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Abstract. Generalizing earlier results about the set of idempotents in a Banach

algebra, or of self-adjoint idempotents in a C∗-algebra, we announce constructions of

nice connecting paths in the connected components of the set of elements in a Banach
algebra, or of self-adjoint elements in a C∗-algebra, that satisfy a given polynomial

equation, without multiple roots. In particular, we will prove that in the Banach

algebra case every such non-central element lies on a complex line, all of whose
points satisfy the given equation. We also formulate open questions.
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Let A be a unital complex Banach algebra. Sometimes we will assume that
moreover A is a C∗-algebra.

We let
E(A) := {a ∈ A | a2 = a}

be the set of idempotents of A, and

S(A) := {a ∈ A | a2 = a = a∗}

be the set of self-adjoint idempotents for the C∗-algebra case.
The connected components of E(A) and of S(A) have been investigated by many

authors. To some of them we will refer later at the respective theorems. An ample
literature is given in [AMMZ].

Let

p(λ) :=

n
∏

i=1

(λ− λi)

be a polynomial over C, with all λi’s distinct. In the C∗-algebra case, when con-
sidering self-adjoint elements, we will assume that all λi’s are real. (In fact, if
q(λ) :=

∏

{(λ− λi) | 1 ≤ i ≤ n, λi ∈ R}, then p(a) = 0 and a = a∗ imply q(a) = 0.
Thus below we could use q(λ) rather than p(λ).) The λi’s are fixed throughout this
paper.

We write
Ep(A) := {a ∈ A | p(a) = 0},

and
Sp(A) := {a ∈ A | p(a) = 0, a = a∗}

for the C∗-algebra case. Then E(A) and S(A) are special cases of Ep(A) and Sp(A):
namely, for p(λ) := λ(λ− 1).

We say that {e1, . . . , en} ⊂ A is a partition of unity, or in the C∗-algebra case
that {e1, . . . , en} ⊂ A is a self-adjoint partition of unity, if











{e1, . . . , en} ⊂ E(A), or {e1, . . . , en} ⊂ S(A),

and eiej = 0 for 1 ≤ i, j ≤ n and i 6= j,

and
∑n

i=1
ei = 1.
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The detailed proofs of the statements announced in Section 2 will be published
in [MZ]. The idea of this development originates from personal conversations of
the authors at the conference Operator Theory and Applications: Perspectives and
Challenges, held in Jurata (Hel), Poland, March 18–28, 2010, and from the 2011
lecture by the first named author [Mak].

2. Theorems

The “only if” part of the following Proposition 1 comes from the Riesz decom-
position theorem.

Proposition 1. Let A be a unital complex Banach algebra (C∗-algebra). Let a ∈ A.
Then a ∈ Ep(A) (a ∈ Sp(A)) if and only if there exists a (self-adjoint) partition of
unity {e1, . . . , en} such that

a =

n
∑

i=1

λiei.

In the “only if” part, for a ∈ Ep(A) (for a ∈ Sp(A)) one can choose the ei’s as
polynomials of a, with complex (real) coefficients, which depend only on the λi’s.

This representation provides the tool for reducing questions about Ep(A) (about
Sp(A)) to those about E(A) (about S(A)). Of course, for the respective proofs for
Ep(A) (for Sp(A)) one has to work still substantially. As an illustration, we include
a sketch of proof of Theorem 7 in Section 3.

The distinctness of the λi’s is essential in order that a should have such a simple
form. For T ∈ A := B(l2 ⊕ l2), having a block matrix form (Tij)

2

i,j=1
, which is

subdiagonal (i.e., strictly lower triangular), we have T 2 = 0, but T21 ∈ B(l2) can
be as complicated as an element of B(l2) can be.

A path in a topological space X is a continuous map f : [0, 1] → X . We will say
that f(0), f(1) ∈ X are connected by this path f . By a small abuse of language
we will also say that f([0, 1]) ⊂ X is a path in X (e.g., for polygonal paths). A
topological space X is pathwise connected if any two of its points are connected
by a path in X . A topological space X is locally pathwise connected if each point
x ∈ X has a base of (not necessarily open) neighbourhoods consisting of pathwise
connected sets.

Theorem 2. Let A be a unital complex Banach algebra and C a connected compo-
nent of Ep(A). Then C is a relatively open subset of Ep(A). Further, C is locally
pathwise connected via each of the following types of paths:
1) similarity via an exponential function, i.e., t 7→ e−ctaect;
2) a polynomial path of degree at most three;
3) a polygonal path of n segments.
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For E(A), relative openness of C was proved by J. Zemánek [Ze], 1) was proved
by J. Zemánek [Ze], 2) was proved by J. Esterle [Es] and M. Trémon [Tr85], 3) was
proved by Z. V. Kovarik [Ko] (cf. also [Ze]).

Theorem 3. Under the hypotheses of Theorem 2, C is pathwise connected via each
of the following types of paths:
1) similarity via a finite product of exponential functions, i.e., t 7→ e−cmt . . . e−c1ta

ec1t . . . ecmt;
2) a polynomial path;
3) a polygonal path.
In fact, there is a path satisfying 1) and 2) simultaneously.

For E(A), 1) was proved by J. Zemánek [Ze], 2) was proved by J. Esterle [Es]
and M. Trémon [Tr85], 3) was proved by Z. V. Kovarik [Ko] (cf. also [Ze]), and the
last sentence was proved by [Es] and [Tr85].

Problem. Does there exist a uniform bound on the “minimum degree” of these
polynomial connections, possibly depending on n, valid for all Banach algebras?
Does such a bound exist, depending on n and on A (or even on C)? Even the case
of a uniform bound for polynomial connections of idempotents is open, even if we
allow dependence of the bound on A (or even on C). For some particular cases, see
[Tr85] and [MZ89]. ([Tr95] announced a further partial result, but his proof seems
to be incorrect.)

Even the “simplest” case A := B(l2) is open. (The case A =: B(Cn) is solved
positively by [Tr85], the uniform bound being 3, which is sharp. Here the connected
components of E(A) consist of the projections of the same rank.) For A = B(l2),
the connected components of E(A) are {e ∈ A | dimN(e) = α, dimR(e) = β},
where 0 ≤ α, β ≤ ℵ0 are cardinalities with α + β = ℵ0, cf. [AMMZ] (N(·) is the
null-space and R(·) is the range). By [MZ89], for min{α, β} < ℵ0, in the respective
connected component there exists an at most third degree polynomial path between
any two elements of that component. But even the case α = β = ℵ0 here is open.

Theorem 4. Let A be a unital complex C∗-algebra, and C a connected component
of Sp(A). Then C is a relatively open subset of Sp(A). Further, C is locally path-
wise connected by similarities via exponential functions, i.e., t 7→ e−ictaeict, where
additionally c = c∗.

For S(A), Theorem 4 was proved by S. Maeda [Mae] (cf. also [Ze]).

Theorem 5. Under the hypotheses of Theorem 4, C is pathwise connected by sim-
ilarities via finite products of exponential functions, i.e., t 7→ e−icmt . . . e−ic1taeic1t

. . . eicmt, where additionally c1 = c∗
1
, . . . , cm = c∗m.
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For S(A), Theorem 5 was proved by S. Maeda [Mae] (cf. also [Ze]).
For the C∗-algebra case, the analogues of 2) and 3) from Theorems 2 and 3 are

false for Sp(A). In fact, already the connected component of S
(

B(C2)
)

consisting
of all rank-one orthogonal projections does not contain any non-constant polyno-
mial path. (The connected components of S (B(Cn)) consist of the orthogonal
projections of the same rank.)

Theorem 6. Let A be a unital complex Banach algebra (C∗-algebra). Let a ∈
Ep(A) (let a ∈ Sp(A)). Then a belongs to the centre of A if and only if its connected
component in Ep(A) (in Sp(A)) is {a}.

Theorem 6 for E(A) was proved by J. Zemánek [Ze], for S(A) by S. Maeda [Mae].
In Theorem 6, of course, the “only if” part for Sp(A) follows from the “only if”
part for Ep(A).

Theorem 7. Let A be a unital complex Banach algebra, and C a connected compo-
nent of Ep(A). If C is disjoint from the centre of A, then any element of C belongs
to a complex line entirely contained in C. In particular, C is unbounded.

For E(A), Theorem 7 was proved by J. Zemánek [Ze].
In the C∗-algebra case even the entire Sp(A) has a distance max{|λi| | 1 ≤ i ≤ n}

from 0, so the analogue of Theorem 7 for Sp(A) is false.

Theorem 6 and Theorem 7 yield the next Corollary 8.

Corollary 8. Let A be a unital complex Banach algebra. Then Ep(A) is a union
of its isolated points and of complex lines. �

Theorem 9. There exists an explicit constant c(λ1, . . . , λn) > 0 (depending on
λ1, . . . , λn ∈ R, and invariant under any map (λ1, . . . , λn) 7→ (a+bλ1, . . . , a+bλn)
with a, b ∈ R and b 6= 0) such that the following holds. If A is a unital complex C∗-
algebra, and C1, C2 are distinct connected components of Sp(A), then the distance
of C1 and C2 is at least c(λ1, . . . , λn) ·min{|λi − λj | | 1 ≤ i, j ≤ n, i 6= j}.

Conjecture. Let A be a unital complex Banach algebra (C∗-algebra) and C1, C2

distinct connected components of Ep(A) (of Sp(A)). Then the distance of C1 and
C2 is at least min{|λi − λj | | 1 ≤ i, j ≤ n, i 6= j}.

For n = 2 this conjecture is equivalent to the statement that this distance for
Ep(A) := E(A) (for Sp(A) := S(A)) is at least 1, which is due to J. Zemánek [Ze]
(due to S. Maeda [Mae]). For n ≥ 3 we do not even know whether this distance for
the Banach algebra case is positive.
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If true, this conjecture would be sharp, for any Banach algebra: consider λi · 1
and λj · 1.

The Conjecture for the case of Sp(A) would follow from the Conjecture in the
case of Ep(A). In fact, different connected components of Sp(A) are subsets of
different connected components of Ep(A), by [BFML], Section 1, Applications, 2),
also taking into consideration our Proposition 1 and Theorem 3.

3. A proof

Proof of Theorem 7 from Theorem 3 and Theorem 6. If C is disjoint from the centre,
then by Theorem 6 it has more than one elements. Let a0 ∈ C be an arbitrary
element of C, and let a1 ∈ C, with a1 6= a0. Then, by Theorem 3, 3), there exists
a non-constant polygonal path connecting a0 to a1 in C. Its first non-constant
segment (counted from a0) is the graph of a non-constant polynomial of degree 1,
say of

λ 7→ a0 + bλ, from [0, 1] to C (⊂ Ep(A) ⊂ A).

Hence

(1) b 6= 0 and we have for all λ ∈ [0, 1] identically p(a0 + bλ) = 0.

Then the equation in (1) is a polynomial equation, with coefficients from A and of
degree at most n, for λ ∈ C. (Attention: here the coefficient of λn is bn, which may
be 0 even for b 6= 0.)

We make an indirect assumption. If the polynomial

(2) C ∋ λ 7→ p(a0 + bλ) ∈ A

were not identically 0 for all λ ∈ C, then for some λ0 ∈ C we would have

p(a0 + bλ0) 6= 0.

Then for some continuous linear functional a′ on A we would have

〈p(a0 + bλ0), a
′〉 6= 0.

The polynomial

(3) C ∋ λ 7→ 〈p(a0 + bλ), a′〉 ∈ C
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is a C-valued polynomial on C of degree at most n, which would not vanish at
λ0 ∈ C. Hence the polynomial in (3) would have at most n distinct roots.

However, by (1) we have that the polynomial in (3) vanishes for all λ ∈ [0, 1]
identically. This is a contradiction, showing that our indirect assumption is false.

That is, the polynomial in (2) is identically 0 for all λ ∈ C. In other words, for
all λ ∈ C we have

p(a0 + bλ) = 0, i.e., a0 + bλ ∈ Ep(A),

which implies by connectedness of C that for all λ ∈ C we have even

a0 + bλ ∈ C.

Since by (1) b 6= 0, we see that

C contains a complex line passing through its arbitrary point a0.

�
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