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Abstract. Searching in partially ordered structures has been considered
in the context of information retrieval and efficient tree-like indexes, as
well as in hierarchy based knowledge representation. In this paper we
focus on tree-like partial orders and consider the problem of identifying
an initially unknown vertex in a tree by asking edge queries: an edge
query e returns the component of T −e containing the vertex sought for,
while incurring some known cost c(e).

The Tree Search Problem with Non-Uniform Cost is: given a tree T where
each edge has an associated cost, construct a strategy that minimizes the
total cost of the identification in the worst case.

Finding the strategy guaranteeing the minimum possible cost is an NP-
complete problem already for input tree of degree 3 or diameter 6.
The best known approximation guarantee is the O(logn/ log log logn)-
approximation algorithm of [Cicalese et al. TCS 2012].

We improve upon the above results both from the algorithmic and the
computational complexity point of view: We provide a novel algorithm
that provides an O( logn

log logn
)-approximation of the cost of the optimal

strategy. In addition, we show that finding an optimal strategy is NP-
complete even when the input tree is a spider, i.e., at most one vertex
has degree larger than 2.
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1 Introduction

The design of efficient procedures for searching in a discrete structure is a funda-
mental problem in discrete mathematics [1, 2] and computer science [10]. Search-
ing is a basic primitive for building and managing operations of an information
system as ordering, updating, and retrieval. The typical example of a search
procedure is binary search which allows to retrieve an element in a sorted list
of size n by only looking at O(log n) elements of the list. If no order can be
assumed on the list, then it is known that any procedure will have to look at the
complete list in the worst case. Besides these two well characterized extremes,
extensive work has also been devoted to the case where the underlying structure
of the search space is a partial order. Partial orders can be used to model lack
of information on the totally ordered elements of the search space [12] or can
naturally arise from the relationship among the elements of the search space, like
in hierarchies used to model knowledge representation [15], or in tree-like indices
for information retrieval of large databases [3]. For more about applications of
tree search see below.

In this paper, we focus on the case where the underlying search space is a
tree-like partially ordered set and tests have nonuniform costs. We investigate
the following problem.
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Fig. 1. An example of the tree search problem, T is the input tree and D is a decision
tree with cost(D) = 7 = costD(a) = costD(c). If the vertices of the tree T represent the
parts of a device to assemble, the decision tree corresponds to the assembly procedure
that at time 0 joins e with b; then at time 3 joins b with c and e with g. At time 4 the
joining of d with c and e with f is started. Finally, at time 6 part a is joined with part
c and the procedure ends by time 7.

The Tree Search Problem with non-uniform costs

Input: A tree T = (V,E) with non-negative rational costs assigned to the
edges defined by a c : e ∈ E 7→ c(e) ∈ Q.

Output: A strategy that minimizes (in the worst case) the cost spent to
identify an initially unknown vertex x of T by using edge queries. An edge query
e = {u, v} ∈ E asks for the subtree Tu or Tv which contains x, where Tu and Tv
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are the connected components of T−e, including the vertex u and v respectively.
The cost of the query e is c(e). The cost of identifying a vertex x is the sum of
the costs of the queries asked.

More formally, a strategy for the Tree Search Problem with nonuniform costs
over the tree T is a decision tree D which is a rooted binary tree with |V | leaves
where every leaf ` is associated with one vertex v ∈ V and every internal node6

ν ∈ V (D) is associated with one test e = {u, v} ∈ E. The outgoing edges from
ν are associated with the possible outcomes of the query, namely, to the case
where the vertex to identify lies in Tu or Tv respectively. Every vertex has at
least one associated leaf. The actual identification process can be obtained from
D starting with the query associated to the root and moving towards the leaves
based on the answers received. When a leaf ` is reached, the associated vertex
is output (see Fig. 1 for an example).

Given a decision tree D, for each vertex v ∈ V (T ), let costD(v) be the sum of
costs of the edges associated to nodes on the path from the root of D to the leaf
identifying v. This is the total cost of the queries performed when the strategy
D is used and v is the vertex to be identified.

In addition, let the cost of D be defined by

cost(D) = max
v∈V (T )

costD(v).

This is the worst-case cost of identifying a vertex of T by the decision tree D.
The optimal cost of a decision tree for the instance represented by the tree T
and the cost assignment c is given by

OPT (T, c) = min
D

cost(D),

where the min is over all decision trees D for the instance (T, c).

Previous results and related work. The Tree Search Problem has been first
studied under the name of tree edge ranking [9, 5, 11, 13, 7], motivated by multi-
part product assembly. In [11] it was shown that in the case where the tests have
uniform cost, an optimal strategy can be found in linear time. A linear algorithm
for searching in a tree with uniform cost was also provided in [14]. Independently
of the above articles, the first paper where the problem is considered in terms of
searching in a tree is [3], where the more general problem of searching in a poset
was also addressed.

The variant considered here in which the costs of the tests are non-uniform
was first studied by Dereniowski [6] in the context of edge ranking. In this pa-
per, the problem was proved NP-complete for trees of diameter at most 10.
Dereniowski also provided an O(log n) approximation algorithm. In [4] Cicalese
et al. showed that the tree search problem with non-uniform costs is strongly NP-
complete already for input trees of diameter 6, or maximum degree 3, moreover,

6 For the sake of avoiding confusion between the input tree and the decision tree, we
will reserve the term vertex for the elements of V and the term node for the vertices
of the decision tree D.
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these results are tight. In fact, in [4], a polynomial time algorithm computing
the optimal solution is also provided for diameter 5 instances and an O(n2) al-
gorithm for the case where the input tree is a path. For arbitrary trees, Cicalese
et al. provided an O( log n

log log logn )-approximation algorithm.

Our Result. Our contribution is both on the algorithmic and on the complexity
side. On the one hand, we provide a new approximation algorithm for the tree
search problem with non-uniform costs which improves upon the best known
guarantee given in [4]. In Section 3 we will prove the following result.

Theorem 1. There is an O(log n/ log log n)-approximation algorithm for the
Weighted Tree Search Problem that runs in polynomial time in n.

In addition, we show that the tree search problem with non-uniform costs is
NP-hard already when the input tree is a spider7 of diameter 6.

More about applications. We discuss some scenarios in which the problem
of searching in trees with non-uniform costs naturally arises.

Consider the problem of locating a buggy module in a program in which the
dependencies between different modules can be represented by a tree. For each
module we can verify the correct behavior independently. Such a verification
may consist in checking, for instance, whether all branches and statements in a
given module work properly. For different modules, the cost of using the checking
procedure can be different (here the cost might refer to the time to complete the
check). In such a situation, it is important to device a debugging strategy that
minimizes the cost incurred in order to locate the buggy module in the worst
case.

Checking for consistency in different sites keeping distributed copies of tree-
like data structures (e.g., file systems) can be performed by maintaining at each
node some check sum information about the subtree rooted at that node. Tree
search can be used to identify the presence of “buggy nodes”, and efficiently
identifying the inconsistent part in the structure, rather than retransmitting or
exhaustively checking the whole data structure. In [3], an application of this
model in the area of information retrieval is also described.

Another examples comes from a class of problems which is in some sense
dual to the previous ones: deciding the assembly schedule of a multi-part device.
Assume that the set of pairs of parts that must be assembled together can be
represented by a tree. Each assembly operation requires some (given) amount of
time to be performed and while assembling two pieces, the same pieces cannot
be involved in any other assembly operation. At any time different pairs of
parts can be assembled in parallel. The problem is to define the schedule of
assembly operations which minimize the total time spent to completely assembly
the device. The schedule is an edge ranking of the tree defined by the assembly
operations. By reversing the order of the assembly operation in the schedule
we obtain a decision tree for the problem of searching in the tree of assembly
operation where each edge cost is equal to the cost of the corresponding assembly.

7 By spider we mean a tree with at most one vertex of degree greater than 2.
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2 Basic lower and upper bounds

In this section we provide some preliminary results which will be useful in the
analysis of our algorithm presented in the next section. We introduce some lower
bounds on the cost of the optimal decision tree for a given instance of the prob-
lem. We also recall two exact algorithm for constructing optimal decision tree
which were given in [4]. The first is an exponential time dynamic programming
algorithm which works for any input tree. The second is a quadratic time algo-
rithm for instances where the input tree is a path. Finally, we show a construction
of 2-approximation decision trees for spider graphs.

Let T denote the input tree and c the cost function. It is not hard to see
that, given a decision tree D for T we can extract from it a decision tree for the
instance of the problem defined on a subtree T ′ of T and the restriction of c to
the vertices in T ′. For this, we can repeatedly apply the following operation: if
in D there is a node ν associated with an edge e = {u, v}, such that Tu (reps.
Tv) is included T − T ′ then remove the node ν together with the subtree rooted
at the child of ν corresponding to the case where the vertex to identify is in Tu
(resp. Tv). Let D′ be the resulting decision tree when the above step cannot be
performed anymore. Then, clearly cost(D′, c) ≤ cost(D, c). We have shown the
following (also observed in [4]).

Lemma 1. Let T ′ be a subtree of T . Then, OPT (T, c) ≥ OPT (T ′, c).

Another immediate observation is that for a given input tree T , the value
OPT (T, c) is monotonically non-decreasing with respect to the cost of any edge.
This is recorded in the following.

Lemma 2. Let c and c′ be cost assignments on a tree T such that c′(e) ≤ c(e)
for every e ∈ E(T ). Then, OPT (T, c) ≥ OPT (T, c′).

The next proposition shows that subdividing an edge cannot decrease the
cost of the optimal decision tree.

Proposition 1. Let c be a cost assignment on a tree T . Let v ∈ V (T ) have
exactly two neighbors u1, u2 ∈ V (T ). If T ′ is obtained from T − v by adding the
edge {u1, u2} and c′ is obtained from c by setting c′(u1u2) = min{c(u1v), c(u2v)}
then OPT (T, c) ≥ OPT (T ′, c′).

The proof of Proposition 1 is deferred to the appendix.
The following two results from [4] provide exact algorithms for the construc-

tion of optimal strategies. More precisely, Proposition 2 provides an exponential
dynamic programming based algorithm for general trees. Theorem 2 gives an
O(n2) time algorithm for the special case where the input tree is a path and will
be useful in the analysis of our main algorithm and also in the following lemma
regarding the spider tree.

Proposition 2 ([4]). Let T be an edge-weighted tree on n vertices. Then an
optimal decision tree for T can be constructed in O(2nn) time.

5



The following theorem was proved by Cicalese et al. in [4] and will be useful
later in the analysis of our algorithm and also in the following lemma regarding
the spider tree.

Theorem 2 ([4]). There is an O(n2) time algorithm that constructs an optimal
decision tree D for a given weighted path on n vertices.

Note that for a star T any decision tree D has the same cost, since all the
edges have to be asked in the worst case. Hence, for a tree T such that there is
only one node with degree greater than 1 we have OPT (T, c) =

∑
e∈E(T ) c(e),

for any cost function c.

Definition 1. A tree T is a spider if there is at most one vertex in T of degree
greater than two. We refer to this vertex as the head (or center) of the spider.
Moreover, each path from the head of the spider to one of the leaves will be
referred to as a leg of the spider.

Lemma 3. Let T be a spider. Then there is an algorithm which computes a
2-approximate decision tree D for T and runs in time O(n2).

Proof. If T is a path, then by Theorem 2 there exists an algorithm computing the
optimal decision tree in O(n2) time. Assume T is not a path. Then T contains
exactly one vertex v of degree at least three. Let Sv be the star induced by v
and the vertices adjacent to v. Let us denote by w1, . . . , wk the vertices adjacent
to v, where k = deg(v). By Theorem 2, for every i ∈ {1, . . . , k} we construct the
optimal decision tree Di for the path component Ci of T − v containing wi in
time O(|Ci|2). Note that the total running time for construction of D1, . . . , Dk is
O(n2). Finally, for Sv we compute the optimal decision tree Dv (in O(n) time).
The decision tree D for T is obtained from Dv by replacing the node corre-
sponding to wi by the root of Di for every i ∈ {1, . . . , k}. Clearly, the algorithm
runs in O(n2) time and cost(D) ≤ OPT (Sv, c) + max1≤i≤k{OPT (Ci, c)} ≤
2OPT (T, c). The last inequality follows since by Lemma 1 both OPT (Sv, c)
and max1≤i≤k{OPT (Ci, c)} are lower bounds on OPT (T, c). ut

3 The Algorithm

Let n be the size of the input tree and t = 2blog lognc+2 be a parameter fixed for
the whole run of the algorithm. It holds that 2 log n ≤ t ≤ 4 log n.

The basic idea of our algorithm is to construct a subtree S of the input tree
T such that: (i) we can construct a decision tree for S whose cost is at most a
constant times the cost of an optimal decision tree for S; (ii) each component of
T − S has size not larger than T/t.

This will allow us to build a decision tree for T by assembling the decision
tree for S with the decision trees recursively constructed for the components of
T − S. The constant approximation guarantee on S and the fact that, due to
the size of the subtrees on which we recurs, we need at most O( logn

log logn ) levels

of recursion to show that our algorithm gives an O( logn
log logn ) approximation.
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The subtree S. We iteratively build subtrees S0 ⊂ S1 ⊂ · · · ⊂ St ⊆ T . Starting
with the empty tree S0, in every iteration i ∈ {1, . . . , t} we pick a centroid xi of
the largest connected component of the forest T − Si−1. The subtree Si is set
to be the minimal subtree containing xi and Si−1. If for some i we have that
Si = T , then we set S = Si = T and we stop the iterations. If all t iterations are
completed then we set S = St.

By definition, the centroid of a tree T is a vertex v such that any maximal
component of T − v has size at most |T |/2. Therefore, we have the following
lemma—which establishes (ii) above.

Lemma 4. If H is a maximal connected component of T − S, then |H| ≤
|T |/ log n.

Proof. We prove by induction on k that after 2k iterations all maximal compo-
nents of T − S2k have size at most |T |/2k−1. Let k = 0. We observe that by the
definition of centroid, after 1 = 2k iterations all components of T − S1 have size
at most |T |/2 ≤ |T |/2k−1 = 2|T |. This establishes the basis of our induction.

Now fix some k > 0 and assume (induction hypothesis) that after 2k−1

iterations all maximal components of T − S2k−1 have size at most |T |/2k−2.
Among these there are at most 2k−1 components that have size at least |T |/2k−1.
In the next 2k−1 iterations we will choose a centroid in each of these components,
one by one. Choosing a centroid in a component H splits H into parts that have
size at most half of H, thus after 2k = 2k−1 + 2k−1 steps all components of
T − S2k have size at most |T |/2k−1.

Thus, if the process of constructing S is stopped after t = 2blog lognc+2 it-
erations all components have size at most |T |/2blog lognc+1 ≤ |T |/ log n. On the
other hand, if the process of constructing S is stopped at some iteration i < t
then it means that S = T and, trivially, we have |H| = 0. ut

The Decision Tree for S. Let X contain all xi for i ∈ {1, . . . , t} and vertices
of degree at least three in S. Note that |X| ≤ 2t+ 1. Let Pu,v be the path of T
whose endpoints are vertices u and v.

We define an auxiliary tree Y on the vertex set X. Vertices u, v ∈ X form
an edge of Y if u and v are the only vertices of X of the path Pu,v in T with
endpoints u and v. Let euv = arg mine∈Pu,v

c(e) (the edge of Pu,v with minimal
cost) and cY (uv) = c(euv). Let Z =

⋃
uv∈E(Y ) euv. By Proposition 2, we can

compute an optimal decision tree DY for Y in O(22tt) which is polynomial in n.
Let DX be obtained from DY by changing the label of every internal node

from uv to euv, for each uv ∈ E(Y ). The tree DX is not a decision tree for S,
however, leaves of DX correspond to connected components of S − Z. Notice
that cost(DX) = cost(DY ) = OPT (Y, cY ).

Since every connected component C of S −Z contains at most one vertex of
degree at least three, every such component is a spider. By Lemma 3, a decision
tree DC for each such component C ∈ S − Z can be computed in O(n2) time
with approximation ratio 2.

We can now obtain the decision tree DS for S by replacing each leaf in DX

with the decision tree for the corresponding component in S − Z. We have
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cost(DS)

OPT (S, c)
≤ cost(DX) + maxC∈S−Z cost(DC)

OPT (S, c)

≤ cost(DX)

OPT (Y, cY )
+ max

C∈S−Z

cost(DC)

OPT (C, c)
≤ 3,

where the second inequality holds because of OPT (Y, cY ) ≤ OPT (S, c) (given
by Proposition 1) and OPT (C, c) ≤ OPT (S, c) (given by Lemma 1).

Assembling the pieces in the Decision Tree for T . Let v be a vertex in
S with a neighbor not in S, let Sv be the star induced by v and its neighbors
outside V (S).

Let Dv be a decision tree for Sv (notice that they all have the same cost).
For every neighbor w 6∈ V (S) of v we compute recursively the decision tree
Dw for the component Hw of T − S containing w and replace the leaf node of
Dv associated to w with the root of Dw. The result is a decision tree D′v for
the subtree of T including Sv and all the components of T − S including some
neighbor w of v.

In order to obtain a decision tree DT for T we now modify DS as follows: for
each vertex v in S with a neighbor not in S, replace the leaf in DS associated
with v with the decision tree D′v computed above.
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Fig. 2. The tree S, the important set of vertices X and the auxiliary tree Y

The Approximation guarantee for DT . Let APP(T ) = cost(DT )
OPT (T,c) denote

the approximation ratio obtained by Algorithm TS on the instance (T, c). Let
APP(k) = max|T |≤k APP(T ).

Lemma 5. For any tree T on n vertices and any cost assignment c, we have
APP(T ) ≤ 4 log n/ log log n.
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Proof. For every 1 ≤ k ≤ n let f(k) = max{1, 4 log k/ log log n}. We shall prove
by induction on k that APP (k) ≤ f(k), which implies the statement of the
lemma.

If |T | ≤ t then our algorithm builds an optimal decision tree, thus APP (k) =
1 ≤ f(k) for k ≤ t. This establishes the induction base.

Choose a tree T as in the statement of the lemma such that APP (T ) =
APP (n). Let S and Y be the substructures of T built by the algorithm as
described above. Let Ṽ be the set of vertices of S with some neighbor not in S.
For each w 6∈ V (S) let Hw be the maximal component of T − S containing w.
Let H be the set of maximal components of T − S. Then, by construction, we
have

APP(T ) =
ALG(T )

OPT (T )
≤ cost(DS) + maxv∈Ṽ cost(Dv) + maxw 6∈V (S) cost(Dw)

OPT (T, c)
(1)

≤ cost(DS)

OPT (S, c)
+ max

v∈Ṽ

cost(Dv)

OPT (Sv, c)
+ max

w 6∈V (S)

cost(Dw)

OPT (Hw, c)
(2)

≤ 4 + max
H∈H

ALG(H)

OPT (H, c)
= 4 + max

H∈H
{APP(H)} (3)

≤ 4 + max
H∈H

f(|H|) ≤ 4 + f(|T |/ log n) (4)

= 4 + f(n/ log n) = 4 +
4 log n

logn

log log n
=

4 log n

log log n
, (5)

where

– (2) follows from (1) because ofOPT (S, c), OPT (Sv), OPT (Dw) ≤ OPT (T, c)
(Lemma 1)

– (3) follows from (2) because of (1) and the fact that any decision tree for a
star Sv has the same cost, hence also equal to OPT (Sv, c)

– in (4) the first inequality follows by induction and the second inequality by
Lemma 4

– (5) follows from (4) because of |T | = n and the definition of f(·).
ut

Lemma 6. For a tree T on n vertices, the Algorithm TS builds the decision tree
DT in time polynomial in n.

The proof of Lemma 6 is deferred to the appendix. Lemma 6 and Lemma 5
now imply Theorem 1.

4 Tree search with non-uniform costs is NP-hard on
spider graphs

In this section we provide a new hardness result which contributes to refining the
separation between hard and polynomial instances of the tree search problem
with non-uniform costs. We show that the problem of finding a minimum cost

9



Algorithm TS Tree Search Algorithm

1: function Main(tree T , cost c)
2: t← 2blog log |T |c+2

3: Output D ← TreeSearch(T, c, t)
4: end function
5: function TreeSearch(tree T , costs c, t)
6: if |T | ≤ t then return optimal decision tree DX for T computed by Proposi-

tion 2
7: S0 ← ∅
8: for all i = 1, . . . , t do
9: xi ← centroid of a maximum size connected component of T − Si−1

10: Si ← smallest subtree containing xi and Si−1

11: end for
12: X ← {xi| i = 1, . . . , t} ∪ {v ∈ V (S)| degS(v) ≥ 3}
13: Y ← tree on vertex set X, uv ∈ E(Y ) iff X ∩ Pu,v = {u, v}
14: for all uv ∈ E(Y ) do
15: cY (uv)← mine∈Pu,v c(e)
16: euv ← edge of Pu,v with minimum cost
17: end for
18: Z ←

⋃
uv∈E(Y ) euv

19: Compute optimal decision tree DY for (Y, cY ) by Proposition 2
20: for all uv ∈ E(Y ) do
21: Replace label of uv in DY by euv
22: end for
23: for all H connected component of Y − Z do
24: . H contains at most one vertex of degree 3 or more, i.e., H is a spider
25: Compute 2-approximate decision tree DH for H by Lemma 3
26: replace the leaf k ∈ DY corresponding to H by the root of DH

27: end for
28: for all v ∈ V (S) with a neighbor not in S do
29: Sv ← star induced by v and its neighbors outside of V (S)
30: Construct decision tree Dv for (Sv, c)
31: for all w ∈ Sv \ {v} do
32: U ← connected component of T − S containing w
33: Dw ← TreeSearch(U, c, t)
34: leaf of Dv corresponding to w ← root of Dw

35: end for
36: replace the leaf of DY associated to v by the root of Dv

37: end for
return DY

38: end function
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decision tree is hard even for instances where the input graph is a spider and
the length of every leg is three.

Our reduction is from the Knapsack Problem. The input of the Knapsack
Problem is given by: a knapsack size W , a desired value V , and a set of items,
(vi, wi)i∈[m], where vi is the value and wi is the weight of the ith item. The goal
is to decide whether there exists a subset of items of total value at least V and
whose weight can be contained in the knapsack, i.e., whether there is a J ⊆ [m]
such that

∑
j∈J wj ≤W and

∑
j∈J vj ≥ V .

From a knapsack instance we construct an instance (S, c) for the tree search
problem with non-uniform costs, where S is a spider. Each leg will correspond
to an item. Therefore, we will speak of the ith leg as the leg corresponding to
the ith item. For each i ∈ [m], the ith leg will consist of three edges: the one
closest to the head will be called femur (and referred to as fi), the middle edge
will be called tibia (and referred to as ti), the end will be called the tarsus (and
referred to as si). The cost function is defined as follows: For each i ∈ [m], we
set c(fi) = vi + wi; c(ti) = vi and c(si) = N , with N a large number to be
determined later.

It is easy to see that in an optimal strategy, for each i ∈ [m] the edge si is
always queried last among the edges on the ith leg. Given a decision tree D, we
denote by ID the set of indices of the legs for which, in D, the node associated
with the query to the tibia is an ancestor of the node associated with the query
to the femur. Then, we have the following proposition, whose proof is deferred
to the appendix.

Proposition 3. There is an optimal decision tree D with ID 6= ∅ and such that:
(i) for any i ∈ ID and j ∈ [m] \ ID the node of D associated with the jth

femur is an ancestor of the node associated with the ith tibia.
(ii) for any i, j ∈ ID the node of D associated with the ith tibia is an ancestor

of the node associated with the jth femur.

By this proposition, we can assume that in the optimal decision tree D for at
least one leg of the spider the first edge queried is a tibia. In addition, in D, there
is a root to leaf path where first all femurs not in ID are queried, then all tibias in
ID and finally all femurs in ID (see Fig. 3 in Appendix for a pictorial example).
Then, the cost of such a decision tree is given by the maximum between the cost
of the leaf on the legs with index in ID and whose tibia is queried as last, and
the cost of the central vertex of the spider. It follows that the cost of the optimal
solution is given by the following expression

OPT (S, c) = min
∅⊂I⊆[m]

max

N +
∑
i 6∈I

(vi + wi) +
∑
i∈I

vi;
∑
i∈I

vi +
∑
i∈[m]

(vi + wi)


If we set N =

∑
i∈[m](vi + wi) − W − V , then we can rewrite the above

expression as follows:

OPT (S, c) = min
∅⊂I⊆[m]

max

N +
∑
i 6∈I

wi +
∑
i∈[m]

vi;N +W + V +
∑
i∈I

vi


11



Now, it is easy to see that OPT (S, c) is at most
∑

i∈[m] vi + N + W if an

only if
∑

i 6∈I wi ≤ W and
∑

i6∈I vi ≥ V , that is, if and only if the set [m] \ I is
a solution for the knapsack problem. Note that as the values and weights are
unrelated, we can indeed choose N as big as necessary for the above reduction,
which is clearly polynomial in the size of the input to the knapsack problem.
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Appendix

The Proof of Proposition 1

Proof. Let D be an optimal decision tree for the instance (T, c). Let us assume
without loss of generality that in D the node ν1 associated with e1 = {u1, v} is
an ancestor of the node ν2 associated with e2 = {u2, v}. Notice that one of the
children of ν2 is a leaf associated with the vertex v. Let D̃ be the subtree of D
rooted at the non-leaf child of ν2.

Let D′ be the decision tree obtained from D by associating the node ν1 to
the edge e = {u1, u2} and replacing the subtree rooted at ν2 with the subtree
D̃.

It is not hard to see that D′ is a proper decision tree for T ′. In addition we
also have that for any vertex z of T ′ which is associated to a leaf in D̃ it holds
that costD

′
(z) = costD(z)− c(e1)− c(e2) + c′(u1u2), and for any other vertex z

of T ′ we have costD
′
(z) = costD(z)− c(e1) + c′(u1u2) or costD

′
(z) = costD(z).

It follows that OPT (T ′, c′) ≤ cost(D′) ≤ cost(D) = OPT (T, c). ut

The Proof of Lemma 6

Proof. If |T | ≤ t then the algorithm builds an optimal decision tree for T in time
O(2t · t) = O(n4) using the construction from Proposition 2. Otherwise, every
iteration needed to build the subtree S (lines 7–11 of the algorithm) introduces
one new vertex xi and at most one other vertex of degree at least three, thus
|X| ≤ 2t + 1. Proposition 2 then implies that an optimal decision tree DY for
Y can be computed in time O(22t · 2t) which is polynomial in n. By Lemma 3,
the 2-approximation decision tree DH for H can be computed in O(n2) time.
Building the decision tree Dv for the stars Sv takes O(|Sv|) time (line 29). The
rest of the algorithm, not counting the recursion on line 33, needs time O(n2).
As the recursion is for a graph whose size is at most half of the original, the
overall algorithm running time is polynomial in n. ut

The Proof of Proposition 3

Proof. We first show that there is an optimal decision tree with ID 6= ∅. Let D∗

be a decision tree where each femur is queried before the corresponding tibia,
i.e., ID

∗
= ∅. Let i be the index of the last femur queried. Therefore one of the

two children of the node querying fi is a leaf associated to r, while in the subtree
rooted at the other child the leaves are associated to the vertices in the ith leg.
Let zi, yi, xi, denote the vertices on the ith leg in order of increasing distance
from r. It is not hard to see that

max
v∈{zi,yi,xi,r}

costD
∗
(v) = K + c(fi) + c(ti) + c(si),

where K is the cost of the queries on the path from the root of D∗ to the parent
of the node associated with the query to fi.

13
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Fig. 3. The structure of the optimal decision tree in Proposition 3. For the ease of
notation, we use I for ID. The cost of this decision tree can be obtained as the max of
the costs provided by the leaf associated to xik and the leaf associated with r.
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Now consider the decision tree obtained from D∗ by replacing the query to
fi with a query to ti, then one child of this node queries fi and the other child
queries si. Let D′ be the resulting decision tree. It is not difficult to see that we
now have

max
v∈{zi,yi,xi,r}

costD
′
(v) = max{K + c(ti) + c(si),K + c(ti) + c(fi)}

≤ max
v∈{zi,yi,xi,r}

costD
∗
(v)

and costD
′
(v) = costD

∗
(v) for any v 6∈ {zi, yi, xi, r}. Hence cost(D′) ≤ cost(D∗)

with ID
′ 6= ∅ for D′.

Now, assuming that I = ID 6= ∅, we can show (i) and (ii). First we observe
that if at least one of (i) and (ii) does not hold then at least one of the following
conditions holds:

(i’) there exists i ∈ I and j ∈ [m] \ I such that the node νj associated with fj is
a child of the node νi associated with ti;

(ii’) there exists i, j ∈ I such that the node νi associated with ti is a child of the
node νj associated with fj ;

(iii’) there exists i ∈ I and j ∈ [m] \ I such that the node νj associated with fj is
a child of the node νi associated with fi.

Indeed, if none of these three conditions holds then (i) and (ii) follow.
Therefore, it is enough to show that if we have an optimal tree where one

of the three conditions holds, by swapping the nodes νi and νj involved, we
can obtain a new decision tree whose total cost is not larger than the cost of
the original decision tree. This implies that by repeated use of this swapping
procedure, we have an optimal decision tree where both (i) and (ii) hold.

We shall limit to explicitly show this argument for the case where in the
optimal decision tree D∗ condition (i’) holds. Therefore, we have

max
v∈{zj ,yj ,xj}

costD
∗
(v) = K + c(ti) + c(fj) + c(tj) + c(sj)

costD
∗
(xi) = costD

∗
(yi) = K + c(ti) + c(si)

Let D′ be the decision tree obtained after swapping the queries to fj and
the query to si so that now the latter is the parent of the former. Therefore, we
have

max
v∈{zj ,yj ,xj}

costD
′
(v) = K + c(fj) + c(tj) + c(sj)

costD
′
(xi) = costD

′
(yi) = K + c(fj) + c(ti) + c(si)

and for each v 6∈ {zj , yj , xj , yi, xi} it holds that costD
∗
(v) = costD

′
(v).

Since c(si) = c(sj) we have that

max
v∈{zj ,yj ,xj ,yi,xi}

costD
′
(v) ≤ max

v∈{zj ,yj ,xj ,yi,xi}
costD

∗
(v),
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hence cost(D′) ≤ cost(D∗).
We can use an analogous argument to show that we can swap queries in order

to have an optimal decision tree where neither (ii’) nor (iii’) holds. The resulting
tree satisfies (i) and (ii) as desired. ut
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