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Abstract
Following groundbreaking work by Haussler and Welzl (1987), the use of small ε-nets has become
a standard technique for solving algorithmic and extremal problems in geometry and learning
theory. Two significant recent developments are: (i) an upper bound on the size of the smallest
ε-nets for set systems, as a function of their so-called shallow-cell complexity (Chan, Grant,
Könemann, and Sharpe); and (ii) the construction of a set system whose members can be obtained
by intersecting a point set in R4 by a family of half-spaces such that the size of any ε-net for
them is at least Ω( 1

ε log 1
ε ) (Pach and Tardos).

The present paper completes both of these avenues of research. We (i) give a lower bound,
matching the result of Chan et al., and (ii) generalize the construction of Pach and Tardos to
half-spaces in Rd, for any d ≥ 4, to show that the general upper bound, O( dε log 1

ε ), of Haussler
and Welzl for the size of the smallest ε-nets is tight.

Keywords and phrases ε-nets; lower bounds; geometric set systems; shallow-cell complexity;
half-spaces.

1 Introduction

Let X be a finite set and let R be a system of subsets of an underlying set containing X. In
computational geometry, the pair (X,R) is usually called a range space. A subset X ′ ⊆ X
is called an ε-net for (X,R) if X ′ ∩ R 6= ∅ for every member R ∈ R with at least ε|X|
elements. The use of small-sized ε-nets in geometrically defined range spaces has become a
standard technique in discrete and computational geometry, with many combinatorial and
algorithmic consequences. In most applications, ε-nets precisely and provably capture the
most important quantitative and qualitative properties that one would expect from a random
sample. Typical applications include the existence of spanning trees and simplicial partitions
with low crossing number, upper bounds for discrepancy of set systems, LP rounding, range
searching, streaming algorithms; see [16, 13].

For any subset Y ⊆ X, define the projection of R on Y to be the set system

R|Y :=
{
Y ∩R : R ∈ R

}
.

The Vapnik-Chervonenkis dimension or, in short, the VC-dimension of the range space (X,R)
is the minimum integer d such that |R|Y | < 2|R| for any subset Y ⊆ X with |Y | > d.

A straightforward sampling argument shows that every range space (X,R) has an ε-net
of size O( 1

ε log |R|X |). The remarkable result of Haussler and Welzl [11], based on previous
work of Vapnik and Chervonenkis [22], shows that much smaller ε-nets exist if we assume
that our range space has small VC-dimension.

According to the Sauer–Shelah lemma [20, 21] (discovered earlier by Vapnik and Chervon-
enkis [22]), for any range space (X,R) whose VC-dimension is at most d and for any subset
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Y ⊆ X, we have |F|Y | = O(|Y |d). Haussler and Welzl [11] showed that if the VC-dimension
of a range space (X,D) is at most d, then by picking a random sample of size Ω(dε log d

ε ), we
obtain an ε-net with positive probability. Actually, they only used the weaker assumption
that |R|Y | = O(|Y |d) for every Y ⊆ X. This bound was later improved to (1 + o(1))(dε log 1

ε ),
as d, 1

ε → ∞ [12]. In the sequel, we will refer to this result as the ε-net theorem. The key
feature of the ε-net theorem is that it guarantees the existence of an ε-net whose size is
independent of both |X| and |R|X |. Furthermore, if one only requires the VC-dimension of
(X,R) to be bounded by d, then this bound cannot be improved. It was shown in [12] that
given any ε > 0 and integer d ≥ 2, there exist range spaces with VC-dimension at most d,
and for which any ε-net must have size at least

(
1− 2

d + 1
d(d+2) + o(1)

)
d
ε log 1

ε .
The effectiveness of ε-net theory in geometry derives from the fact that most “geometrically

defined” range spaces (X,R) arising in applications have bounded VC-dimension and, hence,
satisfy the condition of the ε-net theorem.

There are two important types of geometric set systems, both involving points and
geometric objects in Rd, that are used in such applications. Let R be a family of possibly
unbounded geometric objects in Rd, such as the family of all half-spaces, all balls, all polytopes
with a bounded number of facets, or all semialgebraic sets of bounded complexity ≤ d, i.e.,
subsets of Rd defined by at most D polynomial equations or inequalities in the d variables,
each of degree at most D. Given a finite set of points X ⊂ Rd, we define the primal range
space (X,R) as the set system “induced by containment” in the objects from R. Formally, it
is a set system with the set of elements X and sets {X ∩ R : R ∈ R}. The combinatorial
properties of this range space depend on the projection R|X . Using this terminology, Radon’s
theorem [13] implies that the primal range space on a ground set X, induced by containment
in half-spaces in Rd, has VC-dimension at most d+ 1 [16]. Thus, by the ε-net theorem, this
range space has an ε-net of size O(dε log 1

ε ).
In many applications, it is natural to consider the dual range space, in which the roles

of the points and ranges are swapped. As above, let R be a family of geometric objects
(ranges) in Rd. Given a finite set of objects S ⊆ R, the dual range space “induced” by
them is defined as the set system (hypergraph) on the ground set S, consisting of the sets
Sx := {S|x ∈ S, S ∈ S}, for all x ∈ Rd. It is easy to see [16] that if the VC-dimension of the
range space (X,R) is less than d, then the VC-dimension of the dual range space induced by
any subset of R is less than 2d.

Recent progress.

In many geometric scenarios, however, one can find smaller ε-nets than those whose existence
is guaranteed by the ε-net theorem. It has been known for a long time that this is the case, e.g.,
for primal set systems induced by containment in balls in R2 and half-spaces in R2 and R3.
Over the past two decades, a number of specialized techniques have been developed to show
the existence of small-sized ε-nets for such set systems [18, 14, 19, 8, 9, 4, 23, 24, 7, 6, 15, 5].
Based on these successes, it was generally believed that in most geometric scenarios one
should be able to substantially strengthen the ε-net theorem, and obtain perhaps even a
O
( 1
ε

)
upper bound for the size of the smallest ε-nets. In this direction, there have been two

significant recent developments: one positive and one negative.

Upper bounds. Following the work of Clarkson and Varadarajan [9], it has been gradually
realized that if one replaces the condition that the range space (X,R) has bounded VC-
dimension by a more refined combinatorial property, one can prove the existence of ε-nets of
size o( 1

ε log 1
ε ). To formulate this property, we need to introduce some terminology.
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Given a function ϕ : N→ R+, we say that the primal range space (X,R) has shallow-cell
complexity ϕ if there exists a constant c = c(R) > 0 such that, for every Y ⊆ X and for
every positive integer l, the number of at most l-element sets in R|Y is O

(
|Y | · ϕ(|Y |) · lc

)
.

This condition imposes sharper restrictions on the range space than the requirement that
its VC-dimension is bounded and, hence, the projection of R on X grows polynomially in
|X|. Indeed, if, e.g., (X,R) has shallow-cell complexity ϕ(n) = O(nD), for some D > 0,
then we have |R|Y | = O(|Y |1+D+c(R)). However, this latter condition does not yield much
information on the finer distribution of the sizes of the smaller sets in R|Y .

Several of the range spaces mentioned earlier turn out to have low shallow-cell complexity.
For instance, the primal range spaces induced by containment of points in disks in R2 or
half-spaces in R3 have shallow-cell complexity ϕ(n) = O(1). In general, it is known [13] that
the primal range space induced by containment of points by half-spaces in Rd has shallow-cell
complexity ϕ(n) = O

(
nbd/2c−1).

Define the union complexity of a family of objects R, as the maximum number of faces of
all dimensions that the union of any n members of R can have; see [1]. Applying a simple
probabilistic technique developed by Clarkson and Shor [10], we can find an interesting
relationship between the union complexity of a family of objects R and the shallow-cell
complexities of the dual range spaces induced by subsets S ⊂ R. Suppose that the union
complexity of a family R of objects in the plane is O(nϕ(n)), for some “well-behaved”
function ϕ. Then the dual range space induced by any subset S ⊂ R has shallow-cell
complexity O(ϕ(n)). According to the above definitions, this means that for any S ⊂ R
and for any positive integer l, the number of l-element subsets S ′ ⊆ S for which there is a
point in R2 contained in all elements of S ′, but in none of the elements of S \ S ′, is at most
O
(
|S|ϕ(|S|)lc(R)), for a suitable constant c(R). (Note that for small values of l, these points

– and the corresponding cells ∩S∈S′S – are not heavily covered, which explains the use of the
adjective “shallow.”)

For example, the family of fat triangles (i.e., triangles for which the ratio of the radii
of the circumscribing and inscribed circles is bounded from above by a constant) is known
to have union complexity O(n log∗ n); see [3]. Therefore, the shallow-cell complexity of the
corresponding dual range spaces is ϕ(n) = O(log∗ n).

From a series of elegant results [4, 7, 24], one can easily deduce that if the shallow-cell
complexity of a set system is ϕ(n) = o(n), then its permits smaller ε-nets than what is
guaranteed by the ε-net theorem. The following theorem represents the current state-of-the-
art.

I Theorem A. Let (X,R) be a range space with shallow-cell complexity ϕ, where ϕ(n) = O(nd)
for some constant d. Then, for every ε > 0, it has an ε-net of size O( 1

ε logϕ( 1
ε )), where the

constant hidden in the O-notation depends on d.

Proof. (Sketch.) The main result in [7] shows the existence of ε-nets of size O
( 1
ε logϕ(|X|)

)
for any non-decreasing function ϕ1. To get a bound independent of |X|, first compute a
small (ε/2)-approximation A ⊆ X for (X,R) [13]. It is known that there is such an A with
|A| = O

(
d
ε2 log 1

ε

)
= O( 1

ε3 ), and for any R ∈ R, we have |R∩A||A| ≥
|R|
|X| −

ε
2 . In particular, any

R ∈ R with |R| ≥ ε|X| contains at least an ε
2 -fraction of the elements of A. Therefore, an

(ε/2)-net for (A,R|A) is an ε-net for (X,R). Computing an (ε/2)-net for (A,R|A) gives the
required set of size O

( 2
ε logϕ(|A|)

)
= O

( 1
ε logϕ( 1

ε3 )
)

= O
( 1
ε logϕ( 1

ε )
)
. J

1 Their result is in fact for the more general problem of small weight ε-nets.
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Lower bounds. It was conjectured for a long time [14] that most geometrically defined
range spaces of bounded Vapnik-Chervonekis dimension have “linear-sized” ε-nets, i.e., ε-nets
of size O

( 1
ε

)
. These hopes were shattered by Alon [2], who established a superlinear (but

barely superlinear!) lower bound on the size of ε-nets for the primal range space induced by
straight lines in the plane. Shortly after, Pach and Tardos [17] managed to establish a tight
lower bound, Ω( 1

ε log 1
ε ) for the size of ε-nets in primal range spaces induced by half-spaces

in R4, and in several other geometric scenarios.
I Theorem B. [17] Let F denote the family of half-spaces in R4. For any ε > 0, there exist
point sets X ⊂ R4 such that in the (primal) range spaces (X,F), the size of every ε-net is
Ω( 1

ε log 1
ε ).

Our contributions.

The aim of this paper is to complete both avenues of research opened by the above two
theorems. In Section 2, we optimally generalize Theorem B to higher dimensions, and hence
completely solve the ε-net problem for half-spaces in Rd, for d ≥ 4.
I Theorem 1. For any integer d ≥ 4 and any ε > 0, there exist primal range spaces (X,F)
induced by point sets X and collection of half-spaces F in Rd such that the size of every ε-net
for (X,F) is Ω(dε log 1

ε ).
We have seen that for any d ≥ 1 the VC-dimension of any range space induced by points

and half-spaces in Rd is at most d+ 1. Thus, Theorem 1 matches, up to a constant factor
independent of d and ε, the upper bound implied by the ε-net theorem. The key idea of the
proof of [17] is to construct a set B of axis-parallel rectangles in the plane such that for any
A ⊂ B there exists a small set Q of points that hit exactly the rectangles from B \ A (see
Lemma 4). The main new ingredient in our proof is a generalization of this statement to Rd
with the set Q having the same size but the number of axis-parallel boxes d times larger.
This gives the improvement by a factor d.

As Noga Alon pointed out to us, it is not hard to see that for a fixed ε > 0, the lower
bound for ε-nets for primal range spaces induced by half-spaces in Rd has to grow at least
linearly in d. Suppose that we want to obtain a 1

3 -net, say, for the range space induced by
open half-spaces on a set X of 3d points in general position in Rd. Notice that for this we
need at least d+ 1 points. Indeed, any d points of X span a hyperplane, and one of the open
half-spaces determined by this hyperplane contains at least |X|3 points.

In Section 3, we show that the bound in Theorem A cannot be improved.
I Definition 1. A function ϕ : R+ → R+ is called submultiplicative if
1. ϕα(n) ≤ ϕ(nα) for 0 < α < 1 and a sufficiently large positive n, and
2. ϕ(x)ϕ(y) ≥ ϕ(xy) for any sufficiently large x, y ∈ R+.

I Theorem 2. Let d be a fixed positive integer and let ϕ : N→ R+ be any submultiplicative
function with ϕ(n) = O(nd). Then, for any ε > 0 there exist range spaces (X,F) that have

(i) shallow-cell complexity ϕ, and for which
(ii) the size of any ε-net is at least Ω( 1

ε logϕ( 1
ε )).

We have remarked that ϕ(n) = Ω(n) implies that |F|Y | = Ω(|Y |2) for any Y ⊆ X.
Therefore, in this case the last theorem yields a lower bound of Ω( 1

ε log 1
ε ), which was known

for a long time in VC-dimension theory [12]. This fact also follows from Theorem B, as the
primal set system induced by points and half-spaces in R4 is known to have shallow-cell
complexity ϕ(n) = O(n).
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Theorem 2 becomes interesting when ϕ(n) = o(n) and the upper bound 1
ε logϕ( 1

ε ) in
Theorem A improves on the general upper bound 1

ε log 1
ε guaranteed by the ε-net theorem.

Theorem 2 shows that, if ϕ(n) = o(n), even this improved bound is asymptotically tight.
This result suggests that the introduction of the notion of shallow-cell complexity provided
the right framework for ε-net theory.

2 Proof of Theorem 1

We prove Theorem 1 by first reducing the problem from that of the primal range space
induced by half-spaces to a dual range space induced by axis-parallel boxes. Consider the
range space (B,P), where the base set B consists of (d+ 1)-dimensional axis-parallel boxes2
in Rd+1 and P is the set system induced by points, i.e., B′ ∈ P if and only if there exists a
point p ∈ Rd+1 such that B′ = {B ∈ B : p ∈ B}.
I Lemma 3. Let (B,P) be the dual range space induced by a set of boxes B and points in
Rd+1. Then there exists a function f : B → R2d+2 such that for every B′ ∈ P, there exists a
half-space H in R2d+2 with {f(B), B ∈ B′} = H ∩ {f(B), B ∈ B}.

Proof. By translation, we can assume that all the boxes in B lie in the positive orthant of Rd+1.
First, consider the function g : B → R2d+2, where the box B = [xl1, xr1]× · · · × [xld+1, x

r
d+1] is

mapped to the point (xl1, 1/xr1, · · · , xld+1, 1/xrd+1) ∈ R2d+2 lying in the positive orthant of
R2d+2. Clearly, for any point p = (a1, . . . , ad+1), we have p ∈ B if and only if g(B) ∈ Bp =
[0, a1]× [0, 1/a1]× · · · × [0, ad+1]× [0, 1/ad+1]. Thus, g(·) maps the set of boxes in B to a set
of points in R2d+2, such that for any point p ∈ Rd+1 contained in the set B′ ⊆ B, the box Bp
in R2d+2 contains precisely the points corresponding to the boxes of B′. Note that for any p,
the box Bp contains the origin. Now apply Lemma 2.3 in [17] to the set {f(B), B ∈ B}. J

We first state the main technical result of this section.
I Lemma 4. Let k be a positive integer. Then there exists a set B of boxes in Rd+1 such
that |B| = (k − 1)d2k−2 and for any S ⊆ B there exists a 2k−1-element set Q of points in
Rd+1 with the property that

(i) Q ∩R 6= ∅ for any R ∈ B \ S, and
(ii) Q ∩ S = ∅ for any S ∈ S.
The above lemma immediately implies a lower bound for the size of ε-nets for dual range

spaces induced by boxes.
I Theorem 5. Let ε > 0 and let n > n0(ε) be a sufficiently large integer. Then there exists a
set B of boxes in Rd+1 such that |B| = n and any ε-net for the dual range space (B,P) is of
size at least (1− o(1)) d8ε log 1

ε .

Proof. Apply Lemma 4 with k = blog 1
ε c to get a set B of (k − 1)d2k−2 boxes in Rd+1. We

claim that the dual range space (B,P) does not have a small ε-net. Assume that there is
an ε-net S ⊆ B, where | S | ≤ |B|/2. By Lemma 4, there exists a set of points Q such that
|Q| = 2k−1, each box in S does not contain any point of Q, and each box in B \S contains at
least one point of Q. By the pigeonhole principle, there is a point p from Q that is contained
at least |B \ S |/|Q| sets from B \ S. But then

|B \ S |
|Q|

≥ |B|/2
|Q|

= |B|
2 · 2k−1 ≥ ε|B|,

2 An axis-parallel box in Rd is the Cartesian product of d+ 1 intervals. For simplicity, in the sequel, they
will be called “boxes”.
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as 2−k−1 ≤ ε ≤ 2−k. Thus, none of the at least ε|B| sets hit by p are picked in S, a
contradiction. Hence, any ε-net must have size at least |B|/2 = (k−1)d2k−2

2 ≥ (1−o(1)) d8ε log 1
ε .

The above lower bound holds for a fixed value of n, as a function of 1/ε. Now the theorem
follows for any n, by replacing each box of B with several copies, as in the proof of Theorem 1
in [17]. J

Proof of Theorem 1.

By Lemma 3, any lower bound for ε-nets for the dual set system induced by a set of boxes in
Rd+1 gives a lower bound for the primal set system induced by half-spaces in R2d+2. Now
Theorem 1 follows immediately from Theorem 5 for even d, and with a slight loss in the
constant, for odd d by applying the lower bound for d− 1. J

We now return to the proof of the main technical statement of this section.

Proof of Lemma 4.

Let K = [0, 1]d+1 be a cube in Rd+1; the constructed sets B will lie in K. Our construction
will have |B| = (k − 1)d2k−2.

For ease of exposition, we will identify intervals with binary sequences; namely, a binary
sequence 0.l1l2 . . . ls will correspond to the interval (0.l1l2 . . . ls000 . . . , 0.l1l2 . . . ls111 . . .) ⊂
(0, 1). For example, the sequence 0 corresponds to the interval (0, 1), the sequence 0.0
corresponds to the interval (0, 1/2) and so on. We call s the size of the sequence. The “trivial”
sequence 0 is of size 0, 0.0 of size 1 and so on. Note that sequences of size s correspond to
intervals of Euclidean length 2−s. We denote both sequences and the corresponding intervals
by capital letters X,Y with subscripts.

Each box in B will be a Cartesian product of d + 1 intervals (each represented by a
sequence). In fact, B =

⋃d
i=1 Bi, where each B ∈ Bi will have the form B = 0× 0× . . .×

Xi ×Xi+1 × 0× . . .× 0. The only “non-trivial” intervals – that is, not equal to (0, 1) – are
the i-th and the (i+ 1)-th ones. When clear from the context, we will omit the (d− 1) trivial
intervals, and simply write B = Xi ×Xi+1 for B ∈ Bi. Set Bi = Bi1

⋃
· · ·
⋃
Bik−1, where

Bij = {Xi ×Xi+1, Xi = 0.l1 . . . lk−j , Xi+1 = 0.m1 . . .mj : lk−j = mj = 1}.

The construction of B is complete. For every i and j, we have |Bij | = 2k−2. Then,
|B| =

∑d
i=1
∑k−1
j=1 |Bij | = d(k − 1)2k−2. It remains to show the existence of the desired set Q

for any set S ⊆ B.
We start with the following crucial observation, stated without proof.

I Observation 6. Consider two boxes X = X1×X2× . . .×Xd+1 and Y = Y1×Y2× . . .×Yd+1.
They intersect if and only if for each i ∈ [1, d+ 1], one of Xi or Yi is a subsequence of the
other (By convention, 0 is considered to be a subsequence of every other sequence).

Moreover, if this is the case, then we have X ∩ Y = Z1 × . . . × Zd+1, where Zi =
arg max{size(Xi), size(Yi)}.

It will be useful to define the following larger set of boxes:

(i, j)-level := {Xi ×Xi+1 : Xi is a sequence of size k − j,Xi+1 is a sequence of size j}.

Note that the length of the interval in the i-th and (i+ 1)-th coordinates is 2−k+j and 2−j ,
respectively, for the (i, j)-level. Also, for any i and j, the boxes from the (i, j)-level are
disjoint, with their closures forming a cover of K.
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Fix some i ∈ [1, d] and j ∈ [1, k − 1]. We say four boxes from the (i, j)-level are grouped
if the corresponding sequences for the i-th and (i + 1)-th coordinate of these boxes differ
only in the last bit. This provides us with the partition of the boxes on the (i, j)-level into
2k−2 groups. Denote this set of groups by G(i, j). Note that for every group G, we have
|G ∩ B| = 1. Given S, we define the following set of boxes:

H(i, j) =
⋃

G∈Gi,j ,|G∩S|=0

{B ∈ G : B = Xi ×Xi+1, sum of the last digits of Xi, Xi+1 is even}
⋃

⋃
G∈Gi,j ,|G∩S|=1

{B ∈ G : B = Xi ×Xi+1, sum of the last digits of Xi, Xi+1 is odd}.

(1)

Note that each box B ∈ H(i, j) belongs to the (i, j)-level, and so is of the form B =
Xi ×Xi+1, where Xi has size k − j and Xi+1 has size j. Set

H =
⋃

i∈[1,d],j∈[1,k−1]

H(i, j).

For each B = Xi ×Xi+1 ∈ Bij , the sum of the last digits of Xi and Xi+1 is even, and so a
simple but crucial property of the system of boxes H is that

H ∩ B = B \ S. (2)

The construction of the set H(i, j) is illustrated on
the right. The groups on the (i, j)-level are bounded
by thick lines, and the rectangles from the (i, j)-level
that belong to H(i, j) are marked red. In each “thick”
box there are 4 “thin” boxes that form the group, and
the upper right one from each group belongs to B. We
choose one of the diagonals in each thick box to be in
H(i, j) depending on whether the upper right thin box
is in S or not.

The set Q we are going to construct will be a hitting set for H. This suffices to prove the
lemma: note that |Q| = |H(i, j)| = 2k−1 for each i, j, and since the boxes at the (i, j)-level
are disjoint, each point from Q must hit exactly one box from H(i, j) and, hence, no box of
S (by equation (2)).

Before we describe the construction of Q, we define the set of hitting boxes A(i, j):
1. A(1, 1) = H(1, 1),
2. For i ∈ [1, d], j ∈ [2, k − 1]

A(i, j) = {A ∩H : A ∈ A(i, j − 1), H ∈ H(i, j), A ∩H 6= ∅},

3. For i ∈ [2, d]

A(i, 1) = {A ∩H : A ∈ A(i− 1, k − 1), H ∈ H(i, 1), A ∩H 6= ∅}.

The key properties of the sets of hitting boxes are formulated in the following lemma.

I Lemma 7. Let A(·, ·) be as defined above. Then
(i) For i ∈ [2, d], each A ∈ A(i− 1, k − 1) intersects exactly one box from H(i, 1). Moreover,

each box H ∈ H(i, 1) is intersected by some A ∈ A(i− 1, k − 1).
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(ii) Let i ∈ [1, d], and j ∈ [2, k − 1]. Then each A ∈ A(i, j − 1) intersects exactly one box
from H(i, j). Moreover, each box H ∈ H(i, j) is intersected by some A ∈ A(i, j − 1).

Proof. The proof of the lemma is by induction on the pair (i, j) with lexicographic ordering.
By construction of A(·, ·), for each box A ∈ A(i, j):

A = (Hi,j ∩ . . . ∩Hi,1)
⋂

(Hi−1,k−1 ∩ . . . ∩Hi−1,1)
⋂
. . .
⋂

(H1,k−1 ∩ . . . ∩H1,1) (3)

where Hi,j ∈ H(i, j).

Proof of (i). By equation (3) and Observation 6, each box A ∈ A(i−1, k−1) has the form
A = X1×. . .×Xi×0×. . .×0, where for each j ∈ [1, i], Xj has size k−1. In particular, Xi is of
size k−1. On the other hand, for H ∈ H(i, 1) we have H = 0× . . .×0×Yi×Yi+1×0× . . .×0,
where Yi is a sequence of size k−1 and Yi+1 is a sequence of size 1. Moreover, for each sequence
Xi of size k−1 there is exactly oneH ∈ H(i, 1) such thatH = 0×. . .×0×Xi×Yi+1×0×. . .×0.
To see that, one has to note that after fixing a sequence Xi we determine the last digit of
Yi+1 in a unique way based on the even/odd sum criterion from (1). But the last digit is the
whole sequence Yi+1. Therefore, first part of (i) is proven.

On the other hand, by induction, each of the elements from H(i−1, k−1) contains one box
from A(i−1, k−1). This implies that among the elements of A(i−1, k−1) all sequences Xi of
length k−1 are present. Therefore, for each H ∈ H(i, 1), H = 0× . . .×Yi×Yi+1×0× . . .×0,
there exists a box A ∈ A(i − 1, k − 1) where A = X1 × . . . × Xi−1 × Yi × 0 × . . . × 0; by
Observation 6, H intersects A.

Proof of (ii). The proof of this part is similar to the previous one. By equation (3) and
Observation 6, each box A ∈ A(i, j−1) has the form A = X1× . . .×Xi+1×0× . . .×0, where
X1, . . . , Xi are sequences of size k−1 and Xi+1 is of size j−1. Let Xi = 0.l1 . . . lk−1, Xi+1 =
0.m1 . . .mj−1. We claim that there is a unique element H ∈ H(i, j), such that H = 0× . . .×
Yi × Yi+1 × 0× . . .× 0, where Yi = 0.l1 . . . lk−j , Yi+1 = 0.m1 . . .mj−1x, where x is either 0
or 1. Indeed, there are two such boxes in the (i, j)-level, but the value of x is again uniquely
determined based on the even/odd condition from (1). It is easy to see that H is the only
element from H(i, j) that satisfies the containment relation from Observation 6 with A.

To prove the second part of the claim, we again use induction. For every box H ′ ∈
H(i, j − 1) there is an element A ∈ A(i, j − 1) contained in it. Therefore, for each sequence
Yi = 0.l1 . . . lk−j , Yi+1 = 0.m1 . . .mj−1 there is an element A ∈ A(i, j − 1) that contains
these two sequences as subsequences on the i-th and (i+ 1)-st coordinate. On the other hand,
each H ∈ H(i, j) is determined by such sequences Yi, Yi+1. Therefore each H intersects some
A. J

It is easy to deduce from Lemma 7 that |A(i, j)| = 2k−1 for each i ∈ [1, d] and j ∈ [1, k−1].
Moreover, each box of H is hit by one of the boxes of A(d, k − 1). Arbitrarily choose one
point from each box of A(d, k − 1). The resulting set Q will meet the requirements. J

3 Proof of Theorem 2

The goal of this section is to establish lower bounds on the sizes of ε-nets in range spaces
with given shallow-cell complexity ϕ. Theorem 2 is a consequence of the following more
precise statement.
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I Theorem 8. Let ϕ : R+ → R+ be a monotonically increasing submultiplicative function3,
which tends to infinity and is bounded from above by a polynomial of constant degree.

For any δ > 0 one can find an ε0 > 0 with the following property: for any 0 < ε < ε0,
there exists a range space on a set of n elements with shallow-cell complexity ϕ, in which
the size of every ε-net is at least (1−4δ)

ε logϕ( 1
ε ).

Proof. The parameters of the range space are as follows:

n =
logϕ( 1

ε )
ε

, m = εn = logϕ
(1
ε

)
, p = nϕ1−2δ(n)(

n
m

)
Let d be the smallest integer such that ϕ(n) = O(nd). In fact, we will assume that
nd−1 ≤ ϕ(n) ≤ c1n

d, for a suitable constant c1 ≥ 1, provided that n is large enough. In the
most interesting case, when ϕ(n) = o(n), we have d = 1. Using that n ≥ logϕ(1/ε)

ε , if ε < ε0,
we have the following logarithmic upper bound on m.

m = logϕ
(1
ε

)
≤ log

(
c1ε
−d) ≤ d log c1

ε
≤ d logn (4)

Consider a range space ([n],F) with a ground set [n] and with a system of m-element
subsets F , where each m-element subset of [n] is added to F independently with probability
p. The next claim follows by a routine application of the Chernoff bound.
I Claim 9. With high probability, |F| ≤ 2nϕ1−2δ(n).

Theorem 8 follows by combining the next two lemmas that show that, with high probability,
the range space ([n],F)

(i) does not admit an ε-net of size less than (1−4δ)
ε logϕ( 1

ε ), and
(ii) has shallow-cell complexity ϕ.
For the proofs, we need to assume that n = n(δ, d, ϕ) is a sufficiently large constant, or,

equivalently, that ε0 = ε0(δ, d) is sufficiently small.
I Lemma 10. With high probability, the range space ([n],F) has shallow-cell complexity ϕ.

Proof. It is enough to show that for all sufficiently large x ≥ x0, every X ⊆ [n], |X| = x, the
number of sets of size exactly l in F|X is O(xϕ(x)). This implies that the number of sets
in F|X of size at most l is O(xϕ(x)l). In the computations below, we will also assume that
l ≥ d+ 1 ≥ 2; otherwise if l ≤ d, and assuming x ≥ x0 ≥ 2d, we have(

x

l

)
≤
(
x

d

)
≤ xd ≤ xϕ(x)

where the last inequality follows by the assumption on ϕ(x), provided that x is sufficiently
large. We distinguish two cases.
Case 1: x > n

ϕδ/d(x) . In this case, we trivially upper-bound |F|X | by |F|. By Claim 9, with
high probability, we have

|F| ≤ 2n · ϕ1−2δ(n) ≤ 2n ·
(
ϕ(x) · ϕ

(n
x

))1−2δ (
by the submultiplicativity of ϕ

≤ 2n ·
(
ϕ(x) · ϕ

(
ϕδ/d(x)

))1−2δ (
as n/x ≤ ϕδ/d(x)

)
≤ 2n ·

(
c1ϕ(x)ϕδ(x)

)1−2δ (
using ϕ(t) ≤ c1t

d
)

≤ 2c1nϕ(x)1−δ ≤ 2c1xϕ(x)1−δ+δ/d = O(xϕ(x)).

3 Compare with Definition 1.
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Case 2: x ≤ n
ϕδ/d(x) . Denote the largest integer x that satisfies this inequality by x1. It is

clear that x1 = o(n) (recall that ϕ is monotonically increasing and tends to infinity). We
also denote the system of all l-element subsets of F|X by F|lX and the set of all l-element
subsets of X by

(
X
l

)
. Let E be the event that F does not have the required ϕ(·)-shallow-cell

complexity property. Then Pr[E] ≤
∑m
l=2 Pr[El], where El is the event that for some X ⊂ [n],

|X| = x, there are more than xϕ(x) elements in F|lX . Then, for any fixed l ≥ d+ 1 ≥ 2, we
have

Pr[El] ≤
x1∑

x=x0

Pr
[
∃X ⊆ [n], |X| = x, |F|lX | > xϕ(x)

]

≤
x1∑

x=x0

(
n

x

) (xl)∑
s=dxϕ(x)e

Pr
[
For a fixed X, |X| = x, |{S ∈ F|X , |S| = l}| = s

]

≤
x1∑

x=x0

(
n

x

) (xl)∑
s=dxϕ(x)e

((x
l

)
s

)
Pr
[
For a fixed X, |X| = x,S ⊆

(
X

l

)
, |S| = s,

we have F|lX = S
]

≤
x1∑

x=x0

(
n

x

) (xl)∑
s=dxϕ(x)e

((x
l

)
s

)(
1− (1− p)(

n−x
m−l)

)s
(1− p)(

n−x
m−l)((xl)−s) (5)

≤
x1∑

x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x(e ( exl )l
s

)s (
p

(
n− x
m− l

))s
(6)

≤
x1∑

x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x(el+1xl−1

llϕ(x) p

(
n

m

)
ml

(n− x−m)l

)s
(7)

≤
x1∑

x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1 e2mϕ1−2δ(n)
ϕ(x)

)s
(8)

In the transition to the expression (6), we used several times (i) the bound
(
a
b

)
≤
(
ea
b

)b for
any a, b ∈ N; (ii) the inequality (1− p)b ≥ 1− bp for any integer b ≥ 1 and real 0 ≤ p ≤ 1;
and (iii) we upper-bounded the last factor of (5) by 1.

In the transition from (6) to (7) we lower-bounded s by xϕ(x). We also used the estimate(
n−x
m−l

)
≤
(
n
m

)
ml

(n−x−m)l , which can be verified as follows.

(
n− x
m− l

)
=
(
n− x
m

) l−1∏
i=0

m− i
n− x−m+ (i+ 1) ≤

(
n− x
m

)(
m

n− x−m

)l
≤
(
n

m

)
ml

(n− x−m)l .

Finally, to obtain (8), we substituted the formula for p and used the fact that

ll(n− x−m)l =
(
l · (n− x−m)

)l ≥ (l · n2 )l ≥ nl,
as x ≤ x1 = o(n), m = εn ≤ n/4 for ε < ε0 ≤ 1/4 and l ≥ 2.
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Denote x2 = dn1−δe. We split the expression (8) into two sums Σ1 and Σ2. Let

Σ1 :=
x2−1∑
x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1 e2mϕ1−2δ(n)
ϕ(x)

)s

Σ2 :=
x1∑

x=x2

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1 e2mϕ1−2δ(n)
ϕ(x)

)s

These two sums will be bounded separately. We have

Σ1 ≤
x2−1∑
x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1 c1−2δ
1 e2mnd−2dδ

xd−2dδϕ2δ(x)

)s
(9)

≤
x2−1∑
x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1−d+2dδ
Cmd+1−2dδ

)s
(for some constant C > 0)

≤
x2−1∑
x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((
n−δ/2

)l−1−d+2dδ
Cmd+1

)s
(10)

≤
x2−1∑
x=x0

xl
(en
x

)x (
n−

δ
2 ·2dδn

δ2
2

)xϕ(x)
≤

x2−1∑
x=x0

xl
(en
x

)x
n−

xϕ(x)dδ2
2 (11)

≤
x2−1∑
x=x0

n2x− xϕ(x)dδ2
2 ≤

x2−1∑
x=x0

n−2x ≤ n

n2x0
= o
( 1
m

)
. (12)

To obtain (9), we used the property that ϕ(n) ≤ ϕ(x)ϕ(n/x) ≤ c1ϕ(x)(n/x)d, provided that
n, x, n/x are sufficiently large. To establish (10), we used the fact that x ≤ x2 = n1−δ and
that em ≤ ed logn ≤ nδ/2 (this follows from (4). In the transition to (11), we needed that
l ≥ d+1, d ≥ 1 and that Cmd+1 ≤ C(d logn)d+1 = o(nδ2/2), by (4). Then we lower-bounded
s by xϕ(x). To arrive at (12), we used that l ≤ x. The last inequality follows from the facts
that x0 is large enough, so that ϕ(x) ≥ ϕ(x0) ≥ 8/(dδ2) and that m = o(n).

Next, we turn to bounding Σ2. First observe that

ϕ1−2δ(n) ≤ ϕ
1−2δ
1−δ (n1−δ) ≤ ϕ

1−2δ
1−δ (x) ≤ ϕ1−δ(x),

where we used the submultiplicativity and monotonicity of the function ϕ(n) and the fact
that x ≥ x2 = n1−δ. Substituting the bound for ϕ1−2δ(n) in Σ2 and putting C = e2m, we
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obtain

Σ2 ≤
x1∑

x=x2

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1
Cϕ−δ(x)

)s

≤
x1∑

x=x2

xl
(en
x

)x (emx
n

Cϕ−δ(x)
)xϕ(x)

(13)

≤
x1∑

x=x2

(n
x

)x−xϕ(x) (
e1+x/(xϕ(x))mxl/(xϕ(x))Cϕ−δ(x)

)xϕ(x)

≤
x1∑

x=x2

(n
x

)x−xϕ(x) (
C ′ϕ−δ/2(x)

)xϕ(x)
(for some constant C ′ > 0) (14)

≤n
(
n

x1

)x2−x2ϕ(x2) (
Cϕ−δ/2(x2)

)x2ϕ(x2)
≤
(
n

x1

)x2−x2ϕ(x2)
(15)

=
(x1

n

)x2ϕ(x2)−x2
= o(1/m).

In the transition to (13), we used that emx ≤ em2 ≤ ed2 log2 n < n and l ≥ 2. To get (14),
we used that for some constant c > 1 we have xl/(xϕ(x)) ≤ cm/ϕ(x) ≤ clogϕ(x)/ϕ(x) = O(1) and
that m ≤ ϕδ/2(x) for x ≥ x0. To obtain (15), we noticed that n1/(x2ϕ(x2)) = O(1). At the
last equation, we used that x1 = o(n), ne/x1 →∞ as n→∞ and x2ϕ(x2)−x2 = Ω(n1−δ/2).

We have shown that for every l = 2, . . . ,m, Pr[El] = o(1/m). We conclude that Pr[E] ≤∑m
l=2 Pr[El] = o(1) and, hence, with high probability, the range space ([n],F) has shallow-cell

complexity ϕ. J

Now we are in a position to prove that with high probability, the range space ([n],F) does
not admit a small ε-net.
I Lemma 11. With high probability, the size of any ε-net of the range space ([n],F) is at
least (1−4δ)

ε logϕ( 1
ε ).

Proof. Assume without loss of generality that δ < 1/10. Denote by µ the probability that
the range space has an ε-net of size t = (1− 4δ) 1

ε logϕ( 1
ε ) = (1− 4δ)n. Then

µ ≤
∑
X⊆[n]
|X|=t

Pr
[
X is an ε-net for F

]
≤
(
n

t

)
(1− p)(

n−t
m ) ≤

(
n

t

)
e−p(

n−t
m ) (16)

≤
(en
t

)t
e−nϕ

δ(n) ≤5ne−nϕ
δ(n) = o(1). (17)

Here, the crucial transition from (16) to (17) uses the inequality below. Since 1− ax > e−bx

for b > a, 0 < x < 1/a− 1/b, we obtain that

p

(
n− t
m

)
≥ p
(
n

m

)(
n−m− t
n− t

)t
≥ nϕ1−2δ(n)

(
1− m

n− t

)t
≥ nϕ1−2δ(n)

(
1− (1 + δ/2)m

n

)t
≥ nϕ1−2δ(n)e−

(1+δ)mt
n

≥ nϕ1−2δ(n)e−(1−3δ) logϕ( 1
ε ) ≥ nϕ1−2δ(n)ϕ−1+3δ(1

ε

)
≥ nϕδ(n).

J
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Thus, Lemma 10 and Lemma 11 imply that with high probability the range space ([n],F)
has shallow-cell complexity ϕ and it admits no ε-net of size less than (1− 4δ) 1

ε logϕ( 1
ε ). This

completes the proof of the theorem. J
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