MULTIPLY UNION FAMILIES IN \(\mathbb{N}^n \)

PETER FRANKL, MASASHI SHINOHARA, AND NORIHIDE TOKUSHIGE

Abstract. Let \(A \subseteq \mathbb{N}^n \) be an \(r \)-wise \(s \)-union family, that is, a family of sequences with \(n \) components of non-negative integers such that for any \(r \) sequences in \(A \) the total sum of the maximum of each component in those sequences is at most \(s \). We determine the maximum size of \(A \) and its unique extremal configuration provided (i) \(n \) is sufficiently large for fixed \(r \) and \(s \), or (ii) \(n = r + 1 \).

1. Introduction

Let \(\mathbb{N} := \{0, 1, 2, \ldots \} \) denote the set of non-negative integers, and let \([n] := \{1, 2, \ldots, n\} \). Intersecting families in \(2^{[n]} \) or \(\{0, 1\}^n \) are one of the main objects in extremal set theory. The equivalent dual form of an intersecting family is a union family, which is the subject of this paper. In \cite{FranklTokushige} Frankl and Tokushige proposed to consider such problems not only in \(\{0, 1\}^n \) but also in \([q]^n \). They determined the maximum size of 2-wise \(s \)-union families (i) in \([q]^n \) for \(n > n_0(q, s) \), and (ii) in \(\mathbb{N}^3 \) for all \(s \) (the definitions will be given shortly). In this paper we extend their results and determine the maximum size and structure of \(r \)-wise \(s \)-union families in \(\mathbb{N}^n \) for the following two cases: (i) \(n \geq n_0(r, s) \), and (ii) \(n = r + 1 \).

For a vector \(\mathbf{x} \in \mathbb{R}^n \), we write \(x_i \) or \((\mathbf{x})_i \) for the \(i \)th component, so \(\mathbf{x} = (x_1, x_2, \ldots, x_n) \). Define the weight of \(\mathbf{a} \in \mathbb{N}^n \) by

\[
|\mathbf{a}| := \sum_{i=1}^{n} a_i.
\]

For a finite number of vectors \(\mathbf{a}, \mathbf{b}, \ldots, \mathbf{z} \in \mathbb{N}^n \) define the join \(\mathbf{a} \lor \mathbf{b} \lor \cdots \lor \mathbf{z} \) by

\[
(\mathbf{a} \lor \mathbf{b} \lor \cdots \lor \mathbf{z})_i := \max\{a_i, b_i, \ldots, z_i\},
\]

and we say that \(A \subseteq \mathbb{N}^n \) is \(r \)-wise \(s \)-union if

\[
|\mathbf{a}_1 \lor \mathbf{a}_2 \lor \cdots \lor \mathbf{a}_r| \leq s \text{ for all } \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \in A.
\]

The width of \(A \subseteq \mathbb{N}^n \) is defined to be the maximum \(s \) such that \(A \) is \(s \)-union. In this paper we address the following problem.

Problem. For given \(n, r \) and \(s \), determine the maximum size \(|A| \) of \(r \)-wise \(s \)-union families \(A \subseteq \mathbb{N}^n \).

To describe candidates \(A \) that give the maximum size to the above problem, we need some more definitions. Let us introduce a partial order \(\prec \) in \(\mathbb{R}^n \). For \(\mathbf{a}, \mathbf{b} \in \mathbb{R}^n \) we let \(\mathbf{a} \prec \mathbf{b} \) iff \(a_i \leq b_i \) for all \(1 \leq i \leq n \). Then we define a down set for \(\mathbf{a} \in \mathbb{N}^n \) by

\[
D(\mathbf{a}) := \{\mathbf{c} \in \mathbb{N}^n : \mathbf{c} \prec \mathbf{a}\},
\]

Date: October 23, 2015.

The third author was supported by JSPS KAKENHI 25287031.
and for $A \subseteq \mathbb{N}^n$ let
\[\mathcal{D}(A) := \bigcup_{a \in A} \mathcal{D}(a). \]

Similarly, we define an up set at distance d from $a \in \mathbb{N}^n$ by
\[\mathcal{U}(a, d) := \{ a + e \in \mathbb{N}^n : e \in \mathbb{N}^n, |e| = d \}. \]

We say that $a \in \mathbb{N}^n$ is an equitable partition, if all a_i's are as close to each other as possible, more precisely, $|a_i - a_j| \leq 1$ for all i, j. Let $1 := (1, 1, \ldots, 1) \in \mathbb{N}^n$.

For $r, n \in \mathbb{N}$ and $a \in \mathbb{N}^n$ define a family K by
\[K = K(r, n, a, d) := \bigcup_{i=0}^{\lfloor \frac{d}{r} \rfloor} \mathcal{D}(\mathcal{U}(a + i1, d - ui)), \]
where $u = n - r + 1$. We will show that this is an r-wise s-union family, see Claim 3 in the next section.

Conjecture. If $A \subseteq \mathbb{N}^n$ is r-wise s-union, then
\[|A| \leq \max_{0 \leq d \leq \lfloor \frac{s}{r} \rfloor} |K(r, n, a, d)|, \]
where $a \in \mathbb{N}^n$ is an equitable partition with $|a| = s - rd$. Moreover if equality holds, then $A = K(r, n, a, d)$ for some $0 \leq d \leq \lfloor \frac{s}{r} \rfloor$.

We first verify the conjecture when n is sufficiently large for fixed r, s. Let e_i be the i-th standard base of \mathbb{R}^n, that is, $(e_i)_j = \delta_{ij}$. Let $\tilde{e}_0 = 0$, and $\tilde{e}_i = \sum_{j=1}^{i} e_j$ for $1 \leq i \leq n$, e.g., $\tilde{e}_n = 1$.

Theorem 1. Let r and s be fixed positive integers. Write $s = dr + p$ where d and p are non-negative integers with $0 \leq p < r$. Then there exists $n_0(r, s)$ such that if $n > n_0(r, s)$ and $A \subseteq \mathbb{N}^n$ is r-wise s-union, then
\[|A| \leq |\mathcal{D}(\mathcal{U}(\tilde{e}_p, d))|. \]
Moreover if equality holds, then A is isomorphic to $\mathcal{D}(\mathcal{U}(\tilde{e}_p, d)) = K(r, n, \tilde{e}_p, d)$.

We mention that the case $A \subseteq \{0, 1\}^n$ of Theorem 1 is settled in [7], and the case $r = 2$ of Theorem 1 is proved in [2] in slightly stronger form. We also notice that if $A \subseteq \{0, 1\}^n$ is 2-wise $(2d + p)$-union, then the Katona’s t-intersection theorem [3] states that $|A| \leq |\mathcal{D}(\mathcal{U}(\tilde{e}_p, d) \cap \{0, 1\}^n)|$ for all $n \geq s$.

Next we show that the conjecture is true if $n = r + 1$. We also verify the conjecture or general n if A satisfies some additional properties described below.

Let $A \subseteq \mathbb{N}^n$ be r-wise s-union. For $1 \leq i \leq n$ let
\[m_i := \max\{x_i : x \in A\}. \]
If $n - r$ divides $|m| - s$, then we define
\[d := \frac{|m| - s}{n - r} \geq 0, \]
and for $1 \leq i \leq n$ let
\[a_i := m_i - d, \]
and we assume that $a_i \geq 0$. In this case we have $|a| = s - rd$. Since $|a| \geq 0$ it follows that $d \leq \lfloor \frac{s}{r} \rfloor$. For $1 \leq i \leq n$ define $P_i \in \mathbb{N}^n$ by

$$P_i := a + d e_i,$$

where e_i denotes the ith standard base, for example, $P_2 = (a_1, a_2 + d, a_3, \ldots, a_n)$.

Theorem 2. Let $A \subset \mathbb{N}^n$ be r-wise s-union. Assume that P_i’s are well-defined and

$$\{P_1, \ldots, P_n\} \subset A.$$ (1)

Then it follows that

$$|A| \leq \max_{0 \leq d' \leq \lfloor \frac{s}{r} \rfloor} |K(r, n, a', d')|,$$

where $a' \in \mathbb{N}^n$ is an equitable partition with $|a'| = s - rd'$. Moreover if equality holds, then $A = K(r, n, a', d')$ for some $0 \leq d' \leq \lfloor \frac{s}{r} \rfloor$.

We will show that the assumption (1) is automatically satisfied when $n = r + 1$.

Corollary. If $n = r + 1$, then Conjecture is true.

Notation: For $a, b \in \mathbb{N}^n$ we define $a \setminus b \in \mathbb{N}^n$ by $(a \lor b) - b$, in other words, $(a \setminus b)_i := \max\{a_i - b_i, 0\}$. The support of a is defined by $\text{supp}(a) := \{j : a_j > 0\}$.

2. PROOF OF THEOREM 1 — THE CASE WHEN n IS LARGE

Let r, s be given, and let $s = dr + p, 0 \leq p < r$.

Claim 1. $|\mathcal{D}(U(\bar{e}_p, d))| = 2^p \binom{n+d}{d}$.

Proof. By definition we have

$$\mathcal{D}(U(\bar{e}_p, d)) = \{x + y \in \mathbb{N}^n : |x| \leq d, y \prec e_p\}.$$

The number of $x \in \mathbb{N}^n$ with $|x| \leq d$ is equal to the number of non-negative integer solutions of $x_1 + \cdots + x_n \leq d$, which is $\binom{n+d}{d}$. It is 2^p that the number of $y \in \mathbb{N}^n$ satisfying $y \prec e_p$.

Let $A \subset \mathbb{N}^n$ be r-wise s-union with maximal size. So A is a downset. We will show that $|A| \leq 2^p \binom{n+d}{d}$. Notice that this RHS is $\Theta(n^d)$ for fixed r, s.

First suppose that there is t with $2 \leq t \leq r$ such that A is t-wise $(dt + p)$-union, but not $(t-1)$-wise $(dt - 1 + p)$-union. In this case, by the latter condition, there are $b_1, \ldots, b_{t-1} \in A$ such that $|b| \geq dt - 1 + p + 1$, where $b = b_1 \lor \cdots \lor b_{t-1}$. Then, by the former condition, for every $a \in A$ it follows that $|a \lor b| \leq dt + p$, so $|a \setminus b| \leq d - 1$. This gives us

$$A = \{x + y \in \mathbb{N}^n : |x| \leq d - 1, y \prec b\}.$$

There are $\binom{n+(d-1)}{d-1}$ choices for x satisfying $|x| \leq d - 1$. On the other hand, the number of y with $y \prec b$ is independent of n (so it is a constant depending on r and s only). In fact $|b| \leq (t - 1)s < rs$, and there are less than 2^{rs} choices for y. Thus we get $|A| \leq (\binom{n+(d-1)}{d-1})2^{rs} = O(n^{d-1})$ and we are done.

Next we suppose that A is t-wise $(dt + p)$-union for all $1 \leq t \leq r$. (2)
The case $t = 1$ gives us $|a| \leq d + p$ for every $a \in A$. If $p = 0$, then this means that $A \subset D(U(0,d))$, which finishes the proof for this case. So, from now on, we assume that $1 \leq p < r$. Then there is u with $u \geq 1$ such that there exist $b_1, \ldots, b_u \in A$ satisfying

$$|b| = u(d + 1),$$

where $b := b_1 \lor \cdots \lor b_u$. In fact we have (3) for $u = 1$, if otherwise $A \subset D(U(0,d))$. If $u = p + 1$ then (3) fails. In fact setting $t = p + 1$ in (2) we see that A is $(p+1)$-wise $((p+1)(d+1) - 1)$-union. We choose maximal u with $1 \leq u \leq p$ satisfying (3), and fix $b = b_1 \lor \cdots \lor b_u$. By this maximality, for every $a \in A$, it follows that $|a \lor b| \leq (u + 1)(d + 1) - 1$, and

$$|a \setminus b| \leq d.$$ (4)

Using (3) we partition A into $\bigsqcup_{i=0}^d A_i$, where

$$A_i := \{x + y \in A : |x| = i, y \prec b\}.$$ Then we have $|A_i| \leq \binom{n+1}{i}2^{|b|}$. Noting that $|b| \leq (d + p)u = O(1)$ it follows $\sum_{i=0}^{d-1} |A_i| = O(n^{d-1})$. So the size of A_d is essential as we will see below.

We naturally identify $a \in A_d$ with a subset of $[n] \times \{1, \ldots, d + p\}$. Formally let

$$\phi(a) := \{(i, j) : 1 \leq i \leq n, 1 \leq j \leq a_i\}.$$ We say that $b' \prec b$ is rich if there exist vectors c_1, \ldots, c_{dr} of weight d such that $b' \lor c_j \in A$ for every j, and the $dr + 1$ subsets $\phi(c_1), \ldots, \phi(c_{dr}), \phi(b)$ are pairwise disjoint. Informally, b' is rich if it can be extended to a $(|b'| + d)$-element subset of A in dr ways disjointly outside b. We are comparing our family A with the reference family $D(U(\tilde{e}_p,d))$, and we define b which plays a role of \tilde{e}_p in our family, namely, let us define

$$\tilde{b} := \lor \{b' : b' \text{ is rich}\}.$$ Claim 2. $|\tilde{b}| \leq p$. Proof. Suppose the contrary, then there are distinct rich b_1', \ldots, b_{p+1}'. Let $c_1^{(i)}, \ldots, c_{dr}^{(i)}$ support the richness of b_j'. Let $a_1 := b_1' \lor c_{j_1}^{(i)} \in A$, say, $j_1 = 1$. Then choose $a_2 := b_2' \lor c_{j_2}^{(i)}$ so that $\phi(a_1)$ and $\phi(a_2)$ are disjoint. If $i \leq p$, then having a_1, \ldots, a_i chosen, we only used id elements as $\bigcup_{l=1}^i \phi(c_{j_l}^{(i)})$, which intersect at most id of $c_1^{(i+1)}, \ldots, c_{dr}^{(i+1)}$, and since $id \leq pd < rd$ we still have some $c_{j_l+1}^{(i+1)}$ disjoint from any already chosen vectors. So we can continue this procedure until we get $a_{p+1} := b_{p+1}' \lor c_{j_{p+1}}^{(i+1)} \in A$ such that all $\phi(a_1), \ldots, \phi(a_{p+1})$ are disjoint. However, these vectors yield $|a_1 \lor \cdots \lor a_{p+1}| \geq (p + 1)(d + 1)$, which contradicts (2) at $t = p + 1$. \hfill \Box

If $y \prec b$ is not rich, then

$$\{\phi(x + y) \setminus \phi(b) : x + y \in A_d, |x| = d\}$$

is a family of d-element subsets on $(d + p)n$ vertices, which has no dr pairwise disjoint subsets (so the matching number is $dr - 1$ or less). Thus, by the Erdős matching theorem [3], the size of this family is $O(n^{d-1})$. There are at most $2^{|b|} = O(1)$ choices
for non-rich \(y \prec b \), and we can conclude that the number of vectors in \(A_d \) coming from non-rich \(y \) is \(O\left(n^{d-1}\right) \). Then the remaining vectors in \(A_d \) comes from rich \(y \prec b \), and the number of such vectors is at most \(2^{|b|}(n^d) \). Consequently we get

\[
|A| \leq 2^{|b|}\binom{n + d}{d} + O(n^{d-1}).
\]

Recall that the reference family is of size \(2^p(n^d) \), and \(|b| \leq p \) from Claim 2. So we only need to deal with the case when there are exactly \(2^p \) rich sets, in other words, \(b = \hat{e}_p \) (by renaming coordinates if necessary). We show that \(A \subseteq D(U(\hat{e}_p, d)) \).

Suppose the contrary, then there is an \(a \in A \) such that \(|a \setminus \hat{e}_p| \geq d + 1 \). Since \(\hat{e}_p \) is rich there are pairwise disjoint vectors \(c_1, \ldots, c_{r-1} \) of weight \(d \), outside \(b \). Let \(a_i := \hat{e}_p \cup c_i \in A_d \). Then we get

\[
|a \cup (a_1 \cup \cdots \cup a_{r-1})| \geq (d + 1) + p + (r - 1)d = dr + p + 1 = s + 1,
\]

which contradicts that \(A \) is \(r \)-wise \(s \)-union. This completes the proof of Theorem 1.

3. The polytope \(P \) and proof of Theorem 2

We introduce a convex polytope \(P \in \mathbb{R}^n \), which will play a key role in our proof. This polytope is defined by the following \(n + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n-r+1} \) inequalities:

\[
\begin{align*}
 x_i &\geq 0 & \text{if } 1 \leq i \leq n, \\
 \sum_{i \in I} x_i &\leq \sum_{i \in I} a_i + d & \text{if } 1 \leq |I| \leq n - r + 1, I \subset [n].
\end{align*}
\]

Namely,

\[
P := \{ x \in \mathbb{R}^n : x \text{ satisfies (5) and (6)} \}.
\]

Let \(L \) denotes the integer lattice points in \(P \):

\[
L = L(r, n, a, d) := \{ x \in \mathbb{N}^n : x \in P \}.
\]

Lemma 1. The two sets \(K \) and \(L \) are the same, and \(r \)-wise \(s \)-union.

Proof. This lemma is a consequence of the following three claims.

Claim 3. The set \(K \) is \(r \)-wise \(s \)-union.

Proof. Let \(x_1, x_2, \ldots, x_r \in K \). We show that \(|x_1 \cup x_2 \cup \cdots \cup x_r| \leq s \). We may assume that \(x_j \in U(a + i_j \mathbf{1}, d - w_{ij}) \), where \(u = n - r + 1 \). We may also assume that \(i_1 \geq i_2 \geq \cdots \geq i_r \). Let \(b := a + i_1 \mathbf{1} \). Then, informally, \(|b \cup x - b|\) counts the excess
of \(x \) above \(b \), more precisely, it is \(\sum_{j \in [n]} \max \{0, x_j - b_j\} \). Thus we have

\[
|x_1 \lor x_2 \lor \cdots \lor x_r| \leq |b| + \sum_{j=1}^{r} |b \lor x_j - b|
\]

\[
\leq |a| + ni_1 + \sum_{j=1}^{r} \left((d - ui_j) - (i_1 - i_j) \right)
\]

\[
= a + dr + (n - r)i_1 - \sum_{j=1}^{r} (u - 1)i_j
\]

\[
= s - \sum_{j=2}^{r} j_j \leq s,
\]

as required. \(\square \)

Claim 4. \(K \subset L \).

Proof. Let \(x \in K \). We show that \(x \in L \), that is, \(x \) satisfies (3) and (4). Since (3) is clear by definition of \(K \), we show that (4). To this end we may assume that \(x \in \mathcal{U}(a + i1, d - ui) \), where \(u = n - r + 1 \) and \(i \leq \left\lfloor \frac{d}{u} \right\rfloor \). Let \(I \subset [n] \) with \(1 \leq |I| \leq u \). Then \(i|I| \leq ui \). Thus it follows

\[
\sum_{j \in I} x_j \leq \sum_{j \in I} a_j + i|I| + (d - ui) \leq \sum_{j \in I} a_j + d,
\]

which confirms (4). \(\square \)

Claim 5. \(K \supset L \).

Proof. Let \(x \in L \). We show that \(x \in K \), that is, there exists some \(i' \) such that \(0 \leq i' \leq \left\lfloor \frac{d}{u - r + 1} \right\rfloor \) and \(|x \setminus (a + i'1)| \leq d - (n - r + 1)i' \).

We write \(x \) as

\[
x = (a_1 + i_1, a_2 + i_2, \ldots, a_n + i_n),
\]

where we may assume that \(d \geq i_1 \geq i_2 \geq \cdots \geq i_n \). We notice that some \(i_j \) can be negative. Since \(x \in L \) it follows from (4) (a part of the definition of \(L \)) that if \(1 \leq |I| \leq n - r + 1 \) and \(I \subset [n] \), then

\[
\sum_{j \in I} i_j \leq d.
\]

Let \(J := \{ j : x_j \geq a_j \} \) and we argue separately by the size of \(|J| \).

If \(|J| \leq n - r + 1 \), then we may choose \(i' = 0 \). In fact,

\[
|x \setminus a| = \max \{0, i_1\} + \max \{0, i_2\} + \cdots + \max \{0, i_{n-r+1}\}
\]

\[
= \max \left\{ \sum_{j \in I} i_j : I \subset 2^{n-r+1} \right\} \leq d.
\]
If $|J| \geq n - r + 2$, then we may choose $i' = i_{n-r+2}$. In fact, by letting $i' := i_{n-r+2}$, we have

$$|x \setminus (a + i'1)| = (i_1 - i') + (i_2 - i') + \cdots + (i_{n-r+1} - i') \leq d - (n - r + 1)i'.$$

We need to check $0 \leq i' \leq \lfloor \frac{d}{n-r+1} \rfloor$. It follows from $|J| \geq n - r + 2$ that $i' \geq 0$. Also, $d \geq i_1 \geq i_2 \geq \cdots \geq i_{n-r+2}$ and $i_1 + i_2 + \cdots + i_{n-r+1} \leq d$ yield $i' \leq \lfloor \frac{d}{n-r+1} \rfloor$.

This completes the proof of Lemma \textbf{1}.

Let

$$\sigma_k(a) := \sum_{K \in \binom{[n]}{k}} \prod_{i \in K} a_i$$

be the kth elementary symmetric polynomial of a_1, \ldots, a_n.

Lemma 2. The size of $K(r, n, a, d)$ is given by

$$|K(r, n, a, d)| = \sum_{j=0}^{n} \binom{d+j}{j} \sigma_{n-j}(a)$$

$$+ \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} \sum_{j=i+1}^{n} \left(\binom{d-u_i+j}{j} - \binom{d-u_i+u}{j} \right) \sigma_{n-j}(a+i1),$$

where $u = n - r + 1$. Moreover, for fixed n, r, d and $|a|$, this size is maximized if and only if a is an equitable partition.

Proof. For $J \subset [n]$ let $x| J$ be the restriction of x to J, that is, $(x|J)_i$ is a_i if $i \in J$ and 0 otherwise.

First we count the vectors in the base layer $\mathcal{D}(\mathcal{U}(a, d))$. To this end we partition this set into $\bigsqcup_{J \subset [n]} A_0(J)$, where

$$A_0(J) = \{a| J + e + b : \text{supp}(e) \subset J, |e| \leq d, \text{supp}(b) \subset [n] \setminus J, b_i < a_i \text{ for } i \notin J \}.$$

The number of vectors e with the above property is equal to the number of non-negative integer solutions of the inequality $x_1 + x_2 + \cdots + x_{|J|} \leq d$, which is $\binom{d+|J|}{|J|}$. The number of vectors b is clearly $\prod_{t \in [n] \setminus J} a_t$. Thus we get

$$\sum_{J \in \binom{[n]}{j}} |A_0(J)| = \sum_{J \in \binom{[n]}{j}} \binom{d+|J|}{|J|} \prod_{l \in [n] \setminus J} a_l = \binom{d+j}{j} \sigma_{n-j}(a),$$

and $|\mathcal{D}(\mathcal{U}(a, d))| = \sum_{j=0}^{n} \binom{d+j}{j} \sigma_{n-j}(a)$.

Next we count the vectors in the ith layer:

$$\mathcal{D}(\mathcal{U}(a + i1, d - ui)) \setminus \left(\bigcup_{j=0}^{i-1} \mathcal{D}(\mathcal{U}(a + j1, d - uj)) \right).$$
For this we partition the above set into $\bigcup_{J \subset [n]} A_i(J)$, where

$$A_i(J) = \{(a + i\mathbf{1})|_J + e + b : \text{supp}(e) \subset J, \ d - u(i - 1) - |J| < |e| \leq d - ui, \ \text{supp}(b) \subset [n] \setminus J, \ b_l < a_l + i \text{ for } l \notin J\}.$$

In this case we need $d - u(i - 1) < |J| + |e|$ because the vectors satisfying the opposite inequality are already counted in the lower layers $\bigcup_{j<i} A_j(J)$. We also notice that $d - u(i - 1) - |J| < d - ui$ implies that $|J| > u$. So $A_i(J) = \emptyset$ for $|J| \leq u$. Now we count the number of vectors e in $A_i(J)$, or equivalently, the number of non-negative integer solutions of

$$d - u(i - 1) - |J| < x_1 + x_2 + \cdots + x_{|J|} \leq d - ui.$$

This number is $\binom{d-ui+j}{j} - \binom{d-ui+u}{j}$, where $j = |J|$. On the other hand, the number of vectors b in $A_i(J)$ is $\prod_{i \in [n] \setminus J} (a_i + i)$. Consequently we get

$$\sum_{J \subset [n]} |A_i(J)| = \sum_{j=u+1}^{n} \left(\binom{d-ui+j}{j} - \binom{d-ui+u}{j} \right) \sigma_{n-j}(a + i\mathbf{1}).$$

Summing this term over $1 \leq i \leq \lfloor \frac{d}{u} \rfloor$ we finally obtain the second term of the RHS of $|K|$ in the statement of this lemma. Then, for fixed $|a|$, the size of K is maximized when $\sigma_{n-1}(a)$ and $\sigma_{n-1}(a + i\mathbf{1})$ are maximized. By the property of symmetric polynomials, this happens if and only if a is an equitable partition. \hfill \Box

Proof of Theorem 3. Let $A \subset \mathbb{N}^n$ be an r-wise s-union with (II). For $I \subset [n]$ let

$$m_I := \max \left\{ \sum_{i \in I} x_i : x \in A \right\}.$$

Claim 6. If $I \subset [n]$ and $1 \leq |I| \leq n - r + 1$, then

$$m_I = \sum_{i \in I} a_i + d.$$

Proof. Choose $j \in I$. By (II) we have $P_j \in A$ and

$$m_I \geq \sum_{i \in I} (P_j)_i = \sum_{i \in I} a_i + d. \quad (7)$$

We need to show that this inequality is actually an equality. Let $[n] = I_1 \sqcup I_2 \sqcup \cdots \sqcup I_r$ be a partition of $[n]$. Then it follows that

$$s \geq m_{I_1} + m_{I_2} + \cdots + m_{I_r} \geq \sum_{i \in [n]} a_i + rd = s,$$

where the first inequality follows from the r-wise s-union property of A, and the second inequality follows from (II). Since the left-most and the right-most sides are the same s, we see that all inequalities are equalities. This means that (II) is equality, as needed. \hfill \Box
By this claim if $x \in A$ and $1 \leq |I| \leq n - r + 1$, then we have

$$\sum_{i \in I} x_i \leq m_I = \sum_{i \in I} a_i + d.$$

This means that $A \subset L$. Finally the theorem follows from Lemmas 1 and 2. □

Proof of Corollary. Let $n = r + 1$ and we show that (II) is satisfied. Let $A \subset \mathbb{N}^{r+1}$ be r-wise s-union with maximum size.

We first check that P_i’s are well-defined. For this, we need (i) $(n-r)(|m| - s)$, and (ii) $a_i \geq 0$ for all i. Since $n - r = 1$ we have (i). To verify (ii) we may assume that $m_1 \geq m_2 \geq \cdots \geq m_{r+1}$. Then $a_i \geq a_{r+1} = m_{r+1} - d$, so it suffices to show $m_{r+1} \geq d$. Since A is r-wise s-union it follows that $m_1 + m_2 + \cdots + m_r \leq s$. This together with the definition of d implies $d = |m| - s \leq m_{r+1}$, as needed.

Next we check that $x \in A$ satisfies (I) and (III). By definition we have $x_i \leq m_i = a_i + d$, so we have (III). Since A is r-wise s-union, we have

$$(x_1 + x_2) + m_3 + \cdots + m_{r+1} \leq s,$$

or equivalently,

$$(x_1 + x_2) + (a_3 + d) + \cdots + (a_{r+1} + d) \leq s = |a| + rd.$$

Rearranging we get $x_1 + x_2 \leq a_1 + a_2 + d$, and we get the other cases similarly, so we obtain (I). Thus $A \subset L$. But by the maximality of $|A|$ we have $A = L$. Now noting that every P_i satisfies (II) and (I), namely, P_i is in L, and thus (II) is satisfied. □

References

