
GENERALIZATION OF A THEOREM OF CLIFFORD

P. N. ÁNH

Abstract. The multiplicative monoid of principal ideals partially ordered by reverse in-
clusion, called the divisibility theory, of a Bezout ring R with one minimal prime ideal is a
factor of the positive cone of a lattice-ordered abelian group by an appropriate filter if the
localization of R at its minimal prime ideal is not a field. This result extends a classical result
of Clifford [6] saying that the divisibility theory of a valuation ring is a Rees factor of the
positive cone of a totally ordered abelian group and suggests to modify Kaplansky’s (later
disproved) conjecture [8] as to a Bezout ring whose localization at every minimal prime ideal
is not a field, is the factor of an appropriate Bezout domain.

1. Introduction

The divisibility theory of a Bezout ring R with one minimal prime ideal is characterized
in [4] as a Bezout monoid with one minimal m-prime filter. Inspired by Clifford’s result
[6] that the divisibility theory of a valuation ring is a Rees factor of the positive cone of a
totally ordered abelian group, and by the existence of valuation rings which are not factors of
valuation domains (see [8] for details), which is a negative answer to Kaplansky’s conjecture,
we extend Clifford’s result to Bezout monoids with one minimal prime ideal. In addition,
this extension suggests to sharpen Kaplansky’s conjecture by asking for a classification of all
factors of both Bezout domains and their divisibility theory, respectively.

A word about terminology. All structures are commutative. The divisibility theory of
a ring is the monoid of principal ideals partially ordered by reverse inclusion. The set of
nontrivial elements (i.e. those different from 1 and 0) of a subset X in a monoid is denoted
by X?. The 0-extension of X obtained by adding a new (extra) zero element to X is denoted
by X•.

2. Basic notions and preliminary results

For the benefit of the reader and the sake of self-containedness we present some basic
definitions and results which can be found in full detail in [1], [2] and [4].

Definition 2.1 (cf. Definition 1.1 [1]). A Bezout monoid, in short B-monoid, is a commu-
tative monoid S with 0 which is a distributive lattice with respect to divisibility, called also
the natural partial order a ≤ b ⇐⇒ a|b ⇐⇒ (∃ c : b = ac) such that multiplication is
distributive over both meets and joins, and hyper-normality is satisfied, that is, for any x, y,
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putting d = x∧ y ∈ S and dx1 = x there is y1 with x1 ∧ y1 = 1, dy1 = y. A monoid with 0 is
called 0-cancellative if ax = ay 6= 0 ⇒ x = y.

For each x ∈ S let x⊥ = {y ∈ S : xy = 0} denote the annihilator of x. If x⊥ = 0, then x is
called a regular element or a non-zero-divisor. A filter is a subset F of S closed under ∧ such
that a ∈ F, a ≤ b ∈ S implies b ∈ F . A filter F is called an m-prime filter if ab ∈ F implies
a ∈ F or b ∈ F . A general theory of m-prime filters of B-monoids can be found in [1]. Filters
and m-prime filters correspond naturally to ideals and prime ideals of rings, respectively.

By the main result in [4], the divisibility theories of Bezout rings with one minimal prime
ideal is described as Bezout monoids with one minimal m-prime filter. The investigation of
such B-monoids is initiated in [4]. We recall Propositions 3.1, 3.3, 3.5 and 3.6 as well as
Corollary 3.4 of [4] as

Proposition 2.1. Let S be a B-monoid with a smallest minimal m-prime filter M , T = S\M ,
Z = {x ∈ S | ∃s /∈ M : sx = 0} ⊆ M and N = M \ Z. Then t < n < z for each t ∈ T ,
n ∈ N , z ∈ Z; T is the positive cone of a lattice-ordered abelian group G; and ZM = 0.

Using the notation and assumptions of Proposition 2.1 one can take a classical localization
T−1S of S by inverting elements of T . Thus, T−1S is the set of pairs (a, s) with a ∈ T, s ∈ S
subject to (a, s) ∼ (a1, s1) if there exists a2 ∈ T with a2a1s = a2as1. Notice that we have
(a, as) ∼ (b, bs) for all a, b ∈ T , s ∈ S. T−1S will be a distributive lattice-ordered monoid by
putting

(a, s)(a1, s1) = (aa1, ss1), (a, s)∧(a1, s1) = (aa1, sa1 ∧ as1), (s, a)∨(s1, a1) = (aa1, sa1∨as1).
We write a−1s for the equivalence class of (a, s). It is a tedious but routine task to check

that T−1S is well defined, i.e., independent of the choice of representatives, and then verify
a flock of axioms. There is in addition a natural homomorphism from S into T−1S sending
s ∈ S to (a, as) = a−1as(= s ∈ T−1S), a ∈ T . All elements of S annihilated by some a ∈ T
are exactly the ones that go to 0 ∈ SM under this homomorphism, i.e., Z is the inverse
image of 0 ∈ T−1S in S. Moreover, if r, s ∈ N map to the same (non-zero) element in T−1S,
then there is a ∈ T such that ar = as holds. Therefore, by Proposition 2.23 [1] there is
z ∈ a⊥, i.e., z ∈ Z satisfying r∧ z = s∧ z. By Proposition 2.1 one has r = r∧ z = s∧ z = s
whence N maps injectively into T−1S. Similarly, T maps also injectively into T−1S, i.e.,
Y = S \Z = T ∪N can be identified as a subset of T−1S, although products of elements in Y
taken in S can be in Z. It is worth noting that the induced partial order on T−1S, similarly
to the one on lattice-ordered groups, is not natural because of the existence of non-trivial
invertible elements.

For any a ∈ T and s ∈ N there is r ∈ N with ar = s in view of Proposition 2.1, whence
a−1s = a−1ar = r ∈ N . Hence N• is in fact a filter of T−1S = X• where X is the disjoint
union X = G

.
∪ N . For any two r, s ∈ N , d = r∧ s, one can write by the naturality

of the partial order on S together with hyper-normality r = dr1, s = ds1 with appropriate
r1, s1 ∈ S satisfying r1 ∧ s1 = 1. Consequently, at least one of r1, s1 is contained in T ,
i.e., the filters generated by r, s in T−1S are comparable. This implies that the divisibility
monoid of T−1S, i.e., the monoid of principal filters of T−1S partially ordered by reverse
inclusion is naturally order-isomorphic to the localization Σ of S at M defined (see [1],
Theorem 2.11) by putting elements of T equal to 1. We shall write aσ for the image in
Σ of a ∈ S, which can be considered also as the principal filter T−1Sa of T−1S generated
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by a, and denote elements of Σ by Greek letters α, β, .... Moreover, for each α ∈ Σ put
Sα = {b ∈ S | bσ = α}. Thus S1 = T, S0 = Z. Furthermore, for an element s ∈ S we use
also the notation Ss = {x ∈ S|xσ = sσ}. Therefore, for each s ∈ N the subset Ss can be
considered as a copy of G and G acts naturally on N . The order in Σ is preserved on S in
the sense that, for all x, y ∈ S, x < y if xσ < yσ. In particular, if x, y /∈ Z satisfy xy = y 6= 0,
then x = 1. However, there are B-monoids with one minimal m-prime filter having elements
x 6= 1 and 0 6= y ∈ Z such that xy = y. The above arguments verify

Proposition 2.2. Assuming the conditions and notation of Proposition 2.1, xy = y /∈ Z
implies x = 1, the subset Y = S \Z of S maps injectively into the classical localization T−1S
of S by inverting T . The filter of T−1S generated by N is exactly N•. The quotient group G
of T acts on N , the orbit of any a ∈ N under this action is just Sa, a copy of G, consisting
of elements of T−1S which are generators for the principal filter T−1Sa. In particular, the
divisibility monoid of T−1S is precisely the localization Σ of S by the minimal m-prime filter
M , and the order in Σ is preserved on S : xσ < yσ =⇒ x < y. Moreover, T−1S is X• where
X is the disjoint union X = G

.
∪ N , and in the case Z 6= M , Z is a factor of G by an

appropriate filter.

For another approach of Proposition 2.2 we refer to Theorems 3.9 and 3.10 [4]. More
remarks on classical localization of B-monoids can be found before Proposition 2.29 of [1].

3. The generalization of Clifford’s theorem

¿From now on until Theorem 3.10 S is a Bezout monoid with a smallest m-prime filter M
and M 6= Z, i.e., Σ has at least three elements, although the equality Z = 0 can happen. We
use the notation of the previous section.

For a construction of the positive cone P of a lattice-ordered abelian group A such that S
can be represented as its factor, following Clifford’s ideas [6], let F (X) be the free associative

monoid on the set X = (T−1S) \ {0} = G
.
∪ N . Elements of F (X) are words or, in another

terminology, nonempty finite sequences x̂ = {x1, · · · , xm} of elements xi ∈ X where m is
called the length of x̂, together with the empty word of the length 0, and multiplication is jux-
taposition: if x̂ = {x1, · · · , xm} and ŷ = {y1, · · · , yn}, then x̂ŷ = {x1, · · · , xm, y1, · · · , yn}.

The identity is obviously the empty word. Moreover, the evaluating map p : x̂ 7−→
i=m∏
i=1

xi is

evidently a homomorphism from F (X)?, the subsemigroup of proper (=non-empty) words,
onto T−1S. It is important to emphasise now that p is not a map into S; in fact, it is im-
possible to define natural maps from F (X) into S. Throughout, by a word we always mean
a proper word, and thus the identity of F (X) is the improper (=empty) word.

A word ŷ ∈ F (X)? is called a refinement of a word x̂ ∈ F (X)? if ŷ = ŷ1ŷ2 · · · ŷm =
i=m∏
i=1

ŷi

with p(ŷi) = xi for all i. The relation “is a refinement of” is obviously transitive and reflexive,
but not symmetric. Proposition 2.1 implies

Proposition 3.1. Let x̂ = {x1, · · · , xm}, ŷ = {y1, · · · , yn}, ẑ = {z1, · · · , zl} be words from
F (X)?. If ŷ and ŷẑ are both refinements of x̂, then p(ẑ) = 1.

Proof. Since ŷ is a refinement of x̂, there exists i ≤ n with x1 = y1 · · · yi. On the other hand,
ŷẑ is also a refinement of x̂, whence either there exists j ≤ n with x1 = y1 · · · yj or else k such
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that x1 = y1 · · · ynz1 · · · zk = p(ŷ)z1 · · · zk = p(x̂)z1 · · · zk. The second case implies p(x̂) ≤ x1
and hence by the definition we have 0 6= p(x̂) = p(ŷ) = p(ŷ)p(ẑ), which implies p(ẑ) = 1 by
Proposition 2.2. In the first case, by symmetry one can assume i ≤ j. Proposition 2.1 implies
xi+1 · · ·xj = 1. Therefore letting û = {x2, · · · , xm}, v̂ = {yi+1, · · · , yn} one obtains that both
v̂ẑ and v̂ are refinements of û, and then the result follows by induction on the length n of
ŷ. �

Proposition 3.2. For words x̂ = {x1, · · · , xm}, ŷ = {y1, · · · , xn} from F (X)? there is a
word ẑ = {z1, · · · , zl} of F (X) such that exactly one of the following cases holds:

(1) ẑ is a common refinement of x̂ and ŷ;
(2) ẑ is a refinement of x̂ and there is ŵ ∈ F (X) such that ẑŵ is a refinement of ŷ;
(3) ẑ is a refinement of ŷ and there is v̂ ∈ F (X) such that ẑv̂ is a refinement of x̂.

Remark 3.1. Following Clifford, ẑ will be called a greatest common part (GCP) of x̂ and ŷ.
Notice that if x, y ∈ N satisfy xσ = yσ, then both x̂ = {x} and ŷ = {y} can be considered as
greatest common parts of x̂, ŷ. Therefore, greatest common parts are in general not unique!

Proof. Since xσ1 , y
σ
1 ∈ Σ are comparable, by Proposition 2.2 exactly one of the following cases

holds

(1) xσ1 < yσ1 , consequently x1 < y1 whence y1 = x1ȳ1 holds for some ȳ1 ∈ Y . In that case
put z1 = x1 and x̂1 = {x2, · · · , xm}, ŷ1 = {ȳ1, y2, · · · , yn};

(2) yσ1 < xσ1 , consequently y1 < x1 whence x1 = y1x̄1 holds for some x1 ∈ Y . In this case
put z1 = y1 and x̂1 = {x̄1, x2, · · · , xm}, ŷ1 = {y2, · · · , yn};

(3) xσ1 = yσ1 but x1 6= y1, then there is 1 6= g ∈ G with gx1 = y1. In this case put z1 = x1
and x̂1 = {x2, · · · , xm}, ŷ1 = {g, y2, · · · , yn};

(4) x1 = y1. In this case put z1 = x1 = y1 and x̂1 = {x2, · · · , xm}, ŷ1 = {y2, · · · , yn}.
In each case {z1}x̂1 and {z1}ŷ1 are refinements of x̂ and ŷ, respectively. We now do exactly
the same thing for the elements x̂1 and ŷ1. We find elements z2 ∈ X, x̂2, ŷ2 ∈ F (X) such that
{z2}x̂2, {z2}ŷ2 are refinements of x̂1, ŷ1, respectively. Consequently, {z1, z2}x̂2 = {z1}{z2}x̂2
and {z1, z2}ŷ2 = {z1}{z2}ŷ2 are refinements of x̂, ŷ, respectively. Continuing this process, we
construct a sequence of pairs of elements x̂i, ŷi ∈ F (X), together with a sequence of elements
zi ∈ X such that for each i the elements {z1, · · · , zi}x̂i, {z1, · · · , zi}ŷi are refinements of
x̂, ŷ, respectively. The above process must terminate in a finite number l of steps, for at each
step at least one of the elements x̂i, ŷi is shortened. Then x̂l or ŷl, or both, is the empty
word. Let ẑ = {z1, · · · , zl}. Then ẑx̂l, ẑŷl are refinements of x̂, ŷ, respectively. If both x̂l
and ŷl are the empty word, we are in Case (1). If just x̂l is the empty word, we are in Case
(2). If just ŷl is the empty word, we are in case (3). �

Two words x̂, ŷ ∈ F (X)? are said to be similar, in symbol x̂ ∼ ŷ, if they admit a common
refinement. This relation is obviously reflexive and symmetric. We claim

Proposition 3.3. The relation ∼ is transitive.

Proof. Let x̂ = {x1, · · · , xm}, ŷ = {y1, · · · , xn}, ẑ = {z1, · · · , zl} be elements of F (X)? such
that x̂ ∼ ŷ and ŷ ∼ ẑ. Let û be a common refinement of x̂ and ŷ, and v̂ be one of ŷ and
ẑ. By Proposition 3.2 and Remark 3.1 let ŵ be a greatest common part of û and v̂. If Case
(1) holds, that is, if ŵ is a common refinement of û and v̂, then it is clearly also a common
refinement of x̂ and ẑ, too. Hence x̂ ∼ ẑ. If Case (2) holds, that is, if ŵ is a refinement of û
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and ŵâ is a common refinement of v̂ for some â ∈ F (X), then ŵ and ŵâ are both common
refinements of ŷ. Therefore by Proposition 3.1 p(â) = 1. Consequently, ŵâ is also a common
refinement of û, henceforth it is a common refinement of x̂ and ẑ whence x̂ ∼ ẑ. Case (3), of
course, can be treated in a similar way. �

Thus similarity is an equivalence relation in F (X)?. Consequently, one can see immediately
that it is indeed a congruence relation. Let H be the factor monoid of F (X)? by this congru-
ence. It will be convenient, however, to consider the words x̂, ŷ, · · · of F (X)? as themselves
elements of H, with similarity as the equality relation.

Proposition 3.4. H is commutative.

Proof. It suffices to see {x}{y} = {y}{x} for all x, y ∈ X. There are three cases. If xσ < yσ,
then x < y whence y = xz for some z ∈ X. Consequently, {x}{y} ∼ {x}{z}{x} ∼ {y}{x}.
The case yσ < xσ can be done in the same way. If xσ = yσ, then there is g ∈ G with y = gx.
Consequently, {x}{y} ∼ {x}{g}{x} ∼ {y}{x}, which completes the proof. �

Proposition 3.5. H is cancellative.

Proof. Let x̂ = {x1, · · · , xm}, ŷ = {y1, · · · , xn}, ẑ = {z1, · · · , zl} be elements of F (X) such
that x̂ŷ ∼ x̂ẑ. Let û = {u1, · · · , uk} be a common refinement of x̂ŷ and x̂ẑ. Then there
are 1 ≤ i ≤ j with u1 · · ·ui = x1 = u1 · · ·uj. This implies ui+1 · · ·uj = 1 in view of
Proposition 2.2. Consequently, û1 = {ui+1, · · · , uk} is a common refinement of âŷ and âẑ
where â = {x2, · · · , xm}. The statement is now an immediate consequence of an obvious
induction on the length m of x̂. �

Corollary 3.6. 1 is the identity of H.

Proof. As usual we denote by 1 the word {1}, 1 ∈ X. By Proposition 3.5 the claim follows
immediately from the similarity {x}{1} ∼ {x} for every x ∈ X. �

Remark 3.2. It is worth noting that although F (X)? does not have an identity, its factor
H does, and its identity element is not presented by the empty word.

Proposition 3.7. (1) If x̂ ∼ ŷ then p(x̂) = p(ŷ).
(2) If p(x̂) = p(ŷ) 6= 0 then x̂ ∼ ŷ.
(3) If x̂ ∼ ŷẑ then p(x̂) = p(ŷ)p(ẑ).

Proof. (1) If ẑ is a common refinement of x̂ and ŷ, then p(x̂) = p(ẑ) = p(ŷ) hold obviously.
(2) p(x̂) = p(ŷ) = z ∈ X imply that x̂ and ŷ are refinements of {z}, whence x̂ ∼ ŷ.
(3) p(ŷ)p(ẑ) = p(ŷẑ) = p(x̂).

�

Corollary 3.8. The map x ∈ X 7−→ {x} ∈ H is injective.

Proof. This assertion is a trivial consequence of Proposition 3.7 (1) and (2). �

Let F (Y )? be the subset of F (X)? consisting of the words x̂ = {x1, · · · , xm} with xi ∈
Y = S \ Z. In particular, F (Y )? is exactly the subsemigroup of proper words of the free
associative monoid on the set Y . If x̂ ∈ F (X)? contains some xi ∈ X satisfying xi ∈ N ,
then the commutativity of H as well as the fact that gxi ∈ N holds for all g ∈ G, imply that
x̂ ∼ ŷ with ŷ ∈ F (Y ). This simple but very important observation allows us to reformulate
Proposition 3.2 in the following stronger form.
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Proposition 3.9. For x̂ = {x1, · · · , xm}, ŷ = {y1, · · · , xn} ∈ F (X)? there is ẑ = {z1, · · · , zl} ∈
F (X)? such that exactly one of the following four cases holds:

(1) ẑ is a common refinement of x̂ and ŷ;
(2) ẑ is a refinement of x̂ and there is 1 6= g ∈ G such that ẑ{g} ∼ ŷ;
(3) ẑ is a refinement of x̂ and there is ŵ ∈ F (Y ) such that ẑŵ ∼ ŷ;
(4) ẑ is a refinement of ŷ and there is v̂ ∈ F (Y ) such that ẑv̂ ∼ x̂.

Remark 3.3. The fact that divisibility of S does not induce a total order on S, causes huge
of difficulties. Although we follow closely the proof of Clifford [6], we have to take a bigger
set X of free generators on which divisibility induces a total order although this new ordering
does not coincide with the original partial order on X. This explains why we have to make
a subtle and exhaustive path from Proposition 3.2 to this result. In particular, we are only
interested in the monoid generated by Y but to obtain its necessary properties we have to
embed it in the bigger monoid H generated by X. From now on we call the element ẑ with
the property described in Proposition 3.9 a greatest common part (GCP) of x̂ and ŷ.

In view of Proposition 3.9 it is now easy to define a lattice structure on H. For words
x̂ = {x1, · · · , xm}, ŷ = {y1, · · · , xn} ∈ F (X)? let

(1) x̂∧ ŷ = ẑ = x̂ = ŷ and x̂ ∨ ŷ = ẑ = x̂ = ŷ if ẑ is a common refinement of x̂ and ŷ;
(2) x̂∧ ŷ = ẑ(1∧ g) and x̂ ∨ ŷ = ẑ(1 ∨ g) if ẑ is a refinement of x̂ and there is 1 6= g ∈ G

such that ẑ{g} ∼ ŷ;
(3) x̂∧ ŷ = ẑ = x̂ and x̂ ∨ ŷ = ẑŵ = ŷ if ẑ is a refinement of x̂ and there is ŵ ∈ F (Y )?

such that ẑŵ ∼ ŷ;
(4) x̂∧ ŷ = ẑ = ŷ and x̂ ∨ ŷ = ẑv̂ = x̂ if ẑ is a refinement of ŷ and there is v̂ ∈ F (Y )?

such that ẑv̂ ∼ x̂.

Since G is a lattice-ordered abelian group with positive cone T , the above description of
the greatest common part shows that H is a disjoint union of copies of G indexed by the
positive cone of a totally ordered abelian group. This observation makes the verification of
the following properties of H a routine exercise. First, H is in fact a distributive monoid
and its positive cone, that is, the set of x̂ satisfying 1 = 1∧ x̂, is just P , the image of F (Y )?

in H under the congruence ∼. Moreover, the partial order induced by the lattice structure
of H on P is clearly the natural one. Therefore, the quotient group A of P is an abelian
lattice-ordered group whose positive cone is just P (see also [3]).

We shall need the notion of Rees factor from semigroup theory, which is most conveniently
expressed for Bezout monoids as follows.

Definition 3.4. Let S be a B-monoid and F be a filter in S (hence F is a semigroup ideal
of S). Then the relation x ∼ y ⇐⇒ either x = y /∈ F or x, y ∈ F is a congruence of the
B-monoid S called the Rees congruence of S corresponding to F . The factor of S by this
congruence is denoted by S/F and is called the Rees factor of S by F .

We are now able to generalize Clifford’s theorem.

Theorem 3.10 (cf. [6] Theorem 3). Let S be a B-monoid with one minimal m-prime filter
M satisfying M 6= Z = {s ∈ S | ∃ t /∈M : ts = 0}. Then there exist an abelian lattice-ordered
group A and filters B∞ ⊆ C∞ in the positive cone P of A such that

(1) P is generated by the complement P \ C∞ of C∞ in P ;
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(2) the Rees factors P/C∞ and S/Z are isomorphic; consequently, S is isomorphic to the
Rees factor P/C∞ in the case Z = 0;

(3) In the case Z 6= 0, S is isomorphic to the factor of P by B∞ in the lattice-theoretic
sense, defined as a ∼= b⇐⇒ ∃ c ∈ B∞ : a∧ c = b∧ c.

Moreover, properties (1) and (2) above determine P and A uniquely to within an isomor-
phism leaving fixed the elements of S \ Z if we identify S \ Z with P \ C∞.

Proof. We take for P and A the monoid and its quotient group constructed before Definition
3.4.

We have already seen that A is an abelian lattice-ordered group having P as its positive
cone. The set C∞ of all x̂ such that p(x̂) = 0 is clearly a filter of P . Note that p(x̂) = 0
implies trivially x̂ ∼ ŷ with ŷ ∈ F (Y ), i.e., x̂ ∈ P . Moreover, by Proposition 3.7, for any
two elements x̂, ŷ ∈ P the equality p(x̂) = p(ŷ) 6= 0 holds if and only if x̂ ∼ ŷ, that is,
they represent the same element of P . Therefore p induces an isomorphism between the Rees
factors P/C∞ and S/Z, or equivalently, the mapping x̂ 7−→ p(x̂); C∞ 7−→ 0 is an isomorphism
from P/C∞ onto S/Z.

It is obvious from the definition and the just verified identification that P \ C∞ generates
P .

Now we are going to construct the filter B∞. We consider P as the submonoid of H
generated by Y . Thus the elements of P are given by sequences ŷ = {y1, · · · , yn} with
yi ∈ Y = S \ Z subject to the congruence ∼. It is important to remark here that if a, b ∈
N ; g ∈ G satisfy ab = 0 6= (ga)b = a(gb) in S, then although {g}{a, b} ∼ {ga, b} ∼ {a, gb}
represent the same element of H and the latter two are (proper) words in F (Y )?, {g} is a
proper word only in F (X)?. However, we claim that the evaluation map q : P −→ S induced

by multiplication sending ŷ ∈ F (Y )? to q(ŷ) =
i=n∏
i=1

yi is well defined, that is, it does not

depend on the way of writing ŷ as a product of elements from Y . Again it is very important
here to emphasize that p takes values in T−1S and q takes values in S and although Y is
a subset in both T−1S and S, multiplication of its elements depends strongly on where the
results are considered. In fact, they give the same element in Y if the corresponding value
of q is not contained in Z, otherwise the corresponding values of p are always 0 meanwhile
the ones of q are (possibly nonzero) elements of Z. By this observation one can assume that

q(ŷ) =
i=n∏
i=1

yi ∈ Z and ŷ ∼ ẑ = {z1, · · · , zl} with zi ∈ Y . By Proposition 3.7 one has q(ẑ) ∈ Z.

This implies that at least two of the yi as well as of the zj must belong to N . Moreover, by
multiplying those yi ∈ T and zj ∈ T , respectively, with one of the yi ∈ N and zj ∈ N , one can
assume that all yi and zj belong to N . Let u1 = y1 ∧ z1 ∈ N , y1 = u1t1, z1 = u1s1, t1 ∧ s1 = 1.
Then at least one of t1, s1 belongs to T . Therefore exactly one of the following three cases
holds:

(1) if t1 ∈ T, s1 /∈ T let ŷ1 = {t1y2, · · · , yn} and ẑ1 = {s1, · · · , zl};
(2) if t1 /∈ T, s1 ∈ T let ŷ1 = {t1, y2, ·, yn} and ẑ1 = {s1z2, · · · , zl};
(3) if t1, si ∈ T let ŷ1 = {t1y2, · · · , yn} and ẑ1 = {s1z2, · · · , zl}.

In each case q({u1}ŷ1) = q(ŷ) and q({u1}ẑ1) = q(ẑ). Since A is a group, we obtain ŷ1 ∼ ẑ1.
Hence induction on the sum n + l shows that q is indeed well defined. Consequently, q is
a surjective homomorphism between the B-monoids P and S, and B∞ = {a ∈ P | q(a) =
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0} ⊆ C∞ holds trivially. If a, b ∈ P satisfy q(a) = q(b) 6= 0 ∈ S then we have also q(a∧ b) =
q(a∨b) = q(a) 6= 0 ∈ S. Therefore, one can assume without loss of generality that a ≤ b = ac
for some c ∈ P . This implies q(a) = q(b) = q(a)q(c) < 0 ∈ S, whence hyper-normality yields
the existence of s = q(d), s ∈ S with some d ∈ P such that 1 = s∧ q(c) = q(c∧ d) and
0 = sq(a) = q(ad). The latter equality implies ad ∈ B∞. Taking into account that q(x̂) =
1, x̂ ∈ F (Y )? if and only if x̂ = {1, · · · , 1}, hence we obtain c∧ d = 1 ∈ P . Consequently,
one has ad∧ a = a = a(c∧ d) = ac∧ ad = b∧ ad, which verifies claim (3).

To prove the uniqueness, let A′ be another abelian lattice-ordered group together with its
positive cone P ′ and filters B′∞, C

′
∞ satisfying the assumptions of Theorem 3.10. Identifying

P ′\C ′∞ with S\Z provides a surjective homomorphism from F (Y ) to P ′. This homomorphism
factors through P as is easy to check by the definition. To complete the proof, it suffices to
show that the above homomorphism is injective. If two elements a, b of P map to the same
element of P ′, then so do their join and meet. Thus one can assume a ≤ b = bc for some
c ∈ P . But this implies that c maps to 1 ∈ P ′, whence p(c) = 1. Consequently, c = 1 in P
because 1 is the unique invertible element of the Rees factor S/Z. Hence a = b, showing the
uniqueness of A and P . �

Remarks 3.5. (1) In case of a local B-semigroup S, i.e., in the case of a naturally totally
ordered, 0-cancellative semigroup, Clifford [6] started with the free semigroup F (S?)?

not allowing any invertible elements, by taking advantage of the total order. Strange
enough, in the general case we cannot start with S? \ Z although at the end we have
to use it to obtain a positive cone! Since we do not have a total order, even in the
case of a local B-semigroup we start in fact by extending the set of free generators
through inverting certain elements.

(2) Combining Therorem 3.10 with Clifford’s result it follows immediately that the group
A in Theorem 3.10 is the direct product of a totally ordered abelian group with a
lattice-ordered group G, endowed with the lexicographic order. However, this ob-
servation does not simplify the proof of Theorem 3.10 because it is unclear how the
partial factor system of S could be extended to one of A. On the other hand, in view
of the fact that the lexicographic product of two nontrivial partially ordered groups
is lattice-ordered iff the first is a chain and the second is a lattice, a possibly best
generalization of Clifford’s theorem is obtained in Theorem 3.10.

(3) Assume now that S is a B-monoid with one minimal m-prime filter M such that
M 6= Z = {s ∈ S | ∃ t /∈ M : ts = 0} 6= 0. In view of Proposition 2.1, for each
x ∈ N = M \ Z there is y ∈ N such that 0 6= xy = z ∈ Z, whence together
with Proposition 2.2, as in [4] Proposition 3.13, one can see easily that there is an
involution, i.e., an order-reversing function ı : Σ? ←− Σ?, ı2 = 1 such that SαSı(α) = Z.
Moreover, it can be shown without difficulty that in the factor monoid of H with
respect to the congruence for which each occurrence of G is a congruence class, all
the words {d, g}, d ∈ Sα, g ∈ Sı(α), α ∈ Σ? represent the same element, which is the
greatest element not contained in Σ?. This fact together with Theorem 3.10 yields
another proof for Claim 3 of [4] Theorem 3.15. One can also use Theorem 3.10 to
represent B-monoids with one minimal m-prime filter of type II and III (see in [4]) as
the divisibility theory of appropriate Bezout rings. In this case, these Bezout rings
are factor rings of suitable Bezout domains. This fact shows again the advantage of
using divisibility in solving certain ring problems.
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(4) If S is a B-monoid such that S \ {0} is the positive cone of a lattice-ordered group G,
then S is obviously the factor of the positive cone of the lexicographic product Z⊕G
by the filter generated by the subset {(n, g) |n ≥ 0}, where Z is the additive group of
integers.

Let S be a B-monoid with one minimal m-prime filter M and Z = {s ∈ S | ∃ t /∈M : ts =
0}. Then Z is a Bezout act (see the definition in [4] Definition 3.1) over T •, T = S \M . By
Proposition 2.2 Z is the factor of the quotient group G of T by the congruence g1, g2 ∈ G :
g1 ∼ g2 ⇐⇒ ∃h ∈ F : g1 ∧h = g2 ∧h with respect to an appropriate filter F of G. The group
Z⊕G, where Z is the additive group of integers, is lattice-ordered with respect to the order
(m, g) < (n, h) iff either m < n or m = n, g < h. Then P = {(n, g)|n ≥ 0} is the positive
cone of Z⊕G and S is obviously the factor of P with respect to the filter generated by the
subset {(1, g)|g ∈ F} in case M = Z, and Z is the factor of G by the filter F . Therefore
Theorem 3.10 can be reformulated in a sharpened form as follows.

Theorem 3.11. Let S be a B-monoid with one minimal m-prime filter M such that Z =
{s ∈ S | ∃ t /∈M : ts = 0} is a factor of the quotient group of T = S \M . Then S is a factor
of the positive cone of a lattice-ordered abelian group.

If a B-monoid S with one minimal m-prime filter M satisfies M = {s ∈ S | ∃ t /∈ M :
ts = 0} = Z 6= 0, then it is an open question whether S is a factor of the positive cone
of a lattice-ordered abelian group. In view of counterexamples to Kaplansky’s conjecture
on valuation rings (cf. [8] and references given there) the answer can be negative and of a
set-theoretic nature. Hence it is important and interesting to find sufficient conditions for a
positive answer, i.e., conditions on B-monoids S with one minimal m-prime filter M satisfying
M = {s ∈ S | ∃ t /∈M : ts = 0} = Z 6= 0 to be factors of positive cones of appropriate lattice-
ordered abelian groups. If one assumes in addition that the filter F generated by all a⊥

(a ∈ Z?) is proper, i.e., F 6= S, then S is a submonoid of a classical localization U−1S
where U is the complement in S of some m-prime filter of S containing F . Since U ⊆ T and
T = S \M is cancellative, m-primeness implies that the subset {u−1v |u, v ∈ U} is a lattice-
ordered abelian subgroup L of G, the quotient group of T . Since the divisibility theory Ω of
U−1S is totally ordered, interchanging the role of G, H and Σ, Ω, respectively, a repetition
of the proof of Theorem 3.10 yields, in view of [1] Proposition 2.29, the following result.

Theorem 3.12. Let S be a B-monoid with one minimal m-prime filter M with M = {s ∈
S |∃ t /∈ M : ts = 0} 6= 0. If the filter generated by all a⊥ (a ∈ M?) is proper, then S is
a factor of the positive cone of a lattice-ordered abelian group. More generally, if I is an
m-prime filter in an arbitrary B-monoid S, and K = {s ∈ S | ∃t /∈ I : ts = 0}, then the
factor B-monoid S/K is a factor of the positive cone of a lattice-ordered abelian group.
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3. P. N. Ánh, M. Siddoway, Gauss’ Lemma and valuation theory, submitted.
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