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Abstract

The intersection shadow theorem of Katona is an important tool in
extremal set theory. The original proof is purely combinatorial. The
aim of the present paper is to show how it is using linear independence
latently.

1 Introduction

Let [n] = {1, 2, . . . , n} be the standard n-element set and let
(
[n]
k

)
denote the

collection of all its k-element subsets.
A family F ⊂

(
[n]
k

)
is called t-intersecting if |F ∩ F ′| = t holds for all

F, F ′ ∈ F , n = k = t > 0.
For an integer s, 0 5 s 5 k, the s-shadow, ∆s(F) is defined by

∆s(F) = {G : |G| = s, ∃F ∈ F , G ⊂ F}.

Katona Intersecting Shadow Theorem ([K]). If F ⊂
(
[n]
k

)
is t-intersecting

then

(1)
∣∣∆s(F)

∣∣ = |F| × (2k − t

s

) / (2k − t

k

)
holds for all s, k − t 5 s 5 k.

Let us note that in the above range the factor of |F| on the right-hand
side is at least one.

Choosing F =
(
[2k−t]

k

)
shows that (1) is best possible.
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Katona’s proof was purely combinatorial. It relied on shifting, an opera-
tion on subsets and families of sets, invented by Erdős, Ko and Rado [EKR].
We are not giving here the rather technical definition but mention that it
maintains the size of the subsets, the size of the family, the t-intersecting
property and it does not increase the size of the shadow.

Repeated applications of shifting produce a family having the following
property.
(2)
For 1 5 i < j 5 n, if j ∈ F ∈ F and i /∈ F then (F − {j}) ∪ {i} ∈ F also.

A family F satisfying (2) is called shifted.
The author proved the following

Claim 1 ([F1]). If F ⊂
(
[n]
k

)
is t-intersecting and shifted then for every

F ∈ F there exists an ` = `(F ), 0 5 ` 5 k − t such that

(3)
∣∣F ∩ [t + 2`]

∣∣ = t + ` holds.

Note that for a fixed ` one can define

A`(n, k, t) =

{
A ∈

(
[n]

k

)
: A ∩ [t + 2`] = t + `

}
.

These are usually called the Frankl-families and they are t-intersecting. It
was conjectured in [F1] and proved by Ahlswede and Khachatrian [AK] that

(4) |F| 5 max
`

∣∣A`(n, k, t)
∣∣

holds for every t-intersecting family F ⊂
(
[n]
k

)
, n = 2k − t. Let us define

F(n, k, t) as the family of all F ∈
(
[n]
k

)
satisfying (3) for some `. Obviously,

F(n, k, t) is the union of A`(n, k, t) for 0 5 ` 5 k − t. In view of Claim 1 we
have

Claim 2. If F ⊂
(
[n]
k

)
is t-intersecting and shifted then F ⊂ F(n, k, t) holds.

Note that F(n, k, t) is no longer t-intersecting for n > 2k − t. However,
the author proved that it still verifies (1).

Proposition 1 ([F2]). If F ⊂ F(n, k, t) then (1) holds.
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2 Inclusion matrices and statement of the re-

sults

Let 0 5 r < k 5 n be integers and F ⊂
(
[n]
k

)
a family of subsets. One defines

the inclusion matrix M(r,F) as a (0− 1)-matrix whose rows are indexed by
the subsets G ∈

(
[n]
r

)
, and columns are indexed by the members F of F . The

general entry is 1 if G ⊂ F and 0 otherwise.
The ordering of the rows is not essential but for convenience we use the

colex order i.e., G precedes G′ iff the maximal element of G \ G′ is smaller
than that of G′ \G.

Note that the (column) vector −→w (F ) is a vector of length
(
n
r

)
having

(
k
r

)
entries equal 1, corresponding to the sets in

(
F
r

)
.

Füredi and the author proved the following.

Theorem ([FF]). If the rank of M(k − t,F) is |F| then F verifies (1).

Let us note that if F ⊂
(
[n]
k

)
is t-intersecting then M(k−t,F) has rank |F|.

In [FW] it was proved in a much more general setting. Therefore the above
theorem generalizes the Katona Intersecting Shadow Theorem. This way
we have two seemingly different generalisations of the Katona Intersecting
Shadow Theorem: Proposition 1 from the introduction with a purely combi-
natorial proof and the above theorem using linear independence.

The aim of the present paper is to show that M
(
k − t, F(n, k, t)

)
has

rank |F(n, k, t)|, i.e., Proposition 1 can be proved via linear independence.
As a matter of fact |F(n, k, t)| =

(
n

k−t

)
holds (cf. [F1]). That is,

M
(
k − t, F(n, k, t)

)
is a square matrix.

Let us call a column vector a standard basis vector if it has exactly one
position equal to 1 (all the others are 0). Now our statements about linear
independence follow once we prove the following.

Theorem 2.1. All the standard basis vectors can be expressed by linear com-
binations over the rationals of the column vectors of M

(
k − t, F(n, k, t)

)
.

3 Proof of the Theorem

We fix t > 0 and apply double induction on n and k. Note that the statement
is trivially true for k = t. Also in the case n = 2k − t one has F(n, k, t) =
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(
[2k−t]

k

)
and the statement is folklore (cf. e.g. [W]). Thus the base cases are

cleared.
Suppose that the statement was proved for n and k′ where n = 2k − t,

t 5 k′ 5 k. Let us prove it for n + 1 and k, k > t.
Let us partition F(n + 1, k, t) into two parts according containment of

the element n + 1. F0 =
{
F ∈ F , (n + 1, k, t) : n + 1 /∈ F

}
. Note that F0 is

simply F(n, k, t).
We prefer to look at the remaining sets without the element n + 1 and

define
F1 =

{
F − {n + 1} : n + 1 ∈ F ∈ F(n + 1, k, t)

}
.

Note that F1 = F(n, k − 1, t).

M(k − t,F(n, k, t)) M(k−t,F(n, k−1, t))

0 M(k−t−1,F(n, k−1, t))

Figure The structure of M(k − t,F(n + 1, k, t))

Let
−→
b (G) denote the standard basis vector of length

(
n+1
k−t

)
where the

coordinates are indexed in colex order by the k − t-subsets of [n + 1],
−→
b (G)

has 1 in position G and 0 everywhere else.

If n + 1 /∈ G, i.e., G ⊂ [n], then
−→
b (G) is the extension by

(
n

k−t−1

)
extra

zeros of the corresponding standard basis vector of length
(

n
k−t

)
, considered

in
(
[n]
k−t

)
. Thus by the induction hypothesis b(

−→
G) can be expressed as a linear

combination of the vectors −→w (F ), F ∈ F0. This takes care of the standard
basis vectors in the left-hand side of the figure.

Let now n + 1 ∈ H ∈
(
[n+1]
k−t

)
. Consider the standard basis vector

−→
b (H−{n+1}) over

(
[n]

k−t−1

)
. By the induction hypothesis there exist rational

numbers c(F ), F ∈ F1 such that

(3.1)
∑
F∈F1

c(F )−→w (F ) =
−→
b (H − {n + 1}) holds.
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Next we lift (3.1) up to
(
[n+1]
k−t

)
. That is we consider the corresponding linear

combination

(3.2)
∑
F∈F1

c(F )−→w (F ∪ {n + 1}) def
=
−→
b .

In (3.2) all vectors are of length
(
n+1
k−t

)
but the coordinates indexed by sets

K ∈
(
[n+1]
k−t

)
, n + 1 ∈ K are in one-to-one correspondence with those indexed

by H − {n + 1} in (3.1). Therefore the vector
−→
b might not be equal to

the standard basis vector
−→
b (H) but they are coinciding on all coordinates

indexed by sets K, n + 1 ∈ K ∈
(
[n+1]
k−t

)
. That is we have the corresponding

standard basis vector in the lower right part of the figure, having exactly one
coordinate equal to 1, zeroes in the rest. Let −→v be the part of this vector in
the upper right part of the figure. If −→v is the all-zero vector then we have
nothing to prove.

Now let us use the standard basis vectors which we obtained using the
upper left part of the figure to express −−→v as a rational linear combination.
Since all these vectors have only zeroes in the bottom half, adding this linear

combination to
−→
b will cancel out −→v in the top part and provide us with the

desired standard basis vector. �

As a combinatorialist, the author feels that it would be desirable to find
some new combinatorial conditions implying (1) that go beyond linear inde-
pendence.
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