal base size, and let b∗(G)
denote its minimal strong base size (both notions defined in Section 1).

If the vector space V is fixed, then the group of scalar transformations of V (the
center of GL(V )) will be denoted by Z. Thus Z ≃ F

×
q , the multiplicative group

of the base field. As G ≤ GL(V ) is p-solvable if and only if GZ is p-solvable, we
can (and we will) always assume, in the proofs of Theorems 1.1 and 1.2, that G
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contains Z. After choosing a basis {v1, . . . , vn} ⊆ V , we will always identify the
group GL(V ) with the group GL(n, q).

Put t(q) = 3 for q ≤ 4 and t(q) = 2 for q ≥ 5.

Finally, if G ≤ GL(V ) and X ⊆ V , then CG(X) = {g ∈ G | g(x) = x ∀x ∈ X}
and NG(X) = {g ∈ G | g(x) ∈ X ∀x ∈ X} will denote the pointwise and setwise
stabilizer of X in G, respectively.

3. Special bases in linear groups

In this section we will show that there exist bases of special kinds for certain linear
groups. As a consequence (Corollary 3.3), we derive that it is sufficient to establish
the required bounds in Theorem 1.1 for b(G) rather than for b∗(G).

Theorem 3.1. Let V be an n-dimensional vector space over Fq, a field of charac-
teristic p and let Z ≤ G ≤ GL(V ) be a p-solvable linear group.

(1) If n = 2 and q ≥ 5, then at least one of the following holds.
(a) There is a basis x, y ∈ V such that NG(〈x〉) ⊆ NG(〈y〉).
(b) p = 2 and there is a basis x, y ∈ V such that NG(〈x〉) = Z × C2 and

the involution g in NG(〈x〉) satisfies g(x) = x and g(y) = y + x.
(2) If n = 3 and q = 3 or 4, then at least one of the following holds.

(a) There is a basis x, y, z ∈ V such that NG(〈x〉) ∩NG(〈y〉) ⊆ NG(〈z〉).
(b) There is a basis x, y, z ∈ V such that NG(〈y, z〉) = G.

Proof. Firstly we may assume that G is an irreducible primitive subgroup ofGL(V ).
Since G is p-solvable by assumption, we see that G does not contain SL(V ).

First consider statement (1). By considering the action of G on the set S of 1-
dimensional subspaces of V , we may assume that the number of Sylow p-subgroups
of G is equal to |S| = q + 1. For otherwise there exists 〈x〉 ∈ S whose stabilizer in
G is a p′-group and thus Maschke’s theorem gives 1/(a). For q = p any subgroup of
GL(V ) with q + 1 Sylow p-subgroups contains SL(V ), so in this case we are done.
So assume that q > p.

Since G acts transitively on the set of Sylow p-subgroups of G and every Sylow
p-subgroup stabilizes a unique subspace in S, it follows that G acts transitively
on S. Moreover since Z ≤ G it also follows that G acts transitively on the set of
non-zero vectors of V .

By Hering’s theorem (see [11, Chapter XII, Remark 7.5 (a)]) we see that if q is odd
(and not a prime by assumption) then q must be 9 and G has a normal subgroup
isomorphic to SL(2, 5) (case (5)). But then G is not 3-solvable and so we can rule
out this possibility. Similarly, if q is even, then the only possibility is that G ≥ Z
normalizes a Singer cycle GL(1, q2) (case (1)). The only such group not satisfying
1/(a) is the full semilinear group Γ(1, q2) ≃ GL(1, q2).2. In this case taking x to
be any non-zero vector in V we have NG(〈x〉) = Z × C2 and the involution g in
NG(〈x〉) satisfies g(x) = x and g(y) = y + x for some y ∈ V .

Finally, statement (2) has been checked with GAP [7] by using the list of all prim-
itive permutation groups of degrees 27 and 64, respectively. �

As a direct consequence we get the following.
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Corollary 3.2. Let us assume that Z ≤ G ≤ GL(V ) is a p-solvable linear group
with b(G) ≤ t(q).

(1) If q ≥ 5, then one of the following holds.
(a) There exists a base x, y ∈ V such that NG(〈x〉)∩NG(〈x, y〉) ⊆ NG(〈y〉).
(b) p = 2 and there exists a base x, y ∈ V such that any non-identity

element of CG(x) ∩NG(〈x, y〉) takes y to y + x.
(2) If q ≤ 4, then at least one of the following holds.

(a) There exists a base x, y, z ∈ V such that

NG(〈x〉) ∩NG(〈y〉) ∩NG(〈x, y, z〉) ⊆ NG(〈z〉).

(b) There exists a base x, y, z ∈ V such that NG(〈x, y, z〉) ⊆ NG(〈y, z〉)
with x /∈ 〈y, z〉.

Proof. First, 1/(a) or 2/(a) holds if dim(V ) < t(q) so assume that dim(V ) ≥
t(q). Both parts of the corollary can be proved by choosing a subspace U ≤ V of
dimension t(q) generated by a base for G and by restrictingNG(U) to this subspace.
Notice that the image of this restriction is also p-solvable, so Theorem 3.1 can be
applied. �

Corollary 3.3. Let V be a vector space over the field Fq of characteristic p. Let
Z ≤ G ≤ GL(V ) be p-solvable with b(G) ≤ t(q). Then b∗(G) ≤ t(q).

Proof. We may assume that dim(V ) ≥ t(q) and that q > 2. Let us choose a base for
G of size t(q) satisfying the property given in Corollary 3.2. For q ≥ 5, if x, y ∈ V
is such a base, then x, x + y is a strong base for G. Likewise, for q = 3 or 4, if
x, y, z ∈ V is a base satisfying (2/a) of Corollary 3.2, then x, y, x+ y+ z is a strong
base for G. Finally, in case x, y, z ∈ V is a base for G satisfying (2/b) of Corollary
3.2, then x, y + x, z + x is a strong base for G. �

4. Further reductions

Let us use induction on the dimension n of V in the proofs of Theorems 1.1 and
1.2. The case n = 1 is clear. Let us assume that n > 1 and that both Theorems
1.1 and 1.2 are true for dimensions less than n.

First we reduce the proof of both theorems for the case when G ≤ GL(V ) acts
irreducibly on V . For otherwise let V = V1 ⊕ V2 ⊕ . . .⊕ Vk be a decomposition of
V to irreducible FqG-modules.

By induction, there exist vectors xi,1, . . . , xi,t(q) in Vi for 1 ≤ i ≤ k with the
property that CG({xi,1, . . . , xi,t(q)}) is precisely the kernel of the action of G on Vi.

Now put xj =
∑k

i=1 xi,j for 1 ≤ j ≤ t(q). One can see that CG({x1, . . . , xt(q)}) =

∩k
i=1CG(Vi) = 1.

For Theorem 1.2 notice that G is a subgroup of a direct product ×k
i=1Hi of p-

solvable groups Hi acting irreducibly and faithfully on the Vi’s. Hence we have

|G| ≤

k∏

i=1

|Hi| ≤

k∏

i=1

(

24−1/3|Vi|
d−1

)

= 24−k/3|V |d−1

by induction.
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So from now on we will assume that G ≤ GL(V ) acts irreducibly on V .

For Theorem 1.1 we may also assume that q 6= 2, 4. Otherwise, G is solvable by
the Odd Order Theorem and we can use the result of Seress [18].

For Theorem 1.2 we may assume that |G| > |V |2. If |G| ≤ |V |2 then |V |
2
<

24−1/3|V |
d−1

for |V | ≥ 79, so we may assume that |V | ≤ 73. If |V | is a prime or
p = 2 then G is solvable and the theorem of Pálfy [16] and Wolf [20] can be applied.
Hence the cases |V | = 52, 72, 32 or 33 remain to be examined. But in these cases
there is no non-solvable, p-solvable irreducible subgroup of GL(V ) (see [7]).

Now, if b(G) ≤ 2 then |G| ≤ |V |2. So, once Theorem 1.1 is proved, it remains to
prove Theorem 1.2 only in case q = 3 and b(G) > 2.

5. Imprimitive linear groups

In this section we show that we may assume (for the proofs of Theorems 1.1 and
1.2) that G is a primitive (irreducible) subgroup of GL(V ).

We first consider Theorem 1.1.

For G ≤ GL(V ) an irreducible imprimitive linear group, let V = V1 ⊕ · · · ⊕ Vk be
a decomposition of V into subspaces such that G permutes these subspaces in a
transitive and primitive way. This action of G defines a homomorphism from G
into the symmetric group Sym(Ω) for Ω = {V1, . . . , Vk} with kernel N .

The factor group G/N ≤ Sk is p-solvable, so it does not involve Aq for q ≥ 5 and
it does not involve A5 for q = 3. By using [10, Theorem 2.3] it follows that for
q ≥ 5 there is a vector a = (a1, . . . , ak) ∈ F

k
q such that CG/N (a) = 1, while for

q = 3 there is a pair of vectors a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ F
k
3 such that

CG/N (a) ∩ CG/N (b) = 1. (Here, G/N acts on F
k
q by permuting coordinates.)

In fact for q ≥ 8 even we can say a bit more. For such a q let S be a subset of
Fq of size q/2 with the property that for each c ∈ Fq exactly one of c and c + 1 is
contained in S. By [3, Lemma 1/(c)] there exists a vector a = (a1, . . . , ak) ∈ Sk

such that CG/N (a) = 1.

For each 1 ≤ i ≤ k letHi = NG(Vi), soN = ∩iHi. By induction (on the dimension),
there is a base in V1 of size t(q) for H1/CH1

(V1).

Now we can use Corollary 3.2. First let q ≥ 5. Then there is a base x1, y1 ∈ V1 for
K1 = H1/CH1

(V1) ≤ GL(V1) such that NK1
(〈x1〉) ∩NK1

(〈x1, y1〉) ⊆ NK1
(〈y1〉) or

that any non-identity element of CK1
(x1) ∩NK1

(〈x1, y1〉) takes y1 to y1 + x1.

Let {g1 = 1, g2, . . . , gk} be a set of left coset representatives for H1 in G and
xi = gix1, yi = giy1 for every i. Now let

x =
k∑

i=1

xi, y =
k∑

i=1

yi + aixi.

In case q = 3 let x1, y1, z1 ∈ V1 be a base for K1 = H1/CH1
(V1) ≤ GL(V1)

satisfying (2/a) or (2/b) of Corollary 3.2. Again, let {g1 = 1, g2, . . . , gk} be a set of
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left coset representatives for H1 in G and xi = gix1, yi = giy1, zi = giz1 for every
i. Depending on which part of part (2) of Corollary 3.2 is satisfied for x1, y1, z1 let

x =

k∑

i=1

xi, y =

k∑

i=1

yi z =

k∑

i=1

(zi + bixi + aiyi) if (2/a) holds,

x =

k∑

i=1

xi, y =

k∑

i=1

(yi + aixi) z =

k∑

i=1

(zi + bixi) if (2/b) holds.

In each case, it is easy to see that the given set of vectors is a base for G by using
similar arguments as in the proof of [10, Theorem 2.6].

Now we turn to the reduction of Theorem 1.2 to primitive groups. Notice that N
is a p-solvable group and V is the sum of at least k irreducible FqN -modules, so

we have |N | ≤ 24−k/3|V |
d−1

by Section 4. Since the permutation group G/N ≤ Sk

is 3-solvable, it does not contain any non-Abelian alternating composition factor,
and so |G/N | ≤ 24(k−1)/3, by [15, Corollary 1.5]. But then |G| = |N ||G/N | ≤

24−1/3|V |
d−1

which is exactly what we wanted.

6. Groups of semilinear transformations

In this section we reduce Theorems 1.1 and 1.2 to the case when every irreducible
FqN -submodule of V is absolutely irreducible for any normal subgroup N of G.

For this purpose let N ⊳ G be a normal subgroup of G. Then V is a homogeneous
FqN -module, so V = V1 ⊕ V2 ⊕ · · · ⊕ Vk, where the Vi’s are isomorphic irreducible
FqN -modules. Let T := EndFqN(V1). Assuming that the Vi’s are not absolutely
irreducible, T is a proper field extension of Fq, and

CGL(V )(N) = EndFqN (V ) ∩GL(V ) ≃ GL(k, T ).

Furthermore, L = Z(CGL(V )(N)) ≃ Z(GL(k, T )) ≃ T×. Now, by using L, we
can extend V to a T -vector space of dimension l := dimT V < dimFq

V . As G ≤
NGL(V )(L), in this way we get an inclusion G ≤ ΓL(l, T ). We proceed by proving
the following theorem.

Theorem 6.1. For a proper field extension T of Fq let G ≤ ΓL(l, T ) be a semilinear
group acting on the Fq-space V and let H = G ∩ GL(l, T ). Suppose that G is p-
solvable and that b(H) ≤ t(|T |). Then b(G) ≤ t(|T |).

Proof. We modify the proof of [10, Lemma 6.1] to make it work in this more general
setting.

Clearly we may assume that |T | ≥ 8 is different from a prime. In these cases
t(|T |) = 2.

Let u1, u2 be a base for H . By Corollary 3.2, we may also assume that

NH(〈u1〉) ∩NH(〈u1, u2〉) ⊆ NH(〈u2〉)

or that every non-identity element of CH(u1) ∩ NH(〈u1, u2〉) takes u2 to u2 + u1.
(The latter case occurs only if p = 2.)

For every α ∈ T let Hα = CG(u1) ∩ CG(u2 + αu1) ≤ G. Our goal is to prove that
Hα = 1 for some α ∈ T . If g ∈ 〈∪Hα〉, then g(u1) = u1 and g(u2) = u2 + δu1 for
some δ ∈ T .



THE MINIMAL BASE SIZE FOR A p-SOLVABLE LINEAR GROUP 7

We claim that |〈∪Hα〉 ∩ H | ≤ 2. Let h ∈ 〈∪Hα〉 ∩ H . On the one hand, the
action of h on V is T -linear, since h ∈ H . On the other hand, h(u1) = u1 and
h(u2) = u2 + δu1 for some δ ∈ T . By our assumption above, either h ∈ NH(〈u2〉)
and δ = 0, or h is an involution and δ = 1. Thus we obtain the claim since
CH(u1) ∩ CH(u2) = 1.

Let z be the generator of the group 〈∪Hα〉∩H . This is a central element in 〈∪Hα〉.
For every g ∈ G let σg ∈ Gal(T |Fq) denote the action of g on T .

Let g and h be two elements of 〈∪Hα〉. Since G/H is embedded into Gal(T |Fq),
we get σg 6= σh unless g = h or g = hz. Furthermore, a routine calculation shows
that the subfields of T fixed by σg and σh are the same if and only if 〈g〉 = 〈h〉 or
〈g〉 = 〈hz〉.

If g ∈ Hα∩Hβ , then g(u2) = u2+(α−ασg )u1 = u2+(β−βσg )u1, so α−β is fixed
by σg. Let Kg = {α ∈ T | g ∈ Hα}. The previous calculation shows that Kg is an
additive coset of the subfield fixed by σg, so |Kg| = pd for some d | f = logq |T |.

Since for any d | f there is a unique pd-element subfield of T , we get |Kg| 6= |Kh|
unless the subfields fixed by σg and σh are the same. As we have seen, this means
that 〈g〉 = 〈h〉 or 〈g〉 = 〈hz〉. Consequently, |Kg| 6= |Kh| unless Kg = Kh or
Kg = Khz. Hence we get

|
⋃

g∈∪Hα\{1}

Kg| ≤ 2
∑

d|f,d<f

qd ≤ 2
∑

d<f

qd < qf = |T |.

So there is a γ ∈ T which is not contained in Kg for any g ∈ ∪Hα \ {1}. This
exactly means that Hγ = CG(u1) ∩ CG(u2 + γu1) = 1. �

Using Theorem 6.1, we can assume that G ≤ GL(l, T ). As l = dimT V < dimFq
(V ),

we can use induction on the dimension of V , thus b(G) ≤ 2.

By the last paragraph of Section 4, we need not consider Theorem 1.2 here.

Hence in the following we assume that V is a direct sum of isomorphic absolutely
irreducible FqN -modules for any N ⊳ G.

7. Stabilizers of tensor product decompositions

Let N ⊳ G and let V = V1⊕· · ·⊕Vk be a direct decomposition of V into isomorphic
absolutely irreducible FqN -modules. By choosing a suitable basis in V1, V2, . . . , Vk,
we can assume that G ≤ GL(n, q) such that any element of N is of the form A⊗ Ik
for some A ∈ NV1

≤ GL(n/k, q). By using [12, Lemma 4.4.3(ii)] we get

NGL(n,q)(N) = {B ⊗ C |B ∈ NGL(n/k,q)(NV1
), C ∈ GL(k, q)}.

Let

G1 = {g1 ∈ GL(n/k, q) | ∃g ∈ G, g2 ∈ GL(k, q) such that g = g1 ⊗ g2}.

We define G2 ≤ GL(k, q) in an analogous way. Then G ≤ G1 ⊗ G2. Here
G/Z ≃ (G1/Z) × (G2/Z), hence G1 ≤ GL(n/k, q) and G2 ≤ GL(k, q) are p-
solvable irreducible linear groups. If 1 < k < n, then by using induction for
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G1 ≤ GL(n/k, q) and G2 ≤ GL(k, q) we get b(G1) ≤ t(q) and b(G2) ≤ t(q). Fur-
thermore b∗(G1) ≤ t(q) and b∗(G2) ≤ t(q) by Corollary 3.3. Thus [14, Lemma 3.3
(ii)] gives us

b(G) ≤ b(G1 ⊗G2) ≤ b∗(G1 ⊗G2) ≤

max(b∗(G1), b
∗(G2)) ≤ t(q).

For the reduction of Theorem 1.2, by using induction on the dimension, we have

|G| ≤ |G1| · |G2| ≤ 24−1/3q(n/k)(d−1) · 24−1/3qk(d−1) ≤ 24−1/3|V |
d−1

.

Thus, from now on we can assume that for every normal subgroup N ⊳ G either
N ≤ Z or V is absolutely irreducible as an FqN -module.

8. Groups of symplectic type

From now on assume that N is a normal subgroup of G containing Z such that N/Z
is a minimal normal subgroup of G/Z. Then N/Z is a direct product of isomorphic
simple groups. In this section we examine the situation when N/Z is an elementary
Abelian group.

If N is Abelian then it is central in G. So assume that N is non-Abelian.

If N/Z is elementary Abelian of rank at least 2, then G is of symplectic type. Such
groups were examined in [10, Section 5] (see also [10, Remark 5.20]) where it was
proved that b(G) ≤ 2 unless q ∈ {3, 4}, when b(G) ≤ 3 holds.

For the reduction of Theorem 1.2, we need only examine the case q = 3, n = 2k.
For this we can use the fact that G/N can be considered as a subgroup of the
symplectic group Sp(2k, 2). By the theorem of Pálfy [16] and Wolf [20], we may
assume that G is a non-solvable (and 3-solvable) group. Thus we must have a
composition factor of G (and thus of G/N) isomorphic to a Suzuki group. Since
the smallest Suzuki group Suz(8) has order larger than |Sp(4, 2)|, we must have
k ≥ 3. On the other hand, since the second largest Suzuki group Suz(32) has order
larger than |Sp(6, 2)| and since Suz(8) is not a section of Sp(6, 2) (since 13 divides
the order of the first group but not the order of the second), we see that k 6= 3.

But for k ≥ 4 we clearly have |G| = |N ||G/N | < 22k
2+3k+3 < 24−1/3|V |d−1, by use

of the formula for the order of Sp(2k, 2).

9. Tensor product actions

Now let N/Z be a direct product of t ≥ 2 isomorphic non-Abelian simple groups.
Then N = L1 ⋆ L2 ⋆ · · · ⋆ Lt is a central product of isomorphic groups such that
for every 1 ≤ i ≤ t we have Z ≤ Li, Li/Z is simple. Furthermore, conjugation
by elements of G permutes the subgroups L1, L2, . . . , Lt in a transitive way. By
choosing an irreducible FqL1-module V1 ≤ V , and a set of coset representatives

g1 = 1, g2, . . . , gt ∈ G of G1 = NG(V1) such that Li = giL1g
−1
i , we get that

Vi := giV1 is an absolutely irreducible FqLi-module for each 1 ≤ i ≤ t. Now,
V ≃ V1⊗V2⊗· · ·⊗Vt and G permutes the factors of this tensor product. It follows
that G is embedded into the central wreath product G1 ≀c St. Clearly G1 ≤ GL(V1)
is a p-solvable irreducible linear group. Thus b(G1) ≤ t(q) and b∗(G1) ≤ t(q) by
induction on the dimension m of V1 and by Corollary 3.3.
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First let q ≥ 5. Then t(q) = 2. Thus b(G) ≤ 2 follows from [10, Theorem 3.6] unless
(m, t) = (2, 2). In case (m, t) = (2, 2), that is, G ≤ G1 ≀c S2 ≤ GL(4, q) for some
p-solvable group G1 ≤ GL(2, q) let x1, y1 ∈ V1 be a basis of V1 satisfying either
NG1

(〈x1〉) ⊆ NG1
(〈y1〉) or the property that every non-identity element of CG1

(x1)
takes y1 to y1 + x1. (Such a basis exists by Theorem 3.1.) Now, it is easy to see
that by choosing any α ∈ Fq \ {0, 1} we get that x1 ⊗ x1, y1 ⊗ (y1 + αx1) is a base
for G1 ≀c S2 ≥ G.

Now, let q = 3. Let x1, y1, z1 ∈ V1 be a strong base for G1. Then the stabilizer of
x1 ⊗ x1 ⊗ · · · ⊗ x1
︸ ︷︷ ︸

t factors

∈ V is of the form H = H1 ≀c St, where y1, z1 ∈ V1 is a strong

base for H1 = NG1
(x1), so b∗(H1) ≤ 2. If (m, t) 6= (2, 2) then b(H) ≤ 2 by [10,

Theorem 3.6], which results in b(G) ≤ 3. Finally, let (m, t) = (2, 2). By choosing
a basis x1, y1 ∈ V1, it is easy to see that x1 ⊗ x1, y1 ⊗ y1, x1 ⊗ y1 ∈ V is a base for
GL(V1) ≀c S2 ≥ G.

As for the order of G notice that G ≤ G1 ≀c S where S ≤ St is a 3-solvable group.
Thus by induction and by [15, Corollary 1.5] we have

|G| ≤ |G1|
t|S| ≤ 24−t/3|V1|

(d−1)t
24(t−1)/3 = 24−1/3|V |

d−1
.

10. Almost quasisimple groups

Finally, let Z ≤ N ⊳ G be such that N/Z is a non-Abelian simple group. Let
N1 = [N,N ] ⊳ G and let V1 be an irreducible FpN1-submodule of V and G1 =
{g ∈ G | g(V1) = V1} be the stabilizer of V1. By using the same argument as in the
last paragraph of [10, Page 29] we get that G1 is included in GL(V1) and we have
a chain of subgroups N1 ⊳ G1 ≤ GL(V1) where G1 is p-solvable, N1 is quasisimple
and V1 is irreducible as an FpN1-module.

Suppose that b(G1) ≤ 2 in the action of G1 on V1, that is, there exist x, y ∈ V1 ≤ V
such that CG1

(x) ∩ CG1
(y) = 1. For any element g ∈ G with g(x) = x we have

that N1x = {nx |n ∈ N1} is a g-invariant subset. As the Fp-subspace generated
by N1x is exactly V1, we get that g ∈ G1. This proves that CG(x) ∩ CG(y) =
CG1

(x) ∩CG1
(y) = 1. Thus b(G) ≤ 2.

Hence if we manage to show that b(G1) ≤ 2 then we are finished with the proofs of
both Theorems 1.1 and 1.2.

So assume that G = G1 and V = V1. Moreover, by the previous sections, we
have that q = p. Also N = N1. To summarize, G ≤ GL(V ) is a group having a
quasisimple irreducible normal subgroup N containing Z.

We claim that G/Z is almost simple. For this it is sufficient to see that N/Z is
the unique minimal normal subgroup of G/Z. For let M/Z be another minimal
normal subgroup of G/Z. By Section 8, we may assume that M/Z is non-Abelian.
Furthermore the group MN is a central product and so [M,N ] = 1. But this is
impossible since the centralizer of N in G must be Abelian.

Lemma 10.1. If N has a regular orbit on V then b(G) ≤ 2.

Proof. Since N is normal in G a regular N -orbit ∆ containing a given vector v is
a block of imprimitivity inside the G-orbit containing v. Hence the group CG(v)N
is transitive on ∆ and N is regular on ∆. Thus for every h ∈ CG(v) the number
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|fix(h)| of fixed points of h on ∆ is |CN (h)|. To prove that G has a base of size at
most 2 on V , it is sufficient to see that there exists a vector w in ∆ that is not fixed
by any non-trivial element of CG(v).

First notice that if N/Z(N) is isomorphic to the non-Abelian finite simple group
S then |CG(v)| ≤ |Out(S)| < m(S) where m(S) is the minimal index of a proper
subgroup of S. This latter inequality follows from [1, Lemma 2.7 (i)].

But
∑

|fix(h)| =
∑

|CN (h)| < |CG(v)| ·
|N |

m(S)
< |N |

where the sums are over all non-identity elements h in CG(v). This completes the
proof of the lemma. �

By Lemma 10.1, in the following we may assume that N does not have a regular
orbit on V . Our final theorem finishes the proofs of Theorems 1.1 and 1.2.

Theorem 10.2. Under the current assumptions G is a p′-group and b(G) ≤ 2.

Proof. By using Goodwin’s theorem [9, Theorem 1], Köhler and Pahlings [13, The-
orem 2.2] gave a complete list of (irreducible) quasisimple p′-groups N such that
N does not have a regular orbit on V . In all these exceptional cases, when N/Z
is simple, |Out(N/Z)| is divisible by no prime larger than 3 while p is always at
least 5. So G itself is a p′-group. But then G admits a base of size 2 on V by [10,
Theorem 4.4]. �
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