On the Schneider-Vigneras functor for principal series

Márton Erdélyi
Alfréd Rényi Institute of Mathematics, Budapest
merdelyi@freestart.hu

25th September 2015

Abstract

We study the Schneider-Vigneras functor attaching a module over the Iwasawa algebra $\Lambda\left(N_{0}\right)$ to a B-representation for irreducible modulo π principal series of the group $\mathrm{GL}_{n}(F)$ for any finite field extension $F \mid \mathbb{Q}_{p}$.

Keywords: p-Adic Langlands programme; Smooth modulo p representations; Principal series; Schneider-Vigneras functor;

1 Introduction

Let \mathbb{Q}_{p} be the field of p-adic numbers, $\overline{\mathbb{Q}}_{p}$ its algebraic closure, $F, K \leq \overline{\mathbb{Q}}_{p}$ finite extensions of \mathbb{Q}_{p}. Let o_{F}, respectively o_{K} be the rings of integers in F, respectively in $K, \pi_{F} \in o_{F}$ and $\pi_{K} \in o_{K}$ uniformizers, ν_{F} and ν_{K} the standard valuations and $k_{F}=o_{F} / \pi_{F} o_{F}, k_{K}=o_{K} / \pi_{K} o_{K}$ the residue fields.

The Langlands philosophy predicts a natural correspondence between certain admissible unitary representations of $\mathrm{GL}_{n}(F)$ over Banach K-vector spaces and certain n-dimensional K-representations of the Galois-group $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} \mid F\right)$.

Colmez proved the existence of such a correspondence in the case of $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$, but for any other group even the conjectural picture is not developed yet. It turned out, that Fontaine's theory of (φ, Γ)-modules is a fundamental intermediary between the representations of $\operatorname{Gal}\left(\overline{\mathbb{Q}_{p}} / \mathbb{Q}_{p}\right)$ and
the representations of $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$. Schneider and Vigneras managed to generalize parts of Colmez's work to reductive groups other than $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$.

Our aim is to understand the construction of Schneider and Vigneras, attaching a generalized (φ, Γ)-module to a smooth torsion o_{K}-representation of G, for principal series representations V in the case $G=\mathrm{GL}_{n}(F)$. Originally this functor (which we denote by D) is defined only for $F=\mathbb{Q}_{p}$, but our considerations work for any finite extension $F \mid \mathbb{Q}_{p}$ and the analogous definitions.

In order to that, we need to understand the B_{+}-module structure of the principal series, where B_{+}is a certain submodule of a Borel subgroup B in G. In section 3 we decompose G to open N_{0}-invariant subsets (where N_{0} is a totally decomposed compact open subgroup in the unipotent radical of B), indexed by the Weyl group.

With the help of this in section 4 we prove that there exists a minimal element M_{0} in the set of generating B_{+}-subrepresentations of V.

Now we have that $D(V)=M_{0}^{*}$ - the dual of this minimal B_{+}-subrepresentation. We do not know whether it is finitely generated or it has rank 1 as a module over $\Omega\left(N_{0}\right)=\Lambda\left(N_{0}\right) / \pi_{K} \Lambda\left(N_{0}\right)$ (where $\Lambda\left(N_{0}\right)$ is the Iwasawa algebra of N_{0}). However, we show that in some sense only a rank 1 quotient of $D(V)$ is relevant if we want to get an étale (φ, Γ)-module.

In the last section we point out some properties of M_{0}, which sheds some light on why the picture is more difficult for principal series than in the case of subquotients defined by the Bruhat filtration.

Acknowledgments. I gratefully acknowledge the financial support and hospitality of the Central European University, and the Alfréd Rényi Institute of Mathematics, both in Budapest. I would like to thank Gergely Zábrádi for introducing me to this field, and for his constant help, valuable comments and all the useful discussions. I am grateful to the anymous referee for the very careful reading of the paper and the helpful remarks, and also to Levente Nagy for reading through an earlier version.

2 Notations

Let G be the F-points of a F-split connected reductive group over \mathbb{Q}_{p}. Let $B \leq G$ be a fixed Borel subgroup, with maximal torus T and unipotent radical N. Let $W \simeq N_{G}(T) / C_{G}(T)$ be the Weyl group of G, Φ^{+}the set of positive roots with respect to B, and N_{α} denote the root subgroup for each $\alpha \in \Phi^{+}$. A subgroup $N_{0} \leq N$ is called totally decomposed if for any total ordering of Φ^{+}we have $N_{0}=\prod_{\alpha \in \Phi^{+}}\left(N_{0} \cap N_{\alpha}\right)$.

As an o_{K}-representation of G we mean a pair $V=(V, \rho)$, where V is a torsion o_{K}-module, $\rho: G \rightarrow \mathrm{GL}(V)$ is a group homomorphism. V is smooth if ρ is locally constant $(\forall v \in V \exists U \subset G$ open, such that $\forall u \in U: \rho(u) v=v)$. V is admissible if for any $U \leq G$ open subgroup, the vector space $k_{K} \otimes_{o_{K}} V^{U}$ is finite dimensional.

For an o_{K}-representation V let $V^{*}=\operatorname{Hom}_{o_{K}}\left(V, K / o_{K}\right)$ be the Pontrjagin dual of V. Pontrjagin duality sets up an anti-equivalence between the category of torsion o_{K}-modules and the category of all compact lineartopological o_{K}-modules.

Let $G_{0} \leq G$ be a compact open subgroup and $\Lambda\left(G_{0}\right)$ denote the completed group ring of the profinite group G_{0} over o_{K}. Any smooth o_{K}-representation V is the union of its finite G_{0}-subrepresentations, therefore V^{*} is a left $\Lambda\left(G_{0}\right)$ module (through the inversion map on G_{0}).

Let $\Omega\left(G_{0}\right)=\Lambda\left(G_{0}\right) / \pi_{K} \Lambda\left(G_{0}\right) . \quad \Omega\left(N_{0}\right)$ is noetherian and has no zero divisors, so it has a fraction (skew) field. If M is a $\Omega\left(N_{0}\right)$-module, by the rank of M we mean $\operatorname{dim}_{k_{K}}\left(\operatorname{Frac}\left(\Omega\left(N_{0}\right)\right) \otimes_{\Omega\left(N_{0}\right)} M\right)$.

From now on fix $n \in \mathbb{N}$, and let $G=\mathrm{GL}_{n}(F)$, and $G_{0}=\mathrm{GL}_{n}\left(o_{F}\right)$.
Let B be the set of upper triangular matrices in G, T the set of diagonal matrices, N the set of upper triangular unipotent matrices. Let N^{-}be the lower unipotent matrices - the opposite of N - and $N_{0}=N \cap G_{0}$ - a totally decomposed compact open subgroup of N - those matrices wich has coefficients in o_{F}, define the following submonoid of T :

$$
T_{+}=\left\{t \in T \mid t N_{0} t^{-1} \subset N_{0}\right\}=\left\{\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid i>j: \nu_{F}\left(x_{i}\right) \geq \nu_{F}\left(x_{j}\right)\right\}
$$

We have the following partial ordering on $T_{+}: t \leq t^{\prime}$ if there exists $t^{\prime \prime} \in T_{+}$ such that $t t^{\prime \prime}=t^{\prime}$. Let $B_{+}=N_{0} T_{+}$, this is a submonoid of B.

By the abuse of notation let $w \in W$ denote also the permutation matrices - representatives of W in G (with $w_{i j}=1$ if $w(j)=i$, and $w_{i j}=0$ otherwise),
and also the corresponding permutation of the set $\{1,2, \ldots, n\}$. For $w \in W$ denote length of w - the length of the shortest word representing w in the terms of the standard generators of W - by $l(w)$.

Let the kernel of the projection $p r: G_{0} \rightarrow \mathrm{GL}_{n}\left(k_{F}\right)$ be $U^{(1)}$. This is a compact open pro-p normal subgroup of G_{0}. We have $G=G_{0} B$ and $U^{(1)} \subset\left(N^{-} \cap U^{(1)}\right) B$.

Let $C^{\infty}(G)$ (respectively $C_{c}^{\infty}(G)$) denote the set of locally constant $G \rightarrow k_{K}$ functions (respectively locally constant functions with compact support), with the group G acting by left multiplication ($g f: x \mapsto f\left(g^{-1} x\right)$ for $f \in C^{\infty}(G)$ and $\left.g, x \in G\right)$. Let

$$
\chi=\chi_{1} \otimes \chi_{2} \otimes \cdots \otimes \chi_{n}: T \rightarrow k_{K}^{*}
$$

be a locally constant character of T with $\chi_{i}: F^{*} \rightarrow k_{K}^{*}$ multiplicative. Note that then for all $i \chi_{i}\left(1+\pi_{F} o_{F}\right)=1$ and $\chi_{i}\left(o_{F}^{*}\right) \subset k_{F}^{*} \cap k_{K}^{*} \leq{\overline{\mathbb{F}_{p}}}^{*}$. Since $T \simeq B /[B, B]$, also denote the correspondig $B \rightarrow k_{K}^{*}$ character by χ. Let

$$
V=\operatorname{Ind}_{B}^{G}(\chi)=\left\{f \in C^{\infty}(G) \mid \forall g \in G, b \in B: f(g b)=\chi^{-1}(b) f(g)\right\}
$$

V is called a principal series representation of G. V is irreducible exactly when for all i we have $\chi_{i} \neq \chi_{i+1}$ (5), theorem 4). For any open right B invariant subset $X \subset G$ we write $\operatorname{Ind}_{B}^{X}=\left\{F \in \operatorname{Ind}_{B}^{G}(\chi)|F|_{G \backslash X} \equiv 0\right\}$.

We can understand the stucture of V better (see [8], section 4.), by the Bruhat decomposition $G=\bigcup_{w \in W} B w B$. Let \prec denote the strong Bruhat ordering (see [4] II. 13.7): we say $w^{\prime} \prec w$ for $w \neq w^{\prime} \in W$ if there exist transpositions $w_{1}, w_{2}, \ldots, w_{i} \in W$ such that $w^{\prime}=w w_{1} w_{2} \ldots w_{i}$ and $l(w)>l\left(w w_{1}\right)>l\left(w w_{1} w_{2}\right)>\cdots>l\left(w w_{1} w_{2} \ldots w_{i}\right)$. Fix a total ordering \prec_{T} refining the Bruhat ordering \prec of W, and let

$$
w_{1}=\operatorname{id}_{W} \prec_{T} w_{2} \prec_{T} w_{3} \prec_{T} \cdots \prec_{T} w_{n!}=w_{0} .
$$

Let us denote by $G_{m}=\bigcup_{1 \leq l \leq m} B w_{l} B$ - a closed subset of G. We obtain a descending B-invariant filtration of V by

$$
V_{m}=\operatorname{Ind}_{B}^{G \backslash G_{m}}(\chi)=\left\{F \in \operatorname{Ind}_{B}^{G}(\chi)|F|_{G_{m}} \equiv 0\right\} \quad(0<m \leq n!)
$$

with quotients V_{m-1} / V_{m} via $f \quad \mapsto \quad f\left(\cdot w_{m}\right)$ isomorphic to $V\left(w_{m}, \chi\right)=C_{c}^{\infty}\left(N / N_{w_{m}}^{\prime}\right)$ (see [6], section 12), where $N_{w_{m}}^{\prime}=N \cap w_{m} N w_{m}^{-1}$, with N acting by left translations and T acting via

$$
(t \phi)(n)=\chi\left(w_{m}^{-1} t w_{m}\right) \phi\left(t^{-1} n t\right)
$$

For any $w \in W$ put

$$
N_{w}=\left\{n \in N \mid \forall i<j, w^{-1}(i)<w^{-1}(j): n_{i j}=0\right\}=N \cap w N^{-} w^{-1} \leq N,
$$

and $N_{0, w}=N_{0} \cap N_{w}$. Then we have the following form of the Bruhat decomposition $G=\coprod_{w \in W} N_{w} w B$.

3 The action of B_{+}on G

The first goal is to partition G to N_{0}-invariant open subsets $\left\{U_{w} \mid w \in W\right\}$ indexed by the Weyl-group, which are respected by the B_{+}-action in the sense that if $x \in U_{w} b \in B_{+}$then there exists $w^{\prime} \preceq w$ in W such that $b^{-1} x \in U_{w^{\prime}}$.

Definition Let for any $w \in W r_{w}: N^{-} \cap G_{0} \rightarrow G\left(k_{F}\right), n^{-} \mapsto p r\left(w n^{-} w^{-1}\right)$, $R_{w}=w r_{w}^{-1}\left(N_{0}\left(k_{F}\right)\right), R=\cup_{w \in W} R_{w}$.

We have that

$$
R_{w}=\left\{\left(a_{i j}\right) \in G \mid \forall i, j: a_{i j}\left\{\begin{array}{ll}
=1, & \text { if } w^{-1}(i)=j \\
=0, & \text { if } w^{-1}(i)<j \\
\in o_{F}, & \text { if } w^{-1}(i)>j \text { and } w(j)>i \\
\in \pi_{F} o_{F}, & \text { if } w^{-1}(i)>j \text { and } w(j)<i
\end{array}\right\}\right.
$$

For $n=3$ in details (with $o=o_{F}$ and $\pi=\pi_{F}$):

w	R_{w}		${ }_{w}$
$\mathrm{id}=\left(\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ \pi o & 1 & 0 \\ \pi o & \pi o & 1\end{array}\right)$	$=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ \pi o & o & 1 \\ \pi o & 1 & 0\end{array}\right)$
$(12)=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}o & 1 & 0 \\ 1 & 0 & 0 \\ \pi o & \pi o & 1\end{array}\right)$	$=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$	$\left(\begin{array}{ccc}o & o & 1 \\ 1 & 0 & 0 \\ \pi 0 & 1 & 0\end{array}\right)$
$(132)=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$	$\left(\begin{array}{ccc}o & 1 & 0 \\ o & \pi o & 1 \\ 1 & 0 & 0\end{array}\right)$	$(3)=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 1 \\ o & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$

Let $N\left(k_{F}\right)$ be the k_{F}-points of N (the upper triangular unipotent matrices with coefficients in k_{F}). k_{F} has canonical (multiplicative) injection to $o_{F} \subset F$, hence any subgroup $H\left(k_{F}\right) \leq N\left(k_{F}\right)$ is mapped injectively to N_{0} (however this is not a group homomorphism). We denote this subset of N_{0} by $\widetilde{H\left(k_{F}\right)}$.

Proposition 3.1 A set of double coset representatives of $U^{(1)} \backslash G / B$ is $\cup_{w \in W} \widetilde{N_{w}\left(k_{F}\right)}$. Every element of G can be written uniquely in the form $r b$ with $r \in R$ and $b \in B$.

Proof By the Bruhat decomposition of $G\left(k_{F}\right)$ a set of double coset representatives of $U^{(1)} \backslash G_{0} /\left(B \cap G_{0}\right)$ is the set as above. Since $G=G_{0} B$, we have the first part of proposition.

Let $g=u n w b \in G$ with $u \in U^{(1)}, w \in W, n \in \widetilde{N_{w}\left(k_{F}\right)}$ and $b \in B$. Then $g=w\left(w^{-1} n w\right) u^{\prime} b$ with $u^{\prime}=w^{-1} n^{-1} u n w \in U^{(1)}$. But then there exist $n^{\prime} \in N^{-} \cap U^{(1)}$ and $b^{\prime} \in B$ such that $u^{\prime}=n^{\prime} b^{\prime}$. Then $g=w\left(w^{-1} n w n^{\prime}\right)\left(b^{\prime} b\right)$, where $w^{-1} n w n^{\prime} \in r_{w}^{-1}\left(N_{0}\left(k_{F}\right)\right)$ because of the definition of N_{w}.

For any $w \in W$ we clearly have $U^{(1)} \widetilde{N_{w}\left(k_{F}\right)} w B=R_{w} B$. Hence the uniqueness follows: if $r b=r^{\prime} b^{\prime}$ then there exists $w \in W$ such that $r, r^{\prime} \in R_{w}$ and $b^{\prime} b^{-1}=\left(r^{\prime-1} w^{-1}\right)(w r) \in B \cap N^{-}=\{\operatorname{id}\}$.

Definition For any $w \in W$ let $U_{w}=U^{(1)} \widetilde{N_{w}\left(k_{F}\right)} w B$. This way we partitioned G into open subsets indexed by the Weyl group. We obviously have $U_{w}=R_{w} B$.

Corollary 3.2 For any $w \in W$ we have that U_{w} is (left) N_{0}-invariant.
Proof Let $n^{\prime} \in N_{0}$ and $x=$ unwb $\in U^{(1)} \widetilde{N_{w}\left(k_{F}\right)} w B$. We have $N_{0}=N_{0, w}\left(N_{w}^{\prime} \cap N_{0}\right)$, thus $n^{\prime} n=m m^{\prime}$ for some $m \in N_{0, w}$ and $m^{\prime} \in N_{w}^{\prime} \cap N_{0}$, moreover we can write $m=m_{1} m_{0} \in\left(N_{w} \cap U^{(1)}\right) \widetilde{N_{w}\left(k_{F}\right)}$. By the definition of N_{w}^{\prime}

$$
n^{\prime} x=\left(n^{\prime} u n^{\prime-1} m_{1}\right) m_{0} w\left(w^{-1} m^{\prime} w b\right) \in U^{(1)} \widetilde{N_{w}\left(k_{F}\right)} w B
$$

meaning that U_{w} is N_{0}-invariant.
Proposition 3.3 Let $y \in U_{w}=R_{w} B$, $n t \in B_{+}=N_{0} T_{+}$, and $x=t^{-1} n^{-1} y \in U_{w^{\prime}}=R_{w^{\prime}} B$. Then $w^{\prime} \preceq w$.

Proof Let $y=r b$ with $r \in R_{w}$ and $b \in B$. By the previous proposition we may assume that $n=\mathrm{id}$. If $t=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in G_{0}$, then

$$
x=w\left(w^{-1} t^{-1} w\left(w^{-1} r\right) w^{-1} t w\right)\left(w^{-1} t^{-1} w b\right),
$$

where $w^{-1} t^{-1} w\left(w^{-1} r\right) w^{-1} t w \in r_{w}^{-1}\left(N_{0}\left(k_{F}\right)\right)$, because it is in N^{-}and the coefficients under the diagonal have the same valuation as those in $w^{-1} r$.
T_{+}as a monoid is generated by $T \cap G_{0}$, the center $Z(G)$ and the elements with the form $\left(\pi_{F}, \pi_{F}, \ldots, \pi_{F}, 1,1, \ldots, 1\right)$, hence it is enough to prove the proposition for such t-s.

So fix $t=\left(t_{1}=\pi_{F}, t_{2}=\pi_{F}, \ldots, t_{l}=\pi_{F}, t_{l+1}=1, t_{l+2}=1, \ldots, t_{n}=1\right)$, $r=\left(r_{i j}\right)$ and try to write x in the form as in Proposition 3.1. For all $j=0,1,2, \ldots, n$ we construct inductively a decomposition $x=\left(t^{(j)}\right)^{-1} r^{(j)} b^{(j)}$ together with $w^{(j)} \in W$, where

- $w^{(j+1)} \preceq w^{(j)}$ for $j<n$ and such that the first j columns of $w^{(j)}$ are the same as the first j columns of $w^{(j+1)}$,
- $t^{(j)}=\operatorname{diag}\left(t_{i}^{(j)}\right) \in T$ with

$$
t_{i}^{(j)}= \begin{cases}1, & \text { if }\left(w^{(j)}\right)^{-1}(i) \leq j \\ t_{i}, & \text { if }\left(w^{(j)}\right)^{-1}(i)>j\end{cases}
$$

- $r^{(j)} \in R_{w^{(j)}}$, and if we change the first j columns of $r^{(j)}$ to the first j columns of $\left(t^{(j)}\right)^{-1} r^{(j)}$ it is still in $R_{w^{(j)}}$ (by de definition of $t^{(j)}$ it is enough to verify the condition for $\left.\left(t^{(j)}\right)^{-1} r^{(j)}\right)$,
- $b^{(j)} \in B$.

Then $w^{(n)} \preceq w^{(n-1)} \preceq w^{(n-2)} \preceq \cdots \preceq w^{(1)}=w$. However for $j=n$ we have $t^{(n)}=\operatorname{id}$, hence $w^{(n)}=w^{\prime}$ by disjointness of the sets $R_{v} B$ for $v \in W$, so we have the proposition.

For $j=0$ we have $t^{(0)}=t, r^{(0)}=r, b^{(0)}=b$ and $w^{(0)}=w$. From j to $j+1$:

- If $w^{(j)}(j+1) \leq l$, then let $w^{(j+1)}=w^{(j)}$, so $t^{(j+1)}=e_{w^{(j)}(j+1)}^{-1} t^{(j)}$, where for $1 \leq k \leq n$ we denote $e_{k}=e_{k}(\pi)$ the diagonal matrix with π_{F} in the k-th row and 1 everywhere else. We can choose $r^{(j+1)}=e_{w^{(j)}(j+1)}^{-1} r^{(j)} e_{j+1}$, and $b^{(j+1)}=e_{j+1}^{-1} b^{(j)}$.
Then the first j columns of $\left(t^{(j+1)}\right)^{-1} r^{(j+1)}$ are equal of those of $\left(t^{(j)}\right)^{-1} r^{(j)}$, and the entries at place $(i, j+1)$ with $i \neq w^{(j+1)}(j+1)$ are multiplied by π_{F}. Because of the conditions for $r^{(j)}$, this is in $R_{w^{(j+1)}}$. The other conditions for $w^{(j+1)}, t^{(j+1)}, r^{(j+1)}$ and $b^{(j+1)}$ obviously hold.
- If $w^{(j)}(j+1)>l$ and if $\nu_{F}\left(r_{i, j+1}^{(j)}\right) \geq 1$ for all $i \leq l$, then it suffices to choose $w^{(j+1)}=w^{(j)}, t^{(j+1)}=t^{(j)}, r^{(j+1)}=r^{(j)}$ and $b^{(j+1)}=b^{(j)}$.
- Assume that $w^{(j)}(j+1)>l$ and that there exists $i \leq l$ such that $\nu_{F}\left(r_{i, j+1}^{(j)}\right)=0$. Let i_{0} be the maximal such i. Then choose $w^{(j+1)}(j+1)=i_{0}$, and $t^{(j+1)}=e_{i_{0}}^{-1} t^{(j)}$.
Let $r^{\prime}=e_{i_{0}}^{-1} r^{(j)} e_{j+1}\left(\left(r_{i_{0}, j+1}^{(j)}\right)^{-1} \cdot \pi\right)$, where $e_{j}(\alpha)$ is the diagonal matrix with $\alpha \in F$ in the j-th row and 1 everywhere else. Note that $r_{i_{0}, j+1}^{\prime}=1$ and r^{\prime} differs from $r^{(j)}$ only in the i_{0}-th row and the $j+1$-st column. But $\left(t^{(j+1)}\right)^{-1} r^{\prime}$ is not in $\mathrm{GL}_{n}\left(o_{F}\right)$ - for example $\nu_{F}\left(r_{i_{0},\left(w^{(j)}\right)^{-1}\left(i_{0}\right)}^{\prime}\right)=-1$, and there might be some other elements of r^{\prime} in the i_{0}-th row and columns between the $j+2$-nd and $j^{\prime}=\left(w^{(j)}\right)^{-1}\left(i_{0}\right)$-th.
To see this note first that $w^{(j)}(j+1)>l \geq i_{0}$, so $\left(w^{(j)}\right)^{-1}\left(i_{0}\right) \neq j+1$. In particular the right multiplication with e_{j+1} does not change the entry at place $\left(i_{0},\left(w^{(j)}\right)^{-1}\left(i_{0}\right)\right)$. Since $r^{(j)} \in R_{w^{(j)}}$, the defining conditions of $R_{w^{(j)}}$ and that $\left(w^{(j)}\right)^{-1}\left(i_{0}\right) \neq j+1 \mathrm{imply}\left(w^{(j)}\right)^{-1}\left(i_{0}\right)>j+1$. Thus $\left(t_{i_{0}}^{(j)}\right)^{-1}=\left(t_{i_{0}}\right)^{-1}=\pi_{F}^{-1}$, since $i_{0} \leq l$. By the definition of $R_{w^{(j)}}$ we have $r_{i_{0}\left(w^{(j)}\right)^{-1}\left(i_{0}\right)}^{(j)}=1$. Therefore $r_{i_{0},\left(w^{(j)}\right)^{-1}\left(i_{0}\right)}^{\prime}=\pi^{-1}$ which has valuation

But note, that in the $j+1$-st column of r^{\prime} the i_{0}-th element is 1 , all the other has valuation at least 1 . Thus the first $j+1$ columns of $\left(t^{(j+1)}\right)^{-1} r^{\prime}$ satisfy the condition for the first $j+1$ columns of $\left(t^{(j+1)}\right)^{-1} r^{(j+1)}-$ this is meaningful, because we already fixed the first $j+1$ columns of $w^{(j+1)}$.

So we want to find $r^{(j+1)}=r^{\prime} b^{\prime}$ with $b^{\prime} \in B$ such that the first $j+1$ columns of b^{\prime} is those of the identity matrix, and $\left(t^{(j+1)}\right)^{-1} r^{(j+1)} \in R_{w^{(j+1)}}$ with $w^{(j)} \preceq w^{(j+1)}$.

Let $j_{0}=j+1$, and if $j_{i}<j^{\prime}$ then

$$
j_{i+1}=\min \left\{h \mid j+1<h, r_{i_{0}, h}^{\prime} \notin o_{F}, w^{(j)}\left(j_{i}\right)>w^{(j)}(h)\right\} .
$$

We claim that the set on the right hand side contains j^{\prime} if $j_{i}<j^{\prime}$. We prove it by induction on i. For $i=0$ we already verified it. Assume by contradiction that $w^{(j)}\left(j_{i}\right)<i_{0}=w^{(j)}\left(j^{\prime}\right)$. Since $j^{\prime}>j_{i}$ we get $r_{i_{0}, j_{i}}^{(j)} \in \pi_{F} o_{F}$, because $r^{(j)} \in R_{w^{(j)}}$. But then $r_{i_{0}, j_{i}}^{\prime} \in o_{F}$, because $r^{\prime} \in e_{i_{0}}^{-1} r^{(j)} \cdot \operatorname{Mat}\left(o_{F}\right)$, contradicting the defining conditions of j_{i}. Thus we have $w^{(j)}\left(j_{i}\right) \geq i_{0}=w^{(j)}\left(j^{\prime}\right)$.
Let s be minimal such that $j_{s}=j^{\prime}$ and set $j_{s+1}=n+1$. We claim that $r^{(j+1)}$ will be in $R_{w^{(j+1)}}$ with $w^{(j+1)}=w^{(j)}\left(j_{s-1}, j_{s}\right)\left(j_{s-2}, j_{s-1}\right) \ldots\left(j_{0}, j_{1}\right)$.

Then the condition $w^{(j+1)} \prec w^{(j)}$ holds, because the multiplication from right with each transposition $\left(j_{i}, j_{i+1}\right)$ decreases the inversion number and the length respectively, by the definition of j_{i+1}.
For the existence of a $b^{\prime} \in B$ such that $r^{\prime} b^{\prime} \in R_{w^{(j+1)}}$ we prove the following statements inductively:

Lemma 3.4 For all $j+1 \leq k \leq n$ there exist
$-b^{(k)} \in B$ such that the first k column of $r^{\prime(k)}=r^{\prime} b^{(k)}$ satisfy the defining condition for the first k column in $R_{w^{(j+1)}}$, and if we have $k<n$ then $r^{\prime(k)}$ and $r^{(k+1)}$ differ only in the $k+1$-st column.

- a linear combination $s^{(k)}$ of the columns $j+1, j+2, \ldots, k$ in $r^{\prime(k)}$ for which we have

$$
s_{i}^{(k)}= \begin{cases}1, & \text { if } i=i_{0} \\ 0, & \text { if }\left(w^{(j+1)}\right)^{-1}(i) \leq k, \text { and } i \neq i_{0} \\ \pi_{F} x, & \text { for some } x \in o_{F} \text { otherwise }\end{cases}
$$

and the maximal i such that $\nu_{F}\left(s_{i}^{(k)}\right)=1$ is $w^{(j)}\left(j_{i^{\prime}}\right)$, where i^{\prime} is so, that $j_{i^{\prime}} \leq k<j_{i^{\prime}+1}$.

Proof This holds for $k=j+1$ with $b^{(j+1)}=\mathrm{id}, r^{\prime(j+1)}=r^{\prime}$ and $s^{(j+1)}$ the $j+1$-st column of r^{\prime}. To verify the condition for $s^{(j+1)}$ note that $r_{\left(w^{(j)}(j+1), j+1\right)}^{\prime}=\pi$ and if $i>j+1$, then by the definition of $R_{w^{(j)}}$ we have that $r_{i, j+1}^{(j)}$ has valuation at least 1 and $r_{(i, j+1)}^{\prime}=\pi_{F}\left(r_{i_{0}, j+1}^{(j)}\right)^{-1} r_{i, j+1}^{(j)}$ has valuation at least 2 .
Assume that we have $r^{\prime(k)}, b^{(k)}$ and $s^{(k)}$. Let i^{\prime} be so that $j_{i^{\prime}} \leq k<j_{i^{\prime}+1}$ and s^{\prime} be the $k+1$-st column of $r^{\prime(k)}$ (which is equal with the $k+1$-st column of r^{\prime}, thus for $i \neq i_{0}$ we have $s_{i}^{\prime}=r_{i, k+1}^{(j)}$) and $s^{\prime \prime}=s^{\prime}-r_{\left(i_{0}, k+1\right)}^{\prime(k)} s^{(k)}$. Then by the conditions on s^{\prime} we can change the $k+1$-st column of $r^{\prime(k)}$ to $s^{\prime \prime}$ with multiplication from right by an element $b^{\prime \prime} \in B$. Moreover $s_{i_{0}}^{\prime \prime}=0$, and the element in $s^{\prime \prime}$ with minimal valuation and biggest row index is the $w^{(j+1)}(k+1)$-st:

- If $\nu_{F}\left(r_{\left(i_{0}, k+1\right)}^{\prime(k)}\right) \geq 0$ then for $i \neq i_{0}$ we have $s_{i}^{\prime} \equiv s_{i}^{\prime \prime}=s_{i}^{\prime}-r_{\left(i_{0}, k+1\right)}^{\prime(k)} s_{i}^{(k)}$ $\bmod \pi_{F}$, hence the element with minimal valuation is in the row $w^{(j+1)}(k+1)=w^{(j)}(k+1)$ (because $r^{(j)} \in R_{w^{(j)}}$ and $j_{i^{\prime}+1} \neq k+1$).
- If $\nu_{F}\left(r_{\left(i_{0}, k+1\right)}^{\prime(k)}\right)<0$ then it is -1 and for $i \neq i_{0}$ we have $s_{i}^{\prime \prime}=r_{(i, k+1)}^{(j)}-r_{\left(i_{0}, k+1\right)}^{\prime(k)} \cdot s_{i}^{(k)}$. Where on the right hand side the first term has positive valuation for $i>w^{(j)}(k+1)$ and 0 valuation for $i=w^{(j)}(k+1)$ (because $r^{(j)} \in R_{w^{(j)}}$), and the second has valuation $0=-1+1$ for $i=w^{(j)}\left(j_{i^{\prime}}\right)$ and at least 1 for $i>w^{(j)}\left(j_{i^{\prime}}\right)$ (by the induction hypothesis on $s^{(k)}$). Moreover $j_{i^{\prime}} \neq k+1$, because $j_{i^{\prime}} \leq k$, hence $w^{(j)}\left(j_{i^{\prime}}\right) \neq w^{(j)}(k+1)$.
If $w^{(j)}\left(j_{i^{\prime}}\right)<w^{(j)}(k+1)$ then $j_{i^{\prime}+1} \neq k+1$ and $w^{(j)}(k+1)=w^{(j+1)}(k+1)$. If $w^{(j)}\left(j_{i^{\prime}}\right)>w^{(j)}(k+1)$ then $j_{i^{\prime}+1}=k+1$ and $w^{(j+1)}(k+1)=w^{(j+1)}\left(j_{i^{\prime}+1}\right)=w^{(j)}\left(j_{i^{\prime}}\right)$.

By multiplying this column with $\left(s_{w^{(j+1)}(k+1)}^{\prime \prime}\right)^{-1}$ we get the element $r^{\prime(k+1)}$ (we also have to multiply the $k+1$-st row of $b^{\prime \prime}$ with $s_{w^{(j+1)}(k+1)}^{\prime \prime}$, this is $\left.b^{(k+1)}\right)$. This satisfies the condition for the $k+1$-st row of $R_{w^{(j+1)}}$ because the defining conditions for $r^{(j)} \in R_{w^{(j)}}, s^{(k)}$ and the equality

$$
\left\{i \mid\left(w^{(j+1)}\right)^{-1}(i)<k+1\right\}=\left\{i \mid\left(w^{(j)}\right)^{-1}(i)<k+1\right\} \backslash\left\{w^{(j)}\left(j_{i^{\prime}}\right)\right\} \cup\left\{i_{0}\right\} .
$$

The last thing to verify is the existence of an appropriate linear combination $s^{(k+1)}$. Let $s^{(k+1)}=s^{(k)}-s_{w^{(j+1)}(k+1)}^{(k)}\left(s_{w^{\prime \prime}(j+1)(k+1)}\right)^{-1} \cdot s^{\prime \prime}$. Since $\nu_{F}\left(s_{w^{(j+1)}(k+1)}^{(k)}\right)>0$, we have $\nu_{F}\left(s_{i}^{(k+1)}\right)>0$ if $i \neq i_{0}$, and by the previous argument also $s_{w^{(j+1)}\left(j^{\prime}\right)}^{(k+1)}=0$ for $j^{\prime} \leq k+1$ and $j^{\prime} \neq j+1$.
If $w^{(j+1)}(k+1)>w^{(j)}\left(j_{i^{\prime}}\right)$, then $s_{w^{(j+1)}(k+1)}^{(k)}>1$ and $s^{(k+1)} \equiv s^{(k)}$ $\bmod \pi_{F}^{2}$. If $w^{(j+1)}(k+1)<w^{(j)}\left(j_{i^{\prime}}\right)$ then by the definition of $R_{w^{(j+1)}}$ for all $i>w^{(j+1)}(k+1)$ we have $\nu\left(s_{i}^{\prime \prime}\right)>1$ and again $s_{i}^{(k+1)} \equiv s_{i}^{(k)}$ $\bmod \pi_{F}^{2}$. If $w^{(j+1)}(k+1)=w^{(j)}\left(j_{i^{\prime}}\right)$, then by the definition of $R_{w^{(j)}}$ we have $s_{w^{(j)}\left(j_{i^{\prime}}\right)}^{\prime}=r_{\left(w^{(j)}\left(j_{i^{\prime}}, k+1\right)\right.}^{\prime}=0, s_{w^{(j+1)(k+1)}}^{\prime \prime}=0-r_{\left(i_{0}, k+1\right)}^{(k)} s_{w^{(j)}\left(j_{i^{\prime}}\right)}^{(k)}$ and $s^{(k+1)}=$
$=s^{(k)}-s_{w^{(j)}\left(j_{i^{\prime}}\right)}^{(k)}\left(-r_{\left(i_{0}, k+1\right)}^{\prime(k)} s_{w^{(j)}\left(j_{i^{\prime}}\right)}^{(k)}\right)^{-1} \cdot\left(s^{\prime}-r_{\left(i_{0}, k+1\right)}^{(k)} s^{(k)}\right)=\left(r_{\left(i_{0}, k+1\right)}^{\prime(k)}\right)^{-1} s^{\prime}$,
which satisfies the condition because s^{\prime} is the $j_{i^{\prime}+1}=k+1$-st column of $r^{\prime(k)}$ and because of the definition of $R_{w^{(j)}}$.

To finish the proof we set $b^{\prime}=b^{(n)}, r^{(j+1)}=r^{\prime} b^{\prime(n)} \in R_{w^{(j+1)}}$ and $b^{(j+1)}=\left(b^{(n)}\right)^{-1}\left(r_{i_{0}, j+1}^{(j)} \cdot e_{j+1}^{-1}\right) b^{(j)} \in B$.

Corollary 3.5 For any $w \in W$ we have $B w B=N_{w} w B \subset \cup_{w^{\prime} \preceq w} U_{w^{\prime}}$. In particular for any $0<m_{0} \leq n$! we have that

$$
\bigcup_{m \geq m_{0}} U_{w_{m}} \subset G \backslash G_{m_{0}-1}=\bigcup_{m \geq m_{0}} B w_{m} B
$$

Proof Let $x=n_{w} w b \in N_{w} w B$. Then there exists $t \in T_{+}$such that $n^{\prime}=t n_{w} t^{-1} \in N_{0}$. Thus $x=t^{-1} n^{\prime} w\left(w^{-1} t w\right) b=t^{-1} n^{\prime} w b^{\prime \prime}$ with $b^{\prime \prime} \in B$. By the previous proposition for $w=w \cdot \mathrm{id} \in R_{w} B$ and $\left(n^{\prime}\right)^{-1} t \in B_{+}$, there exist $w^{\prime} \prec w, r_{w^{\prime}} \in R_{w^{\prime}}$ and $b^{\prime} \in B$ such that $t^{-1} n^{\prime} w=r_{w^{\prime}} b^{\prime}$, hence $x=r_{w^{\prime}}\left(b^{\prime} b^{\prime \prime}\right) \in U_{w^{\prime}}$. The second assertion follows from that:

$$
\bigcup_{m \geq m_{0}} U_{w_{m}}=G \backslash \bigcup_{1 \leq m<m_{0}} U_{w_{m}} \subset G \backslash \bigcup_{1 \leq m<m_{0}} B w_{m} B=G \backslash G_{m_{0}-1}
$$

Remark We can achieve the results of this section not only for GL_{n}, but different groups: let G^{\prime} be such that

- G^{\prime} is isomorphic to a closed subgroup in G which we also denote by G^{\prime},
- In G^{\prime} a maximal torus is $T^{\prime}=T \cap G^{\prime}$, a Borel subgroup $B^{\prime}=B \cap G^{\prime}$ with unipotent radical $N^{\prime}=N \cap G^{\prime}$, such that $N_{G^{\prime}}\left(T^{\prime}\right)=N_{G}(T) \cap G^{\prime}$ and hence $W^{\prime} \leq W$ with $w_{0} \in W^{\prime}$, with representatives w^{\prime} of W^{\prime} in $G_{0}^{\prime} \leq G_{0}$ such that the representatives w of W in G can be written in the form $w=w^{\prime} t$ such that $t \in T \cap G_{0}$.
- $G_{0}^{\prime}=G_{0} \cap G^{\prime}$ with $G^{\prime}=G_{0}^{\prime} B^{\prime}$ and
- $U^{\prime(1)}=U^{(1)} \cap G^{\prime}$ such that $U^{\prime(1)} \subset\left(N^{\prime-} \cap U^{\prime(1)}\right) B^{\prime}$ for $N^{\prime-}=w_{0} N^{\prime} w_{0}$.

For example these condititons are satisfied for the group SL_{n}.
The proof of the first proposition works for such G^{\prime}, and from a decomposition $x=r^{\prime} b^{\prime} \in R_{w}^{\prime} B^{\prime} \subset G^{\prime}$ we get some $r \in R_{w}$ and $b \in B$ such that $x=r b \in G$. Hence the B_{+}^{\prime}-action on G^{\prime} respects the restriction of \prec to W^{\prime} in the sense that if $x \in R_{w^{\prime}} B^{\prime}$ and $b^{\prime} \in B^{\prime}$ then there exists $w^{\prime \prime} \preceq w^{\prime}$ in W^{\prime} such that $b^{-1} x \in R_{w^{\prime \prime}}^{\prime} B^{\prime}$.

4 Generating B_{+}-subrepresentations

For any torsion o_{K}-module X with o_{K}-linear B-action denote the (partially ordered) set of generating B_{+}-subrepresentations of X (those B_{+}-submodules M of X for which $B M=X$) by $\mathcal{B}_{+}(X)$.

For example $\operatorname{Ind}_{B}^{U_{w_{0}}}(\chi) \simeq C^{\infty}\left(N_{0}\right)$ is the minimal generating B_{+}-subrepresentation of the Steinberg representation $V_{n!-1}=\operatorname{Ind}_{B}^{B w_{0} B}(\chi) \simeq C_{c}^{\infty}(N)$. (cf [6], Lemma 2.6)

Proposition 4.1 Let X be a smooth admissible and irreducible torsion $o_{K^{-}}$ representation of G. Then $M_{0}=B_{+} X^{U^{(1)}}$ is a generating B_{+}-subrepresentation of X. For any $M \in \mathcal{B}_{+}(X)$ there exists a $t_{+} \in T_{+}$such that $t_{+} M_{0} \subset M$.

Proof X is a π_{K} vectorspace as well, because $\pi_{K} X \leq X$, hence by the irreducibility it is either 0 or X, and since X is torsion $\pi_{K} X=X$ gives $X=0$.
$B M_{0}$ is a B-subrepresentation, and also a G_{0}-subrepresentation (because $\left.U^{(1)} \triangleleft G_{0}\right) . G_{0} B=B G_{0}=G$, so $B M_{0}$ is a G-subrepresentation of $X . M_{0}$ is not $\{0\}$, since $U^{(1)}$ is pro- p and since X is irreducible $B M_{0}=X$, hence M_{0} is generating. And M_{0} is clearly a B_{+}-submodule of X.
X is admissible, hence $X^{U^{(1)}}$ has a finite generating set, say R. Let M be as in the proposition. For any $r \in R$ there exists an element $t_{r} \in T_{+}$ such that $t_{r} r \in M$ ([6], Lemma 2.1). The cardinality of R is finite, hence for $t_{+}=\prod_{r \in R} t_{r}$ we have $t_{r}^{-1} t_{+} \in T_{+}$for all $r \in R$, and then $t_{+} M_{0} \subset M$.

From now on let $V=\operatorname{Ind}_{B}^{G}(\chi)$ as before and $M_{0}=B_{+} V^{U^{(1)}}$. Then $V^{U^{(1)}}$ (as a vector space) is generated by

$$
f_{r}:\left\{\begin{array}{ccc}
u r b & \mapsto & \chi^{-1}(b) \\
y \neq u r b & \mapsto & 0
\end{array} \quad\left(r \in U^{(1)} \backslash G / B=\bigcup_{w \in W} \widetilde{N_{w}\left(k_{F}\right)} w\right) .\right.
$$

If we denote the $\operatorname{coset} U^{(1)} w B$ also with w, then $V^{U^{(1)}}$ is generated by $\left\{f_{w} \mid w \in W\right\}$ as an N_{0}-module. Hence any $f \in M_{0}$ can be written in the form $\sum_{i=1}^{s} \lambda_{i} n_{i} t_{i} f_{w_{i}}$ for some $\lambda_{i} \in k_{K}, n_{i} \in N_{0}, t_{i} \in T_{+}$and $w_{i} \in W$.

Proposition $4.2 M_{0}$ is minimal in $\mathcal{B}_{+}(V)$.

Remark In [6] section 12 Schneider and Vigneras treated the case of the subquotients V_{m-1} / V_{m}. Unfortunately M_{0} does not generally give the minimal generating B_{+}-subrepresentation of V_{m-1} / V_{m} on this subqoutient, since that their method does not work on the whole V. It is not true even for $\mathrm{GL}_{3}\left(\mathbb{Q}_{p}\right)$: an explicit example is shown in Corollary 6.2.

Proof By the previous proposition, it is enough to show, that for any $t^{\prime} \in T_{+}$ we have $M_{0} \subset B_{+} t^{\prime} M_{0}$.

If $t^{\prime} \in G_{0}$, then $t^{\prime-1} \in T_{+}$thus we have $B_{+} t^{\prime}=B_{+}$, and $B_{+} t^{\prime} M_{0}=B_{+} M_{0}=M_{0}$. The same is true for central elements $t^{\prime} \in Z(G)$. So it is enough to prove for $t^{\prime}=\left(\pi_{F}, \pi_{F}, \ldots, \pi_{F}, 1,1, \ldots, 1\right)$ that $M_{0} \subset B_{+} t^{\prime} M_{0}$.

Let $j_{0} \in \mathbb{N}$ be such that $t_{j_{0}}^{\prime}=\pi_{F}$ and $t_{j_{0}+1}^{\prime}=1$. We need to show, that for all $w \in W$ we have $f_{w} \in B_{+} t^{\prime} M_{0}$. We prove it by descending induction on w with respect to \prec.

Let us denote $N_{j_{0}}^{(1)}=\left\{n \in N \cap U^{(1)} \mid \forall i<j,\left(j_{0}-i\right)\left(j-j_{0}\right)<0: n_{i j}=0\right\}$, $N_{w, j_{0}}=N_{w} \cap N_{j_{0}}^{(1)}$ and

$$
\Theta_{w, j_{0}}=\left\{\text { a set of representatives of } N_{w, j_{0}} / t^{\prime} N_{w, j_{0}} t^{\prime-1}\right\} \subset N_{0} \cap U^{(1)}
$$

It is enough to prove the following:
Lemma 4.3 Let $g=\sum_{m \in \Theta_{w, j_{0}}} m t^{\prime} f_{w}$. Then $\chi\left(w^{-1} t^{\prime} w\right) f_{w}-g$ is in $\sum_{w^{\prime}: w \prec w^{\prime}} N_{0} f_{w^{\prime}}$.

We claim that for $r \in R_{w}$ we have

$$
t^{\prime} f_{w}(r)= \begin{cases}\chi\left(w^{-1} t^{\prime} w\right), & \text { if } \forall i \leq j_{0}<j, w^{-1}(i)>w^{-1}(j): r_{i j} \in \pi_{F}^{2} o_{F} \\ 0, & \text { otherwise }\end{cases}
$$

$t^{\prime} f_{w}(r)=f\left(t^{\prime-1} r\right)$ is nonzero if and only if $t^{\prime-1} r \in U^{(1)} w B$. Following the proof of Proposition 3.3, it is equivalent to that for all $1 \leq j \leq n$ we have $w=w^{(j)}$ and that the first j column of $\left(t^{(j)}\right)^{-1} r^{(j)}$ is as the first j column of $U^{(1)} w$. This holds if and only if $r_{i j} \in \pi_{F}^{2} o_{F}$ for all i and j as above. Then we have $r^{(n)}=t^{\prime-1} r w^{-1} t^{\prime} w$ and $b^{(n)}=w^{-1}\left(t^{\prime}\right)^{-1} w$, hence our claim.

Therefore $\left.\chi\left(w^{-1} t^{\prime} w\right) f_{w}\right|_{U_{w}}=\left.\sum_{m \in \Theta_{w, j_{0}}} m t^{\prime} f_{w}\right|_{U_{w}}$. Hence by the induction hypothesis and Proposition 3.3 it suffices to prove that g is $U^{(1)}$-invariant.

To do that, first notice that since f_{w} is $U^{(1)}$-invariant, we have that $t^{\prime} f_{w}$ is $t^{\prime} U^{(1)} t^{\prime-1}$-invariant. Moreover, since for all $m \in \Theta_{w, j_{0}}$ we have
$m \in N_{0} \cap U^{(1)} \subseteq t^{\prime} N_{0} t^{\prime-1}, m$ normalizes $t^{\prime} U^{(1)} t^{\prime-1}, m t^{\prime} f_{w}$ is also $t^{\prime} U^{(1)} t^{\prime-1}-$ invariant, and so is g.

On the other hand, we can write

$$
g=\sum_{m \in \Theta_{w, j_{0}}} m t^{\prime} f_{w}=\sum_{m \in \Theta_{w, j_{0}}} t^{\prime}\left(t^{\prime-1} m t^{\prime}\right) f_{w}=t^{\prime}\left(\sum_{n \in t^{\prime-1} N_{w, j_{0}} t^{\prime} / N_{w, j_{0}}} n f_{w}\right)
$$

where the sum in the bracket on the right hand side is obviously $t^{\prime-1} N_{w, j_{0}} t^{\prime}-$ invariant, hence g is $N_{w, j_{0}}$-invariant.

Denote $N_{w, j_{0}}^{\prime}=N_{w}^{\prime} \cap N_{j_{0}}^{(1)}$. Then $N_{w, j_{0}}$ centralizes $t^{\prime-1} N_{w, j_{0}}^{\prime} t^{\prime}$: let $n_{0}=\mathrm{id}+m_{0} \in t^{\prime-1} N_{w, j_{0}}^{\prime} t^{\prime}, n \in N_{w, j_{0}}$,

$$
\left(n^{-1} n_{0} n-n_{0}\right)_{x y}=\left(n^{-1} m_{0} n-m_{0}\right)_{x y}=\sum_{x \leq s \leq t \leq y}\left(n^{-1}\right)_{x s}\left(m_{0}\right)_{s t} n_{t y}-\left(m_{0}\right)_{x y}
$$

and by the definition $N_{j_{0}}^{(1)},\left(m_{0}\right)_{s t}$ is 0 , unless $s \leq j_{0} \leq t$ and hence $\left(n^{-1}\right)_{x s} m_{s t} n_{t y}=0$, unless $x=s$ and $y=t$.

By the definiton of N_{w}^{\prime} we have $w^{-1} N_{w, j_{0}}^{\prime} w \subset B$, so for any $u \in U^{(1)}$ and $n_{0} \in t^{\prime-1} N_{w, j_{0}}^{\prime} t^{\prime} \subset G_{0}$ we have $n_{0} u w=\left(n_{0} u n_{0}^{-1}\right) w\left(w^{-1} n_{0} w\right) \in U^{(1)} w B$, and hence f_{w} is $t^{\prime-1} N_{w, j_{0}}^{\prime} t^{\prime}$-invariant.

Altogether for any representative $n \in \Theta_{w, j_{0}}$

$$
n f_{w}\left(n_{0} x\right)=f_{w}\left(n^{-1} n_{0} x\right)=f_{w}\left(n_{0} n^{-1} x\right)=f_{w}\left(n^{-1} x\right)=n f_{w}(x)
$$

meaning that $n f_{w}$ is $t^{\prime-1} N_{w, j_{0}}^{\prime} t^{\prime}$-invariant, and $t^{\prime} n f_{w}$ is $N_{w, j_{0}}^{\prime}$-invariant. So g is also $N_{w, j_{0}}^{\prime}$-invariant.
$U^{(1)}$ is contained in $\left\langle t^{\prime} U^{(1)} t^{\prime-1}, N_{w, j_{0}}, N_{w, j_{0}}^{\prime}\right\rangle$, so g is $U^{(1)}$-invariant, and we are done.

Corollary 4.4 For any $f \in M_{0}$ there exists $t \in T_{+}$such that f can be written in form $\sum_{i=1}^{s} \lambda_{i} n_{i} t f_{w_{i}}$ for some $\lambda_{i} \in k_{K}, n_{i} \in N_{0}$ and $w_{i} \in W$.

Define the $k_{K}\left[B_{+}\right]$-submodules $M_{0, m}=\sum_{m^{\prime}>m} B_{+} f_{w_{m^{\prime}}} \leq \operatorname{Ind}_{B}^{G_{m}}(\chi)$. We obtain a descending filtration $M_{0}=M_{0,0} \geq M_{0,1} \geq \cdots \geq M_{0, n!}=0$. Then $M_{0, n!-1}=\operatorname{Ind}_{B}^{U_{w_{0}}}(\chi)$ is the minimal generating subrepresentation of $V_{n!-1}$.

Proposition 4.5 Let $1<m \leq n!$, $w=w_{m-1}$ and $n^{\prime} \in N_{0, w}^{\prime}=N_{w}^{\prime} \cap N_{0}$ and $t \in T_{+}$. Then $g=n^{\prime} t f_{w}-n f_{w} \in M_{0, m}$.

Proof For $w^{\prime} \prec w$ we have $\left.t f_{w}\right|_{U_{w^{\prime}}}=\left.n^{\prime} t f_{w}\right|_{U_{w^{\prime}}}=0$ and following the proof of Proposition 3.3 we get $\left.n^{\prime} t f_{w}\right|_{U_{w}}=\left.t f_{w}\right|_{U_{w}}$. Moreover g is $t U^{(1)} t^{-1}$-invariant, thus it is contained in $\sum_{m^{\prime}>m-1} t f_{w_{m^{\prime}}} \subset M_{0, m}$.

Corollary 4.6 For any $f \in M_{0}$ there exists $t \in T_{+}$such that f can be written in form $\sum_{i=1}^{s} \lambda_{i} n_{i} t f_{w_{i}}$ for some $\lambda_{i} \in k_{K}, w_{i} \in W$ and $n_{i} \in N_{0, w_{i}}$.

Remarks 1. V is the modulo π_{K} reduction of the p-adic principal series representation. This can be done with any $l \in \mathbb{N}$ for the modulo π_{K}^{l} reduction. Then the $\pi_{K^{-}}$-torsion part of the minimal generating $B_{+}{ }^{-}$ representation is exactly M_{0}.
2. This can be carried out in the same way for groups G^{\prime} as in the previous section satisfying moreover $N_{0} \subset G^{\prime}$. For example $G^{\prime}=\mathrm{SL}_{n}$ has this property (but its center is not connected), or $G^{\prime}=P$ for arbitary $P \leq G$ parabolic subgroup has also (but these are not reduvtive).

5 The Schneider-Vigneras functor

Following Schneider and Vigneras ([6], section 2) we introduce the functor D from torsion o_{K}-modules to modules over the Iwasawa algebra of N_{0}.

Let us denote the completed group ring of N_{0} over o_{K} by $\Lambda\left(N_{0}\right)$, and define

$$
D(X)=\frac{\lim }{M \in \mathcal{B}_{+}(X)} M^{*},
$$

as an $\Lambda\left(N_{0}\right)$-module, equipped with the natural T_{+}^{-1}-action ψ.
On $D(V)$ the action of π_{K} is 0 , hence we can view it as a $\Omega\left(N_{0}\right)=\Lambda\left(N_{0}\right) / \pi_{K} \Lambda\left(N_{0}\right)$-module.

By Proposition 4.2 we have
Proposition 5.1 The $\Omega\left(N_{0}\right)$-module $D(V)$ is equal to M_{0}^{*}.
Remarks 1. We do not now whether $D(V)$ is finitely generated or it has rank 1 as an $\Omega\left(N_{0}\right)$-module.
2. On M_{0} we have an action of $U^{(1)}$: if $x \in U^{(1)}, n \in N_{0}, t \in T_{+}$and $w \in W$ then we can write $n^{-1} x n=n_{1} n_{2} \in U^{(1)}$ with $n_{1} \in N_{0}$ and $n_{2} \in B^{-} T \cap U^{(1)}$ (with $B^{-}=N^{-} T$), thus

$$
x n t f_{w}=n\left(n^{-1} x n\right) t f_{w}=\left(n n_{1}\right) t\left(t^{-1} n_{2} t\right) f_{w}=\left(n n_{1}\right) t f_{w} \in M_{0},
$$

since $t^{-1} n_{2} t \in U^{(1)}$ and f_{w} is $U^{(1)}$-invariant. Thus on $D(V)$ there is an action of $\Lambda\left(U^{(1)}\right)$, therefore an action of $\Lambda(I)$ (with I denoting the Iwahori subgroup).

Till this point we considered only the $\Lambda\left(N_{0}\right)$-module structure of $D(V)$. Now we shall examine the ψ-action as well. We need to get an étale module from $D(V)$, thus we examine the ψ-invariant images of $D(V)$ in an étale module.

Let D be a topologically étale (see [7] the first lines of Section 4) (φ, Γ) module over $\Omega\left(N_{0}\right)$, with the following properties:

- D is torsion-free as an $\Omega\left(N_{0}\right)$-module,
- on D the topology is Hausdorff,
- D has a basis of neighborhoods of 0 , containing φ-invariant $\Omega\left(N_{0}\right)$ submodules $\left(O \leq D\right.$ open such that $\varphi_{t}(O) \subseteq O$ for all $\left.t \in T_{+}\right)$.

Theorem 5.2 Let D be as above and $F: D(V) \rightarrow D$ a continuous ψ invariant map (where ψ is the canonical left inverse of φ on D). Then F factors through the natural map $F_{0}: D(V) \rightarrow D\left(V_{n!-1}\right)$: there exists a continuous ψ-invariant map $G: D\left(V_{n!-1}\right) \rightarrow D$ such that $F=F_{0} \circ G$.

Proof $\overline{D(V)-\text { tors }}$ is in the kernel of F (the torsion submodules exist, because the rings are Ore rings).

In $M_{0} /\left(M_{0} \cap V_{n!-1}\right)$ there are no nontrivial $k_{K}\left[N_{0}\right]$-divisible elements, because if $f \in M_{0}$ the image of it in $M_{0} /\left(M_{0} \cap V_{n!-1}\right)$ is $f^{\prime}=\left.f\right|_{G \backslash B w_{0} B}$. Assume by contradiction that f^{\prime} is $k_{K}\left[N_{0}\right]$-divisible. If it is nontrivial, then there exists $b w_{m} b \in G$ such that $f\left(b w_{m} b\right) \neq 0$ with some $m<n$! Let $n^{\prime} \in N_{0, w_{m}}^{\prime}=N_{0} \cap w_{m} N_{0} w_{m}^{-1}$ with $n^{\prime} \neq \mathrm{id}$, and $\left[n^{\prime}\right]-[\mathrm{id}] \in k_{K}\left[N_{0}\right]$. Then for any $g \in M_{0}$ we have

$$
\left(\left[n^{\prime}\right]-[\mathrm{id}]\right) g\left(w_{m}\right)=g\left(n^{\prime-1} w_{m}\right)-g\left(w_{m}\right)=g\left(w_{m}\left(w_{m}^{-1} n^{\prime-1} w_{m}\right)\right)-g\left(w_{m}\right)=0,
$$

because $w_{m}^{-1} n^{\prime-1} w_{m} \in N$. Thus f^{\prime} is not divisible by $\left[n^{\prime}\right]-[\mathrm{id}]$.
It follows that F factors through $\left(M_{0} \cap V_{n!-1}\right)^{*}$: The fact that there are no nontrivial divisible submodules in $M_{0} /\left(M_{0} \cap V_{n!-1}\right)$ implies that for any (closed) submodule the maps $f \mapsto \lambda f$ are not surjective for all $\lambda \in k_{K}\left[N_{0}\right]^{*}$. Hence dual maps are not injective for all λ - the dual has no torsionfree quotient arising as a dual of a submodule of $M_{0} /\left(M_{0} \cap V_{n!-1}\right)$, thus $\left(M_{0} /\left(M_{0} \cap V_{n!-1}\right)\right)^{*} \leq \overline{D(V)-\text { tors }}$. Now consider the exact sequence

$$
0 \rightarrow M_{0} \cap V_{n!-1} \rightarrow M_{0} \rightarrow M_{0} /\left(M_{0} \cap V_{n!-1}\right) \rightarrow 0
$$

We claim that F factors through $M_{0, n!-1}^{*}$ as well. If $f \in\left(M_{0} \cap V_{n!-1}\right)^{*}$ such that $\left.f\right|_{M_{0, n!-1}} \equiv 0$, then $\left.\psi_{t}\left(u^{-1} f\right)\right|_{t^{-1} M_{0, n!-1}} \equiv 0$ for all $t \in T_{+}$and $u \in N_{0}$:

The ψ-action on $D(V)$ comes from the T_{+}-action on V, hence $\psi_{t}\left(u^{-1} f\right)\left(t^{-1} x\right)=\left(u^{-1} f\right)\left(t t^{-1} x\right)=f(u x)=0$ if $x \in M_{0, n!-1}$.

For all $O \subseteq D$ open subset there exists $t \in T_{+}$such that $\operatorname{Ker}\left(\left.f \quad \mapsto \quad f\right|_{t^{-1} M_{0, n!-1}}\right) \subset F^{-1}(O)$, since F is continuous and $\bigcup_{t \in T_{+}} t^{-1} M_{0, n!-1}=V_{0, n!-1}$. If O is φ and N_{0}-invariant as well, then

$$
F(f)=\sum_{u \in N_{0} / t N_{0} t^{-1}} u \varphi_{t}\left(F\left(\psi_{t}\left(u^{-1} f\right)\right) \subseteq O .\right.
$$

Then $F(f)=0$ by the Hausdorff property.
By [6], Proposition 12.1, we have $D\left(V_{n!-1}\right)=M_{0, n!-1}^{*}$, which completes the proof.

Remarks 1. For this we do not need the Γ-action of D, the statement is true for D étale φ-modules with continuous N_{0} and φ-action.
2. Let D^{\prime} be the maximal quotient of $D(V)$, which is torsionfree, Haussdorff and on which the action of ψ is nondegenerate in the following sense: for all $d \in D^{\prime} \backslash\{0\}$ and $t \in T_{+}$there exists $u \in N_{0}$ such that $\psi_{t}(u d) \neq 0$. Then the natural map from D^{\prime} to $D\left(V_{n!-1}\right)$ is bijective.
3. By [9] section 4 if $F=\mathbb{Q}_{p}$, we have that $D^{0}\left(V_{n!-1}\right)=D\left(V_{n!-1}\right)$ and $D^{i}\left(V_{n!-1}\right)=0$ for $i>0$.

Following [6] we choose a surjective homomorphism $\ell: N_{0} \rightarrow \mathbb{Q}_{p}$. Then we can get (φ, Γ)-modules from $D(V)$: Let $\Lambda_{\ell}\left(N_{0}\right)$ denote the ring $\Lambda_{N_{1}}\left(N_{0}\right)$ of [6] with $N_{1}=\operatorname{Ker}(\ell)$, with maximal ideal $\mathcal{M}_{\ell}\left(N_{0}\right)$,
$\Omega_{\ell}\left(N_{0}\right)=\Lambda_{\ell}\left(N_{0}\right) / \pi_{K} \Lambda_{\ell}\left(N_{0}\right)$. The ring $\Lambda\left(N_{0}\right)$ can be viewed as the ring $\Lambda\left(N_{1}\right)[[X]]$ of skew Taylor series over $\Lambda\left(N_{1}\right)$ in the variable $X=[u]-1$ where $u \in N_{0}$ and (u) is a topological generator of $\ell\left(N_{0}\right)=\mathbb{Z}_{p}$. Then $\Lambda_{\ell}\left(N_{0}\right)$ is viewed as the ring of infinite skew Laurent series $n \in \mathbb{Z} a_{n} X^{n}$ over $\Lambda\left(N_{1}\right)$ in the variable X with $\lim _{n \rightarrow-\infty} a_{n}=0$ for the compact topology of $\Lambda\left(N_{1}\right)$.

Let $D_{\ell}(V)=\Lambda_{\ell}\left(N_{0}\right) \otimes_{\Lambda\left(N_{0}\right)} D(V)$.
Corollary 5.3 Let D be a finitely generated topologically étale (φ, Γ)-module over $\Omega_{\ell}\left(N_{0}\right)$, and $F^{\prime}: D_{\ell}(V) \rightarrow D$ a continuous map. Then F^{\prime} factors through the natural map $F_{0}^{\prime}: D_{\ell}(V) \rightarrow D_{\ell}\left(V_{n!-1}\right)$.

Proof If D is a finitely generated topologically étale (φ, Γ)-module over $\Omega_{\ell}\left(N_{0}\right)$, then it automatically satisfies the conditions above:
D is étale, hence $\Omega_{\ell}\left(N_{0}\right)$-torsion free (Theorem 8.20 in [7]), thus $\Omega\left(N_{0}\right)$ torsion free as well. It is Hausdorff, since finitely generated and the weak topology is Haussdorff on $\Omega_{\ell}\left(N_{0}\right)$ (Lemma 8.2.iii in [6]).

Finally we need to verify the condition for the neighborhoods. The sets $\mathcal{M}_{\ell}\left(N_{0}\right)^{k} D+\Omega\left(N_{0}\right) \otimes_{k[[X]]} X^{n} \ell(D)^{++}$(where $\ell(D)$ is the étale (φ, Γ)-module attached to D at the category equivalence [7] Theorem 8.20) are open φ invariant $\Omega\left(N_{0}\right)$ submodules and form a basis of neighborhoods of 0 in the weak topology of D.

Thus $D(V) \rightarrow D_{\ell}(V) \rightarrow D$ factors through $D(V) \rightarrow D\left(V_{n!-1}\right)$, hence the corollary.

6 Some properties of M_{0}

In this section we point out some properties of M_{0}, which make the picture more difficult than the known case of subqoutients V_{m-1} / V_{m}. Recall ([6] section 12) that $V_{m-1} / V_{m} \simeq V\left(w_{m}, \chi\right)$, which has a minimal generating $B_{+}{ }^{-}$ subrepresentation

$$
M\left(w_{m}, \chi\right)=C^{\infty}\left(N_{0} / N_{w_{m}}^{\prime} \cap N_{0}\right) \in \mathcal{B}_{+}\left(V\left(w_{m}, \chi\right)\right)
$$

Proposition 6.1 Let $n=3, F=\mathbb{Q}_{p}$, then $M_{0} \cap V_{n!-1} \supsetneq M_{0, n!-1}$.
Corollary 6.2 Thus $M_{0} \cap V_{n!-1}$ is not equal to the minimal generating $B_{+}-$ subrepresentation of $V_{n!-1}$, which is $C^{\infty}\left(N_{0}\right)=M_{0, n!-1}$ ([6] section 12).

Proof Assume that $\chi=\chi_{1} \otimes \chi_{2} \otimes \chi_{3}: T \rightarrow k_{K}^{*}$ is a character, such that neither χ_{1} / χ_{2}, nor χ_{2} / χ_{3} is trivial on o_{K}^{*}. Similar construction can be carried out in the other cases.

Let \prec_{T} be the following total ordering of the Weyl group of G refining the Bruhat ordering:

$$
\begin{aligned}
w_{1} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \prec_{T} w_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \prec_{T} w_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \prec_{T} \\
\prec_{T} w_{4} & =\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \prec_{T} w_{5}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \prec_{T} w_{6}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)=w_{0} .
\end{aligned}
$$

And let

$$
\begin{gathered}
h=\sum_{a=0}^{p^{2}-1} \sum_{b=0}^{p^{2}-1}\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
p^{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) f_{w_{2}} \in M_{0}, \\
f=h-\frac{1}{\chi_{3}\left(p^{2}\right)} \sum_{a=0}^{p^{3}-1} \sum_{b=0}^{p^{3}-1} h\left(\left(\begin{array}{ccc}
a & b & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\right)\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) f_{w_{5}} .
\end{gathered}
$$

Then it is easy to verify that $f \in M_{0} \cap V_{5}$, and that $f(z) \neq 0$ for

$$
z=\left(\begin{array}{ccc}
p^{2} & 0 & 1 \\
1 & 0 & 0 \\
p & 1 & 0
\end{array}\right) \in B w_{0} B \backslash N_{0} w_{0} B
$$

Thus $f \notin M_{0,5}=B_{+} f_{6} \subseteq\left\{f \in V \mid \operatorname{supp}(f) \leq N_{0} w_{0} B\right\}$.
However, if $f \in M_{0} \cap V_{5}$ then $\operatorname{supp}(f)$ is contained in $B w_{0} B \cap \bigcup_{i>3} R_{i} B$: A straightforward computation shows that for any $n \in N_{0}, t \in T_{+}, w \in W$ and

- for any $r \in R_{w_{1}}$ we have $n t f_{w}(r)=n t f_{w}\left(w_{1}\right)$. Let $r^{\prime}=w_{1} \in G_{5}$,
- for any $r \in R_{w_{2}}$ we have $n t f_{w}(r)=n t f_{w}\left(r^{\prime}\right)$ for

$$
r^{\prime}=\left(\begin{array}{ccc}
\alpha & 1 & 0 \\
1 & 0 & 0 \\
\beta^{\prime} & 0 & 1
\end{array}\right) \in G_{5}, \text { where } r=\left(\begin{array}{ccc}
\alpha & 1 & 0 \\
1 & 0 & 0 \\
\beta^{\prime} & \gamma^{\prime} & 1
\end{array}\right)
$$

- for any $r \in R_{w_{3}}$ we have $n t f_{w}(r)=n t f_{w}\left(r^{\prime}\right)$ for

$$
r^{\prime}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\alpha^{\prime}-\beta \gamma^{\prime} & \gamma & 1 \\
0 & 1 & 0
\end{array}\right) \in G_{5} \text {, where } r=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\alpha^{\prime} & \gamma & 1 \\
\beta^{\prime} & 1 & 0
\end{array}\right) .
$$

Thus if $i<4$ and $r \in R_{w_{i}}$, then since $r^{\prime} \notin B w_{0} B$ we have $f(r)=f\left(r^{\prime}\right)=0$.
Proposition 6.3 The quotients $M_{0, m-1} / M_{0, m-1} \cap V_{m}$ via $f \mapsto f\left(\cdot w_{m}\right)$ are isomorphic to $M\left(w_{m}, \chi\right)$.

Proof It is obvious, that $f\left(\cdot w_{m}\right) \equiv 0$ implies $\left.f\right|_{G_{m} \backslash G_{m-1}} \equiv 0$ and $f \in M_{0, m-1} \cap V_{m}$. Hence the map $M_{0, m-1} / M_{0, m-1} \cap V_{m} \rightarrow M\left(w_{m}, \chi\right)$, $f \mapsto f\left(\cdot w_{m}\right)$ is injective.

Let $t_{0}=\operatorname{diag}\left(\pi_{F}^{n-1}, \pi_{F}^{n-2}, \ldots, \pi_{F}, 1\right) \in T_{+}$, and for any $l \in \mathbb{N}$ let $U^{(l)}=\operatorname{Ker}\left(G_{0} \rightarrow G\left(o_{F} / \pi_{F}^{l} o_{F}\right)\right)$. For $x=r b \in R_{w_{m}} B$ we have

$$
\sum_{n \in\left(N_{0} \cap U^{(l)}\right) / t_{0}^{l} N_{0} t_{0}^{-l}} n t_{0}^{l} f_{w_{m}}(r b)= \begin{cases}\chi^{-1}(b), & \text { if } r \in U^{(l)} w_{m}, \\ 0, & \text { if not. }\end{cases}
$$

The image of these generate $M\left(w_{m}, \chi\right)$ as an N_{0}-module, so $f \mapsto f\left(\cdot w_{m}\right)$ is surjective.

Since $M_{0, m} \leq V_{m}, M\left(w_{m}, \chi\right)$ is naturally a quotient of $M_{0, m-1} / M_{0, m}$, we have $D\left(V_{m-1} / V_{m}\right) \leq\left(M_{0, m-1} / M_{0, m}\right)^{*}$.

Proposition 6.4 For $m=1$ and $m=n!-n+1, n!-n+2, \ldots, n$! $\left(M_{0, m-1} / M_{0, m}\right)^{*}=D\left(V_{m-1} / V_{m}\right)$. For other m-s it is not true, for example if $n=3, F=\mathbb{Q}_{p}$ and $m=2,3$.

Proof By the previous proposition it is enough to show that $M_{0, m}=M_{0, m-1} \cap V_{m}$ for $m=1$ and $m>n!-n$.

For $m=1$ the quotient is obviously k_{K}, for $m>n!-n$ we have $w \prec w_{m}$ implies $w=w_{n!}$, so if $f \in B_{+} f_{w_{m}} \cap V_{m-1}=B_{+} f_{w_{m}} \cap V_{n!-1}$, then $\operatorname{supp}(f) \subset U^{(1)} R_{w_{n!-1}}^{(1)} B$. But

$$
M_{0, n!-1} \simeq C^{\infty}\left(N_{0}\right) \simeq\left\{f \in V_{n!-1} \mid \operatorname{supp}(f) \subset U^{(1)} R_{w_{n!-1}} B\right\}
$$

The fuction f constructed in the beginning of this section is in $M_{0,1} \cap V_{2} \backslash M_{0,2}$. The same can be done for $m=3$.

References

[1] P. Colmez: Représentations de $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ et (φ, Γ)-modules, Asterisque 330, p. 281-509, 2010.
[2] P. Colmez: (φ, Γ)-modules et représentations du mirabolique de $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$, Asterisque 330, p. 61-153, 2010.
[3] J.-M. Fontaine: Représentations p-adiques des corps locaux, Progress in Math. 87, vol. II, p 249-309, 1990.
[4] J. C. Jantzen: Representations of algebraic groups, Mathematical Surveys and Monographs (Volume 107), AMS, 2007.
[5] R. Ollivier: Critère d'irreductibilité pour les séries principales de GL (n, F) en caractéristique p, Journal of Algebra 304, p. 39-72, 2006.
[6] P. Schneider, M. F. Vigneras: A functor from smooth o-torsion representations to (φ, Γ)-modules, Clay Mathematics Proceedings Volume 13, p. 525-601, 2011.
[7] P. Schneider, M.-F. Vigneras M., G. Zábrádi., From étale $P_{+}{ }^{-}$ representations to G-equivariant sheaves on G / P, Automorphic forms and Galois representations (Volume 2), LMS Lecture Note Series 415, p 248-366, 2014.
[8] M. F. Vigneras: Série principale modulo p de groupes réductifs p adiques, GAFA vol. in the honour of J. Bernstein, 2008.
[9] G. Zábrádi: Exactness of the reduction of étale modules, Journal of Algebra 331, p. 400-415, 2011.

