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Abstract. In analogy to the xst-rings studied by Garćıa and Maŕın, we define
fair semigroups and investigate Morita equivalence for a subclass of them. In

particular, we present examples for semigroups which are Morita equivalent

but not strongly Morita equivalent.

1. Introduction

In recent years, a satisfactory theory of Morita equivalence has been developed
for semigroups with local units, see [6–8]. The efficiency of this theory is largely due
to the fact, established by Lawson [8], that in this case Morita equivalence is strong
in the sense that it comes from a well-behaved Morita context. Little is known
about Morita equivalence under assumptions weaker than having local units, see
[6]. In particular, no example has been known for Morita equivalence between two
semigroups which are not strongly Morita equivalent.

In the present paper we consider Morita equivalence in a different class of semi-
groups, which we call fair semigroups. This class corresponds to the class of xst-
rings considered by Garćıa and Maŕın [3], based on previous work by Xu, Shum,
and Turner-Smith [11], and the tools we use also correspond to those in [3]. Every
semigroup S has a largest unitary right ideal U(SS), and if S is right fair then
U(SS) is a two-sided ideal. We show that if S and T are right fair semigroups
such that U(SS) and U(TT ) have common weak right local units then S and T are
Morita equivalent if and only if U(SS) and U(TT ) are also. This makes it possi-
ble to handle cases where one of the semigroups is not factorisable, and we obtain
semigroups S, T which are Morita equivalent but not strongly Morita equivalent.

A semigroup S is called factorisable if every element of S is a product of two
elements. We say that an element s of a semigroup has a weak right local unit u
if su = s. Weak left local units are defined similarly. A semigroup has weak local
units if each of its elements has both a weak right and a weak left local unit, and
local units if the elements u above can always be chosen to be idempotent.

We say that a semigroup S has common weak right local units if for every
s, t ∈ S there exists u ∈ S such that s = su and t = tu. Semigroups with common
weak left local units are defined similarly. A semigroup has common weak local
units if it has common weak right local units and common weak left local units.
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Clearly, if S is a semigroup with common weak right local units then for every finite
subset {s1, . . . , sn} ⊆ S there exists u ∈ S such that sk = sku for all k ∈ {1, . . . , n}.

A semigroup S is called right reductive if, for every s, t ∈ S, sz = tz for all
z ∈ S implies s = t. For a semigroup S we have the following implication:

common weak right local units ⇒ right reductive.

Indeed, let s, t ∈ S, where S has common weak right local units. Then s = su and
t = tu for some u in S. Suppose that sz = tz for all z ∈ S. In particular, su = tu,
which means that s = t. Hence S is right reductive.

2. fair semigroups

In this section we introduce and investigate fair semigroups; these are semigroups
which correspond to the xst-rings investigated by Garćıa and Maŕın [3].

Definition 1. Let S be a semigroup. A right S-act AS is called

(1) unitary if AS = A;
(2) s-unital if for every a ∈ A there exists s ∈ S such that as = a.

Clearly, every s-unital right act is unitary.

Definition 2. We say that a semigroup S is a right fair semigroup if every
subact of a unitary right S-act is unitary. Dually one defines left fair semigroups.
By a fair semigroup we mean a semigroup which is both left and right fair.

Proposition 1. A semigroup S is a right fair semigroup if and only if every unitary
right S-act is s-unital.

Proof. Necessity. Let S be a right fair semigroup and let AS be a unitary act.
Then, for every a ∈ A, the subact aS1 ⊆ AS is unitary. But this implies that AS

is s-unital.
Sufficiency is evident. �

Proposition 2. A semigroup S has weak right local units if and only if S is a
factorisable right fair semigroup.

Proof. Necessity. Assume that a semigroup S has weak right local units. Then it
is clearly factorisable. Let AS be unitary and a ∈ A. Then a = a′s for some a′ ∈ A
and s ∈ S. By assumption, s = su for some u ∈ S. Hence a = a′s = a′su = au.
This proves that S is a right fair semigroup.

Sufficiency. Let S be a factorisable right fair semigroup. Since S is factoris-
able, the right S-act SS is unitary, hence for each s ∈ S there exists u ∈ S such
that s = su. �

Example 1. Factorisable semigroups need not have weak right local units. Take
the multiplicative semigroup of real numbers between 0 and 1 (0 and 1 excluded).
This semigroup is factorisable but none of its elements has a weak right local unit.

There are also fair semigroups which do not have weak right local units (see
Example 3(4)).

Next we give a description of fair semigroups which does not involve S-acts.

Theorem 1. A semigroup S is a right fair semigroup if and only if for every
sequence (si)i∈N ∈ SN of elements of S there exists n ∈ N such that the product
sn . . . s1 has a weak right unit.
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Proof. Necessity. Let S be a right fair semigroup. Consider a sequence (si)i∈N ∈
SN. We repeat a construction from [5]. Take the right S-act

FS :=
∐
N
S =

⋃
n∈N

({n} × S)

with the right S-action (n, s)z := (n, sz), and put

MS := F/ ∼,

where the right S-act congruence ∼ on F is defined by

(k, s) ∼ (l, z)⇐⇒ (∃n ∈ N)(n ≥ k, l and sn . . . sk+1s = sn . . . sl+1z),

k, l ∈ N, s, z ∈ S (for n = k, sn . . . sk+1s := s). Denote the congruence class of a
pair (k, s) by [k, s]. Take any [k, s] ∈M , where k ∈ N, s ∈ S. Since (sk+2sk+1)s =
sk+2(sk+1s), we have (k, s) ∼ (k + 1, sk+1s), and hence [k, s] = [k + 1, sk+1s] =
[k + 1, sk+1]s ∈MS. Thus MS is unitary.

By assumption, MS is s-unital. Take the element [1, s1] ∈ M . Then [1, s1] =
[1, s1]u = [1, s1u] for some u ∈ S. Hence there exists n ∈ N such that sn . . . s2s1 =
sn . . . s2s1u, so u is a weak right unit for sn . . . s2s1.

Sufficiency. Let AS be a unitary S-act and a0 ∈ S. Repeatedly using
unitariness we can find elements a1, a2, . . . ∈ A and s1, s2, . . . ∈ S such that ai−1 =
aisi for each i ∈ N. By assumption there exists n ∈ N such that sn . . . s1 has a
weak right unit, say u. Hence

a0 = a1s1 = a2s2s1 = . . . = ansn . . . s1 = ansn . . . s1u = a0u.

Thus S is a right fair semigroup. �

Example 2. Consider any set S which contains at least three elements. Choose
distinct elements 0, a, e ∈ S and define a multiplication on S as follows. Put
se := s for every s ∈ S and let all other products be 0. In the smallest case when
S = {0, a, e}, the multiplication table is thus

0 a e
0 0 0 0
a 0 0 a
e 0 0 e

.

If x, y, z ∈ S and z 6= e then (xy)z = 0 = x(yz). If z = e then (xy)z = xy = x(yz).
Hence S is a semigroup. The element e is a right identity of S; in particular, S
is factorisable and right fair. On the other hand, S is not left fair because the
subproducts of the sequence a, e, e, e, . . . are all equal to a and sa = 0 for all s ∈ S.

Note also that the elements a and e have no common weak left unit, hence a
(finite) factorisable semigroup need not have common weak left (or, dually, right)
local units.

Let us list some consequences of Theorem 1.

Corollary 1. Free semigroups and free commutative semigroups are not fair.

Corollary 2. If S is a right fair semigroup then for every s ∈ S there exists n ∈ N
such that sn has a weak right unit.



4 VALDIS LAAN AND LÁSZLÓ MÁRKI

Let U(SS) be the union of all right ideals I of a semigroup S which are right
unitary, that is, IS = I. Then U(SS) is the largest right ideal of S which is right
unitary. Dually one can consider the left ideal U(SS). Note that if S is a factorisable
semigroup then both SS and SS are unitary, hence for factorisable semigroups S
we have U(SS) = U(SS) = S.

Corollary 3. For every element s of a right fair semigroup S there exists n ∈ N
such that sn ∈ U(SS).

Proof. Let s ∈ S. Then there exist n ∈ N and u ∈ S such that sn = snu. Now
sn = snu = snuu ∈ (snS1)S and, for every v in S, snv = snuv ∈ (snS1)S, so snS1

is a unitary right ideal of S. Hence snS1 ⊆ U(SS) and sn ∈ U(SS). �

The next lemma will be used repeatedly.

Lemma 1. If S is a right fair semigroup then U(SS) is a two-sided ideal of S.

Proof. By the construction, U(SS) is a right ideal of S. Let s ∈ S and u ∈ U(SS).
Since U(SS) is right unitary, it is right s-unital, so u = ut for some t ∈ S. Hence
su = sut. But then suS1 = (suS1)S, that is, the principal right ideal suS1 is a
unitary right S-act. By the definition of U(SS), su ∈ suS1 ⊆ U(SS). This shows
that U(SS) is a left ideal of S. �

Lemma 2. Let S be a fair semigroup. For every s ∈ S, the following assertions
are equivalent.

(1) s ∈ U(SS).
(2) s = su for some u ∈ S.
(3) s ∈ U(SS).
(4) s = us for some u ∈ S.

Proof. Since U(SS) is a right unitary S-act, (1)⇒ (2) because S is a fair semigroup.
Similarly, (3) ⇒ (4).

(4) ⇒ (1). Let s = us for some u ∈ S. By Corollary 3 there exists n ∈ N such
that un ∈ U(SS). Hence s = us = uns ∈ U(SS), because U(SS) is a right ideal. A
similar proof works for (2) ⇒ (3). �

By Lemma 2, U(SS) = U(SS), so we denote this set by U(S) and call it the
unitary part of the fair semigroup S.

Corollary 4. If S is a fair semigroup then the set

U(S) = {s ∈ S | s = su = vs for some u, v ∈ S}

is a two-sided ideal of S. Moreover, U(S) is a semigroup with weak local units
(hence also a fair semigroup).

Proof. The first part follows from Lemmas 1 and 2. To prove the second part,
take s ∈ U(S). Then s = su = vs for some u, v ∈ S. By Corollary 3, there exist
m,n ∈ N such that um, vn ∈ U(S). Then s = sum = vns. �

Corollary 5. If S is a right fair semigroup, AS is a unitary act and a ∈ A then
a = au for some u ∈ U(SS).

Proof. Since AS is unitary, it is s-unital. Hence a = as for some s ∈ S. By
Corollary 3, there exists n ∈ N such that sn ∈ U(SS). So a = as = asn. �
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We conclude this section by giving several examples of semigroups which are fair
and semigroups which are not.

Example 3. 1. Every semigroup with weak local units (in particular every monoid)
is a fair semigroup.

2. If S is a semigroup such that Sn is a right fair semigroup for some n ∈ N
then S itself is a right fair semigroup. In particular, every nilpotent semigroup (a
semigroup with zero in which every product of a given length is zero) and every
infllation of a fair semigroup is a fair semigroup.

3. The multiplicative semigroup of a right xst-ring is a right fair semigroup.
To see this, recall first that a module MR over an arbitrary ring R is said to be
unitary if MR = M and that every module MR has a largest submodule which
is unitary. Let S be a right xst-ring and consider its multiplicative semigroup.
Take any sequence (si)i∈N ∈ SN. In the proof of Proposition 6 of [3] it is shown

that there exists n ∈ N such that snsn−1 . . . s1 ∈ U(SS), where U(SS) denotes
the largest unitary right ideal of the ring S (we have to distinguish between the
largest unitary right ideal of S in the ring sense and in the semigroup sense). By
Proposition 1 of [3] this means that the product snsn−1 . . . s1 has a weak right unit.
By our Theorem 1, this shows that S is a right fair semigroup.

4. Every finite monogenic semigroup 〈s〉 is a fair semigroup. If the index of s is
at least two then this semigroup is non-factorisable.

5. A homomorphic image of a fair semigroup is a fair semigroup.
6. A direct product of finitely many fair semigroups is a fair semigroup.

Example 4. 1. A subsemigroup of a fair semigroup need not be a fair semigroup:
for any semigroup T , T 1 is a fair semigroup.

2. A direct product of infinitely many fair semigroups is not necessarily a fair
semigroup. Let Tn = 〈tn〉, n ∈ N, be an n-element monogenic semigroup, where
tnn = tn+1

n . Put S :=
∏

n∈N Tn and consider the element s = (t1, t2, t3, . . .) ∈ S. If
we suppose that S is a fair semigroup then, by Corollary 2, there exists k ∈ N and
u = (u1, u2, u3, . . .) ∈ S such that sku = sk. Then tki ui = tki for each i ∈ N. In

particular, tkk+1 = tkk+1uk+1 = tk+1
k+1, which cannot happen.

3. An ideal extension of a fair semigroup by a fair semigroup need not be itself
fair: in Example 2, I = {0, a} is an ideal of S = {0, a, e}, S/I is a two-element
semilattice, hence both of them are fair semigroups by items 1 and 2 in Example
3, but S is not fair.

4. A finite semigroup generated by two elements need not be fair: {a, e} is a
generating set for the non-fair semigroup S = {0, a, e} in Example 2.

To give further examples for fair semigroups, we need the following observation.

Lemma 3. If a semigroup S has the descending chain condition (DCC) for prin-
cipal left ideals then for each sequence (si)i∈N ∈ SN there exist n ∈ N and u ∈ S1

such that

sn . . . s1 = usn+1sn . . . s1.

Proof. Consider a sequence (si)i∈N ∈ SN and the descending chain

S1s1 ⊇ S1s2s1 ⊇ S1s3s2s1 ⊇ . . . .
By assumption, there exists n ∈ N such that S1sn . . . s1 = S1sn+1sn . . . s1. Hence
sn . . . s1 = usn+1sn . . . s1 for some u ∈ S1. �
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Proposition 3. Every commutative semigroup with DCC for principal ideals is a
fair semigroup.

Proof. Let S be a commutative semigroup with DCC for principal ideals. Consider
a sequence (si)i∈N ∈ SN. By Lemma 3, there exist n ∈ N and u ∈ S1 such that
sn . . . s1 = usn+1sn . . . s1. By commutativity, sn . . . s1 = (sn . . . s1)(sn+1u). Hence
S is a fair semigroup by Theorem 1. �

Corollary 6. Every finite commutative semigroup is a fair semigroup.

The converse of Proposition 3 is not true: a commutative monoid need not have
DCC for principal ideals.

3. Morita equivalence

In this section we study Morita equivalence of right fair semigroups whose unitary
part has common weak right local units. We denote the category of all unitary right
S-acts by UActS . First we define a notion which is analogous to that of a torsionfree
module.

Definition 3. A right S-act AS is called nonsingular if a = a′ (a, a′ ∈ A) when-
ever as = a′s for all s ∈ S.

Proposition 4 (cf. [3], Proposition 2). Let S be a fair semigroup such that U(S)
has common weak right local units. Then every unitary right S-act is nonsingular.

Proof. Let AS be unitary and let a, a′ ∈ A be such that as = a′s for each s ∈ S. By
Corollary 5, there exist u, u′ ∈ U(S) such that a = au and a′ = a′u′. Let uv = u
and u′v = u′ where v ∈ U(S). Then av = a′v and

a = au = auv = av = a′v = a′u′v = a′u′ = a′.

�

Hence, under the assumptions of Proposition 4, UActS is the category of unitary
nonsingular right S-acts.

Definition 4. A right S-act AS is called closed if the mapping µA : A ⊗S S →
A, a⊗ s 7→ as is bijective.

The category of all closed right S-acts is denoted by FActS .
Obviously, AS is unitary if and only if µA is surjective. Hence, for any semigroup

S, FActS is a subcategory of UActS .

Lemma 4. Let S be a semigroup with common weak right local units. Then
UActS = FActS.

Proof. We only need to show that if AS is a unitary act then µA is injective.
Suppose that as = a′s′, a, a′ ∈ A, s, s′ ∈ S. Then there exists u ∈ S such that
s = su and s′ = s′u. Hence a⊗ s = a⊗ su = as⊗ u = a′s′ ⊗ u = a′ ⊗ s′u = a′ ⊗ s′
in A⊗S S. �

Proposition 5 (cf. [3], Proposition 7). Let S be a right fair semigroup such that
I := U(SS) has common weak right local units. Then

(1) the categories UActS and UActI are isomorphic;
(2) the categories FActS and FActI are isomorphic.
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Proof. (1) In a natural way, every right S-act is also a right I-act. By Corollary 5,
every unitary right S-act is a unitary right I-act. Also, every morphism of right
S-acts is a morphism of right I-acts. In this way we obtain a functor F : UActS →
UActI .

Let now XI ∈ UActI . We endow the set X with a right S-action as follows. Let
x ∈ X and s ∈ S. Since XI is unitary, it is s-unital and hence x = xu for some
u ∈ I. Then us ∈ I, because I is an ideal. We put

x · s := x(us).

Let us check that the definition does not depend on the choice of u. Suppose that
also x = xv where v ∈ I. By assumption, us = usw and vs = vsw for some w ∈ I.
Hence sw ∈ I and

x(us) = x(usw) = (xu)(sw) = x(sw) = (xv)(sw) = x(vsw) = x(vs).

To prove that we obtain an S-act, take x ∈ X and s, t ∈ S. Let x = xu for some
u ∈ I. Then us = (us)v for some v ∈ I. So x(us) = x((us)v) and

(x · s) · t = x(us) · t = (x(us))(vt) = x((us)(vt)) = x(((us)v)t) = x((us)t)

= x(u(st)) = x · (st).

Suppose now that g : XI → YI is a morphism of unitary right I-acts. Let x ∈ X,
s ∈ S, and let u ∈ I be such that x = xu. Then g(x) = g(x)u and

g(x · s) = g(x(us)) = g(x)(us) = g(x) · s,

which means that g is a morphism of right S-acts. So putting G(XI) := XS and
G(g) := g we obtain a functor G : UActI → UActS .

Let us prove that G(F (AS)) = AS , that is, that the S-action of G(F (AS))
coincides with the S-action of AS . Take a ∈ A, s ∈ S and let a = au where u ∈ I.
Then the S-action of G(F (AS)) is (a, s) 7→ a(us) = (au)s = as, as needed.

Finally we show that F (G(XI)) = XI . Consider a unitary I-act XI with the
I-action (x, u) 7→ x ∗ u. Take x ∈ X and v ∈ I. Let u ∈ I be such that x = x ∗ u.
Then the I-action of F (G(XI)) is (x, v) 7→ x ∗ (uv) = (x ∗ u) ∗ v = x ∗ v, that is,
the same as the I-action of XI . This completes the proof of the first part.

(2) a) First we show that F takes closed right S-acts to closed right I-acts.
Because of the remark after Definition 4, we only need to consider injectivity of the
corresponding µ. Assume that AS is closed and consider the mapping µ : A⊗I I →
A, a⊗ u 7→ au. Suppose that au = a′u′ where a, a′ ∈ A and u, u′ ∈ I. We need to
prove that a ⊗ u = a′ ⊗ u′ in A ⊗I I. By assumption, a ⊗ u = a′ ⊗ u′ in A ⊗S S.
Hence

a = a1s1 s1u = t1z1

a1t1 = a2s2 s2z1 = t2z2

a2t2 = a3s3 s3z2 = t3z3

. . . . . .
an−1tn−1 = ansn snzn−1 = tnu

′

antn = a′

for some ak ∈ A, sk, tk ∈ S1, zl ∈ S, where k ∈ {1, . . . , n} and l ∈ {1, . . . , n − 1}.
For each k there exists uk ∈ I such that ak = akuk. Now uktkzk ∈ I, and since
every finite subset of I has a common weak right local unit, there exists v ∈ I such
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that uktkzk = uktkzkv for each k. Therefore

a⊗ u = a1u1s1 ⊗ u = a1 ⊗ u1s1u = a1 ⊗ u1t1z1 = a1 ⊗ u1t1z1v

= a1u1t1 ⊗ z1v = a2u2s2 ⊗ z1v = a2 ⊗ u2s2z1v

= a2 ⊗ u2t2z2v = . . . = a′ ⊗ u′

in A⊗I I, as needed.
b) We prove that G takes closed right I-acts to closed right S-acts. Consider a

closed I-act XI . Take x, x′ ∈ X and s, s′ ∈ S. Let u, u′ be such that x = xu and
x′ = x′u′. Suppose that x · s = x′ · s′, that is, x(us) = x′(u′s′). By assumption,
x⊗ us = x′ ⊗ u′s′ in X ⊗I I. But then obviously x⊗ us = x′ ⊗ u′s′ in X ⊗S S and
hence x⊗ s = x′ ⊗ s′ in X ⊗S S. So the mapping µ : X ⊗S S → X, x⊗ s 7→ x · s is
injective and XS is closed. �

In the ring case (see [3], Proposition 7) no assumption is needed on U(SS), but
here we cannot do without assuming the existence of common weak right units in
it. Namely, in the ring case this condition follows from the s-unital property by a
simple orthogonalisation (see [10], Theorem 1), but in semigroups it is obviously
not true.

Definition 5. Semigroups S and T are called right Morita equivalent if the
categories FActS and FActT are equivalent, left Morita equivalent if the cate-
gories SFAct and TFAct are equivalent, Morita equivalent if they are left and
right Morita equivalent, and strongly Morita equivalent (cf. [9]) if there exists
a unitary Morita context (S, T, SPT , TQS , θ, φ) with θ and φ surjective.

By Proposition 1 of [6] we know that if two semigroups are strongly Morita
equivalent then both of them must be factorisable.

In the papers [6], [8], and [9] one can find many examples of (strongly) Morita
equivalent semigroups with local units. Next we give some examples in the case of
semigroups which do not have local units.

Example 5. Consider a non-trivial semigroup S with zero multiplication. Then S
is a fair semigroup where U(S) = {0} has common weak local units. By Proposi-
tion 5 and its dual, S is right and left Morita equivalent to a one-element semigroup.
But a non-trivial semigroup with zero multiplication is not factorisable, hence it
cannot be strongly Morita equivalent to any semigroup.

Consider now Example 2 again: let Z be a semigroup with zero multiplication,
and extend Z with a right identity e such that ez = 0 for all z ∈ Z. As we have seen
in Example 2, S is factorisable and right fair but not left fair. We claim that S is
strongly Morita equivalent to the two-element semilattice. Indeed, by Theorem 9 of
[8], a semigroup S is strongly Morita equivalent to a monoid if and only if S = SeS
for some idempotent e ∈ S. In our case we have s = see for every s ∈ S, hence
S = SeS. From the proof of Theorem 9 in [8] it follows that S is strongly Morita
equivalent to the two-element monoid eSe = {e, 0}.

Proposition 6. Every finite monogenic semigroup is Morita equivalent to its group
part. Consequently, two such semigroups are Morita equivalent if and only if their
periods are equal.
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Proof. If S is a finite monogenic semigroup then U(S) is the group part of S, and
the first claim is true by Proposition 5. By [1] and [4], two groups are Morita
equivalent if and only if they are isomorphic, which gives the second claim. �

Example 6. Suppose that S = 〈s〉 is a finite monogenic semigroup where the
index of s is ≥ 2 and the group part is T . Then S and T are left and right Morita
equivalent but they are not strongly Morita equivalent since S is not factorisable
(the element s has no factorisation).

Let us also mention that Banaschewski [1] and Knauer [4] showed that if two
monoids S and T are Morita equivalent and S is a group or is commutative then S
and T are isomorphic. The proposition above shows that the situation is different
in the case of semigroups: a (finite) abelian group can be Morita equivalent to a
semigroup which is not even factorisable.

Theorem 2. Let S, T be right fair semigroups such that U(SS), U(TT ) have com-
mon weak right local units. Then the following are equivalent.

(1) The categories UActS and UActT are equivalent.
(2) The categories FActS and FActT are equivalent.
(3) The semigroups S and T are Morita equivalent.
(4) The categories UActU(SS) and UActU(TT ) are equivalent.
(5) The categories FActU(SS) and FActU(TT ) are equivalent.
(6) The semigroups U(SS) and U(TT ) are Morita equivalent.

Proof. (1) ⇔ (4) and (2) ⇔ (5) by Proposition 5. (4) ⇔ (5) by Lemma 4. (2) ⇔
(3) and (5) ⇔ (6) by Definition 5. �

Theorem 2 reduces the study of Morita equivalence of fair semigroups S, T whose
unitary parts U(S), U(T ) have common weak right local units to the study of Morita
equivalence of their unitary parts. Since U(S), U(T ) are factorisable semigroups
(actually semigroups with weak local units), results from [2] concerning unitary
acts can be applied. If it happens that U(S), U(T ) are semigroups with local units
then also the theory developed in [8] and [6] is applicable.

For a semigroup S, define the congruence

ζS = {(s1, s2) ∈ S × S | ss1 = ss2 for all s ∈ S}
and denote by S′ the quotient semigroup S/ζS . From [2], Theorem 3 we have the
following result.

Proposition 7. Let S and T be factorisable semigroups. The category of unitary
nonsingular right S-acts is equivalent to the category of unitary nonsingular right
T -acts if and only if the semigroups S′ and T ′ are strongly Morita equivalent.

For left reductive semigroups, ζS is the equality relation and S′ = S. Now,
if U(S), U(T ) have common weak local units then they are left reductive, hence
U(S)′ = U(S) and U(T )′ = U(T ).

Proposition 8. Let S, T be fair semigroups such that U(S), U(T ) have common
weak local units. Then the following are equivalent.

(1) The semigroups S and T are Morita equivalent.
(2) The semigroups U(S) and U(T ) are Morita equivalent.
(3) The semigroups U(S) and U(T ) are strongly Morita equivalent.
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Proof. The equivalence of (1) and (2) follows immediately from Theorem 2. By the
same theorem, U(S) and U(T ) are Morita equivalent if and only if UActU(S) and
UActU(T ) are equivalent. By Proposition 4, UActU(S) (UActU(T )) is the category of
unitary nonsingular right U(S)-acts (U(T )-acts). It follows from Proposition 7 that
the last two categories are equivalent if and only if U(S) and U(T ) are strongly
Morita equivalent. This completes the proof of the equivalence of (2) and (3). �

Corollary 7. Two semigroups with common weak local units are Morita equivalent
if and only if they are strongly Morita equivalent.

Proof. By Proposition 2, a semigroup has weak local units if and only if it is fac-
torisable and fair, and for a factorisable semigroup S we have U(S) = S, and now
our claim follows from the equivalence of the last two conditions of the foregoing
proposition. �

Concluding remarks. 1. For semigroups with local units, left Morita equiva-
lence, right Morita equivalence, and strong Morita equivalence are the same relation
by [8]. It is not known how much of this remains true for semigroups which do not
have local units. We do not have an answer even for semigroups with weak local
units or for factorisable semigroups. All we know is that Morita equivalence and
strong Morita equivalence do not coincide in the class of all semigroups.

2. In [7], several properties are shown to be invariant under strong Morita
equivalence in the presence of factorisability or various kinds of local units. Example
7 shows that the properties of being a group, being a monoid, having local units
or weak local units, and factorisability are not invariant under Morita equivalence
in the class of all semigroups. In Example 5 we have seen that every semigroup
with zero multiplication is Morita equivalent to the one-element semigroup, and
by Theorem 16 in [6] we know that a semigroup is strongly Morita equivalent to
a one-element semigroup if and only if it is a rectangular band. Hence being a
rectangular band is also not invariant under Morita equivalence. These examples
show also that the ideal lattice of a semigroup need not be preserved under Morita
equivalence.
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